Citation 数理解析研究所講究録 (2012), 1807:

Similar documents
Title multiplicity (New topics of transfo. Citation 数理解析研究所講究録 (2015), 1968:

REGULARITY OF POWERS OF SOME IDEALS. Citation 数理解析研究所講究録 (1999), 1078:

Title Geometric Univalent Function Theory. Citation 数理解析研究所講究録 (2008), 1579:

THE EXISTENCE AND THE CONTINUATION TitleHOLOMORPHIC SOLUTIONS FOR CONVOLUTI EQUATIONS IN A HALF-SPACE IN $C^n$ Citation 数理解析研究所講究録 (1997), 983: 70-75

Fujii, Masatoshi; Kim, Young Ok; Ku Nakamoto, Ritsuo. Citation 数理解析研究所講究録 (2011), 1753:

Title of the notion of independence and d. Citation 数理解析研究所講究録 (2011), 1741:

Citation 数理解析研究所講究録 (2012), 1794:

Citation 数理解析研究所講究録 (2013), 1841:

Citation 数理解析研究所講究録 (2008), 1605:

Citation 数理解析研究所講究録 (2012), 1805:

A REMARK ON THEOREMS OF DE FRANCHIS SEVERI(Complex Analysis on Hyperbol. Citation 数理解析研究所講究録 (1994), 882:

TitleImplementing Sturm's Algorithm and. Citation 数理解析研究所講究録 (1997), 986:

Citation 数理解析研究所講究録 (1996), 941:

and Function spaces and its applica Citation 数理解析研究所講究録 (2009), 1667:

ANALYTIC CONTINUATION OF CAUCHY AND. Citation 数理解析研究所講究録 (2000), 1155:

Citation 数理解析研究所講究録 (2006), 1465:

On mean-field approximation of part annihilation and spikes (Probabilit. Citation 数理解析研究所講究録 (2017), 2030:

Citation 数理解析研究所講究録 (2004), 1396:

Citation 数理解析研究所講究録 (2009), 1665:

Citation 数理解析研究所講究録 (2015), 1942:

A linear programming instance with. Author(s) Mizuno, Shinji; Megiddo, Nimrod; Ts. Citation 数理解析研究所講究録 (1996), 945: 68-74

Citation 数理解析研究所講究録 (2013), 1871:

Title numbers (Mathematics of Quasi-Perio. Citation 数理解析研究所講究録 (2011), 1725:

Citation 数理解析研究所講究録 (2002), 1254:

Citation 数理解析研究所講究録 (2010), 1716:

Title series (Analytic Number Theory and. Citation 数理解析研究所講究録 (2009), 1665:

Citation 数理解析研究所講究録 (1994), 886:

DYNAMICS OF RATIONAL MAPS: A CURRENT ON THE BIFURCATION LOCUS. Laura DeMarco 1 November 2000

Citation 数理解析研究所講究録 (2000), 1123:

On the regular leaf space of the cauliflower

Theory and Related Topics) 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2010), B16:

Citation 数理解析研究所講究録 (2007), 1531:

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2008), B5:

Citation 数理解析研究所講究録 (2005), 1452:

and Practical Solutions) Citation 数理解析研究所講究録 (2005), 1461:

Citation 数理解析研究所講究録 (2002), 1244:

Mathematische Annalen

Citation 数理解析研究所講究録 (1996), 966:

FIXED POINT PROPERTIES FOR SEMIGROU TitleNONEXPANSIVE MAPPINGS ON BI-TOPOLOG. Author(s) LAU, ANTHONY TO-MING; TAKAHASHI, WA

CHAOTIC UNIMODAL AND BIMODAL MAPS

Citation 数理解析研究所講究録 (2015), 1963:

INTERPRETATION OF RACK COLORING KNO. Low-dimensional Topology) Author(s) TANAKA, KOKORO; TANIGUCHI, YUMA. Citation 数理解析研究所講究録 (2012), 1812:

ON THE CAUCHY PROBLEM IN THE MAXWEL Title. Citation 数理解析研究所講究録 (2001), 1234:

Citation 数理解析研究所講究録 (2003), 1344:

Citation 数理解析研究所講究録 (1994), 863:

DIFFERENTIAL OPERATORS AND SIEGEL-M. Author(s) IMAMOGLU, OZLEM; RICHTER, OLAV K. Citation 数理解析研究所講究録 (2010), 1715:

\left\{\begin{array}{llll}x & =0 & x=1 & x=\infty\\ & 0 & 0 & $\alpha$\\ & 1- $\gamma$ & $\gamma$- $\alpha$- $\beta$ & $\beta$\end{array}\right\}.

Riemannゼータ関数の近似関数等式に対する平均値公式 ( 解析数論と数論諸分野の交流 ) Citation 数理解析研究所講究録 (1999), 1091:

Second Julia sets of complex dynamical systems in C 2 computer visualization

FIXED-WIDTH CONFIDENCE INTERVAL EST Title OF A FUNCTION OF TWO EXPONENTIAL SC. Author(s) Lim, Daisy Lou; Isogai, Eiichi; Uno

Citation 数理解析研究所講究録 (2010), 1679:

数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2011), B25:

Author(s) Higuchi, Masakazu; Tanaka, Tamaki. Citation 数理解析研究所講究録 (2002), 1298:

Title (Properties of Ideals on $P_\kappa\ Citation 数理解析研究所講究録 (1999), 1095:

RADON TRANSFORM OF HYPERFUNCTIONS A PROBLEMS OF SUPPORT. Citation 数理解析研究所講究録 (1996), 937:

Fixed Points & Fatou Components

A SURVEY ON FIXED POINT THEOREMS IN. Citation 数理解析研究所講究録 (2006), 1484:

Citation 数理解析研究所講究録 (2006), 1476:

SOME COUNTEREXAMPLES IN DYNAMICS OF RATIONAL SEMIGROUPS. 1. Introduction

The Dynamics of Two and Three Circle Inversion Daniel M. Look Indiana University of Pennsylvania

systems and harmonic analysis) Citation 数理解析研究所講究録 (2002), 1294:

Title series (New Aspects of Analytic Num. Citation 数理解析研究所講究録 (2002), 1274:

Elliptic modular transformations on. Teichmuller spaces and moduli space. 数理解析研究所講究録別冊 = RIMS Kokyuroku Bessa (2010), B17: 1-20

JULIA SETS AND BIFURCATION DIAGRAMS FOR EXPONENTIAL MAPS

in the geometric function theory) Author(s) Shigeyoshi; Darus, Maslina; Cho, Na Citation 数理解析研究所講究録 (2010), 1717: 95-99

Author(s) Aoshima, Makoto; Srivastava, Muni S. Citation 数理解析研究所講究録 (1999), 1101:

Citation 数理解析研究所講究録 (2006), 1466:

Theory and its related Fields) Citation 数理解析研究所講究録 (2009), 1669:

Part II. Riemann Surfaces. Year

LECTURE 2. defined recursively by x i+1 := f λ (x i ) with starting point x 0 = 1/2. If we plot the set of accumulation points of P λ, that is,

Citation 数理解析研究所講究録 (2016), 1995:

Kahler submanifolds of a quaternion (Geometry of homogeneous spaces and. Citation 数理解析研究所講究録 (2003), 1346:

Chow Analytic Zariski structures and Chow s Theorem

Chapter 6: The metric space M(G) and normal families

Citation 数理解析研究所講究録 (2004), 1368:

Title analysis for nonlinear phenomena) Citation 数理解析研究所講究録 (2016), 1997:

LINEAR CHAOS? Nathan S. Feldman

Bivariate Chebyshev maps

Citation 数理解析研究所講究録 (1993), 819:

Citation 数理解析研究所講究録 (2001), 1191:

Citation 数理解析研究所講究録 (1994), 860:

An introduction to holomorphic dynamics in one complex variable Informal notes Marco Abate

Citation 数理解析研究所講究録 (2013), 1866:

Citation 数理解析研究所講究録 (2004), 1380:

Citation 数理解析研究所講究録 (2008), 1588:

Citation 数理解析研究所講究録 (2003), 1334:

5.3 The Upper Half Plane

Dynamics in several complex variables: endomorphisms of projective spaces and polynomial-like mappings

SRB MEASURES FOR AXIOM A ENDOMORPHISMS

SPECTRAL PROPERTIES OF DIRAC SYSTEM. and asymptotic analysis) Citation 数理解析研究所講究録 (2003), 1315:

Title solutions of damped sine-gordon equ. Author(s) Nakagiri, Shin-ichi; Elgamal, Mahmo. Citation 数理解析研究所講究録 (1998), 1034: 1-13

Dynamical Systems 2, MA 761

関数型 SIRMs 結合型ファジィ推論法による非線形同定に関する一考察 ( モデリングと最適化の理論 ) Citation 数理解析研究所講究録 (2006), 1526:

Math 354 Transition graphs and subshifts November 26, 2014

Title (The 8th Workshop on Stochastic Num. Citation 数理解析研究所講究録 (2009), 1620:

HIROKAZU SHIMAUCHI. the. $c\in \mathbb{c}$

Dynamics on Hubbard trees

TitleOccam Algorithms for Learning from. Citation 数理解析研究所講究録 (1990), 731:

b 0 + b 1 z b d z d

HAUSDORFFIZATION AND POLYNOMIAL TWISTS. Laura DeMarco. Kevin Pilgrim

Transcription:

Title On saddle basic sets for Axiom A po mathbb{c}^2 (Integrated Research on Author(s) Nakane, Shizuo Citation 数理解析研究所講究録 (2012), 1807 66-73 Issue Date 2012-09 URL http//hdlhlenet/2433/194431 Right Type Departmental Bulletin Paper Textversion publisher Kyoto University

1807 2012 66-73 66 On saddle basic sets for Axiom A polynomial skew products on 1 Introduction (Shizuo Nakane) Tokyo Polytechnic University In this note, we consider Axiom A regular polynomial skew products on It is of the form $f(z, w)=(p(z), q(z, w))$, where $p(z)$ $q(z, w)$ are polynomials of some degree Let $d$ $\Omega$ be the set of non-wering points for Then $f$ $\Omega$ $f$ is said to be Axiom A if is compact, hyperbolic periodic points are $\Omega$ dense in For polynomial skew products, Jonsson [J2] has shown that is $f$ Axiom A if only if $(a)p$ is hyperbolic, $(b)f$ is vertically exping over $J_{p},$ $(c)f$ is vertically exping over $A_{p}=$ {attracting periodic points of $p$} We are interested in the dynamics of on $f$ $J_{p}\cross \mathbb{c}$ Put $q_{z}(w)=q(z, w)$ consider the critical set $C_{J_{p}}=\{(z, w)\in J_{p}\cross \mathbb{c};q_{z} (w)=0\}$ over the base $J_{p}$ Julia set Let $K$ $K_{z}$ denotes the set of points with bounded orbits, $=$ $\{w\in \mathbb{c};(z, w)\in K\}$ Then the condition implies that the $J_{z}=\partial K_{z}$ $(b)$ $J_{2}= \bigcup_{z\in J_{p}}\{z\}\cross J_{z}$ $C_{J_{p}}$ postcritical set for is disjoint from the second Julia set It follows from that the map is continuous on $(b)$ $z\mapsto J_{z}$ $J_{p}$, hence $J_{2}=$ $\bigcup_{z\in J_{p}}\{z\}\cross J_{z}$ For any subset $X$ in, its accumulation set is defined by $A(X)= \bigcap_{n\geq 0}\overline{\bigcup_{n\geq N}f^{n}(X)}$ DeMarco & Hruska define the pointwise component-wise accumulation sets respectively by of $C_{J_{p}}$ $A_{pt}(C_{J_{p}})=\overline{\bigcup_{x\in C_{J_{p}}}A(x)}$ $A_{cc}(C_{J_{p}})=\overline{\bigcup_{C\in C(C_{J_{p}})}A(C)},$ where denotes the collection of connected components of $C(C_{J_{p}})$ $C_{J_{p}}$ $\Omega$ $\Lambda$ $J_{p}\cross \mathbb{c}$ Let be the saddle part of in It decomposes into a disjoint union $\Lambda=\sqcup_{i=1}^{m}\Lambda_{i}$ of saddle basic sets Put $W^{S}(\Lambda) = \{y\in \mathbb{c}^{2};f^{n}(y)arrow\lambda\},$ $y\in \mathbb{c}^{2};\exists$ $W^{u}(\Lambda)$ $=$ { prehistory } $\hat{y}=(y_{-k})arrow\lambda$

for 67 Put $\Lambda_{0}=\emptyset,$ $W^{S}(\Lambda_{0})$ $=(J_{p}\cross \mathbb{c})\backslash K$ $C_{i}$ $=C_{J_{p}}\cap W^{S}(\Lambda_{i})$ for $0\leq i\leq m$ Then $C_{J_{p}}=\sqcup_{i=0}^{m}C_{i}$ Theorem 1 (DeMarco-Hruska [DHl]) $\Lambda=A_{pt}(C_{J_{p}})\subset A_{cc}(C_{J_{p}})\subset A(C_{J_{p}})=$ $W^{u}(\Lambda)\cap(\sqrt{}p\cross \mathbb{c})$ Theorem 2 (Nakane [N]) $m,$ $st$ $C\subset C_{i}$ $A_{cc}(C_{J_{p}})=A_{pt}(C_{J_{p}})\Leftrightarrow\forall C\in C(C_{J_{p}}),$ $0\leq\exists i\leq$ Theorem 3 (Nakane [N]) For each $i\geq 0,$ $A(C_{i})=\Lambda_{i}\Leftrightarrow C_{i}$ is closed Consequently, $A(C_{J_{p}})=A_{pt}(C_{J_{p}})\Leftrightarrow\forall i\geq 0,$ $C_{i}$ is closed We state a stability result on the equalities $A_{cc}(C_{J_{p}})=A_{pt}(C_{J_{p}})$ See also [DH2] $A(C_{J_{p}})=A_{pt}(C_{J_{p}})$ Theorem 4 (Nakane [N]) Both equalities $A_{cc}(C_{J_{p}})=A_{pt}(C_{J_{p}})$ $A_{pt}(C_{J_{p}})$ are preserved in hyperbolic components $A(C_{J_{p}})=$ The proof of Theorem 4 is an application of the holomorphic motions of hyperbolic sets developped by Jonsson [Jl] DeMarco& Hruska [DHl, DH2] In Section 2, we prepare the notion of holomorphic motions stability results of hyperbolic sets As another application, in Section 3, we give examples which have solenoids as saddle basic sets 2 Holomorphic motion Let $\{f_{a};a\in \mathbb{d}\}$ be a holomorphic family of polynomial endomorphisms on be a hyperbolic set of $L$ $f=f_{0}$ holomorphic motion of parametrized $A$ $L$ $\mathbb{d}_{r}\cross Larrow \mathbb{c}^{2}$ in $\mathbb{d}_{r}=\{ a <r\}$ $\varphi$ is a continuous map such that (1) $\varphi(0, \cdot)=id_{l},$ (2) is holomorphic in $\varphi(\cdot, x)$ $\mathbb{d}_{r}$ each fixed $x,$ (3) is injective for each fixed $\varphi_{a}=\varphi(a, \cdot)$ $a$ $J_{z}$ If the fiber Julia sets fiber saddle sets $\Lambda_{z}=\{w\in \mathbb{c};(z, w)\in\lambda\}$ move holomorphically, it is easy to show Theorem 4 It is true for fiber Julia sets, but not for fiber saddle sets However, we have continuous dependence on parameters for fiber saddle sets

$\mathbb{c}$ such, $\hat{h}$, 68 Theorem 5 ([Jl]) Let be a holomorphic family of polynomial $\{f_{a};a\in \mathbb{d}\}$ endomorphisms on uniformly exping on L Then there exist $r>0$ $\Phi$ $\mathbb{d}_{r}\cross Larrow \mathbb{c}^{2}$ $f_{a}$ a holomorphic motion such that is uniformly exping on $L_{a}=\Phi_{a}(L)$ on $f_{a}=\phi_{a}\circ f_{0}o\phi_{a}^{-1}$ $L_{a}$ $a\in \mathbb{d}_{r}$ for all If the maps are Axiom A polynomial skew products, $f$ is uniformly exping on $L=J_{2}$ Thus we have Theorem 6 ([DHl]) If the maps $f_{a}(z, w)=(p_{a}(z), q_{a}(z, w))$ are Axiom $A$ $\Phi_{a}$ polynomial skew products in Theorem 5, is also a skew product $\Phi_{a}(z, w)=$ $(\varphi_{a}(z), \psi_{a}(z, w))$, where (1) $\varphi$ $p_{0}\circ\varphi_{a}^{-1}$ on $\mathbb{d}_{r}\cross J(p_{0})arrow \mathbb{c}$ is a holomorphic motion of $J_{p0}$ such $J_{p_{a}}=\varphi_{a}(J_{p0})$, (2) for each $z\in J_{p0},$ $\psi_{a}(z, w)$ defines a holomorphic motion $\psi$ that $\psi_{a}(j_{z}(f_{0}))=j_{\varphi_{a}(z)}(f_{a})$ that $p_{a}=\varphi_{a}0$ $\mathbb{d}_{r}\cross J_{z}(f_{0})arrow$ If the hyperbolic set is not uniformly exping, we cannot expect the $L$ existence of holomorphic motion See Example 1 below Instead, we have $\hat{l}=\{\hat{y}=(y_{-n})_{n\geq 0};y_{-n}\in$ a holomorphic motion for the natural extension $\hat{l}arrow L$ $L,$ $f(y_{-n})=y_{-n+1}\}$ $\pi$ Let be the projection The map $\pi(\hat{y})=y_{0}$ $f$ induces a homeomorphism by $f;\hat{l}arrow\hat{l}$ $f((y_{-n}))=(y_{-n+1})$ Theorem 7 ([Jl]) Let be a holomorphic family of polynomial $\{f_{a};a\in \mathbb{d}\}$ endomorphisms on let be a hyperbolic $L$ $\mathcal{s}et$ $f_{0}$ of Then there exist $r>0$ a holomorphic motion of $\hat{l}$ $\mathbb{d}_{r}$ on which induces a continuous map $h=\pi\circ\hat{h}$ $\mathbb{d}_{r}\cross\hat{l}arrow \mathbb{c}^{2}$ That is, \mathbb{d}_{r},\hat{f}_{a}=\hat{h}_{a}\circ\hat{f}_{0}\circ\hat{h}_{a}^{-1}$ $\hat{l}_{a}=\hat{h}_{a}(\hat{l})$ on (1) for $a\in each, (2) for $a\in \mathbb{d}_{r},$ $L_{a}=h_{a}(\hat{L})$ each is a hyperbolic set of $f_{a},$ (3) for each satisfies $a\in \mathbb{d}_{r},$ $h_{a}$ $f_{a}oh_{a}=h_{a}o\hat{f}_{0},$ $\hat{x}\in\hat{l}$ $h(\cdot,\hat{x})\mathbb{d}_{r}arrow \mathbb{c}^{2}$ $\mathbb{d}_{r}$ (4) for each, the map is holomorphic in Theorem 8 ([DH2]) If $f_{a}$ the maps are polynomial skew in Theorem $product_{\mathcal{s}}$ $\hat{h}_{a}$ $\hat{\pi}_{a}\circ\hat{h}_{a}=\hat{\varphi}_{a}\circ\hat{\pi}$ $\hat{\pi}_{a}$ $\hat{\lambda}_{a}arrow\hat{j}_{p_{a}}$ 7, then is also a skew product Here, is $\hat{\varphi}_{a}\hat{j}_{p}arrow\hat{j}_{p_{a}}i\mathcal{s}$ $\varphi_{a}$ the projection the lift of 3 Examples First, we will give an example which does not admit holomorphic motions Example 1 ([Jl]) $f_{a}(z, w)=(z^{2}, w^{2}+az)$

is that has is 69 A remarkable fact is that it is semiconjugate to the product map $g_{a}(z, w)=$ $(z^{2}, w^{2}+a)$ by the map $\rho(z, w)=(z^{2}, zw)$ $\rho og_{a}=f_{a}o\rho$ As a consequence, we have $\Lambda(f_{a})=\rho(\Lambda(g_{a}))=\{(z^{2}, \alpha_{a}z); z =1\}$, where $\alpha_{a}$ is the attracting fixed point of the map $w^{2}+a$ is a circle while for $\Lambda(f_{0})$ $a\neq 0,$ $\Lambda(f_{a})$ is a fiber bundle over the circle $\Lambda(f_{a})$ with two point set as a fiber Hence is not a $\Lambda(f_{0})$ holomorphic motion of $\hat{\lambda}(f_{0})$ In this example, is a solenoid as a natural extension of the circle $\hat{\lambda}(f_{a})$ by angle doubling map By Theorem 7, is also a solenoid for small $ a $ It is natural to ask whether a solenoid appears as a saddle set by a further $f_{a}$ perturbation of This actually occurs Example 2 ([FS2], Example 73, [J2], Example 94) $f_{a}(z, w)=(z^{2}, aw^{2}+ \frac{1}{10}w+\frac{1}{2}z)$ $f_{0}$ $\Lambda_{0}$ It is well known that has a solenoid as a hyperbolic set See for example, Devaney [D], Section 25 By Theorem 7, there exists a continuous $h_{a}$ map such that is a hyperbolic set of $\Lambda_{a}=h_{a}(\Lambda_{0})$ $f_{a}$ $f_{0}$ Since is injective in $\hat{\lambda}_{a}\cong\lambda_{a}$ $\Lambda_{0}$ $f_{a}$ a neighborhood of, so is, hence for small Again, by Theorem $a$ $\hat{h}_{a}$ 7, $\Lambda_{0}\cong\Lambda_{0}$ $\Lambda_{a}\cong\hat{\Lambda}_{a}$ it follows that a homeomorphism between $\Lambda_{a}$ Thus we conclude that is also a solenoid for small For $a$ $a\neq 0$, the map $\tau_{a}(z, w)=(z, aw)$ satisfies, where $\tau_{a}of_{a}=k_{a}o\tau_{a}$ $k_{a}(z, w)=(z^{2}, w^{2}+ \frac{1}{10}w+\frac{a}{2}z)$ $f_{a}$ $k_{a}$ That is, it gives a conjugacy between Hence for small $ a >0,$ $k_{a}$ $\tau_{a}(\lambda_{a})$ has a solenoid as a saddle set As $aarrow 0$, these solenoids tend to the circle, a saddle set of $S^{1}\cross\{0\}$ $k_{0}$ Note that tends to $J_{2}(f_{a})=\tau_{a}^{-1}(J_{2}(k_{a}))$ $[01 0]$ as $aarrow 0$ $f_{0}$ As a consequence, has no second Julia set Example 3 (Mihailescu & Urba\ {n}ski [MU], Theorem 41) $f_{\epsilon}(z, w)=(z^{2}, w^{2}+a+\epsilon(bz^{2}+czw+z+dw))$ Let $\alpha_{a}$ be the attracting fixed point of $w^{2}+a$ $f_{0}$ Since has a saddle set $\Lambda_{0}=S^{1}\cross\{\alpha_{a}\}$ $f_{\epsilon}$ $\Lambda_{\epsilon}$, Theorem 7 assures that a saddle set They showed that there exist $a(b, c, d),$ $\epsilon(a, b, c, d)>0$ such that $f_{\epsilon}$ $\Lambda_{\epsilon}arrow\Lambda_{\epsilon}$ is injective for $0< a <a(b, c, d),$ $0< \epsilon <\epsilon(a, b, c, d)$ Recall that $\hat{\lambda}_{0}$ a solenoid Thus, $\Lambda_{\epsilon}\cong\hat{\Lambda}_{\epsilon}$ by the same argument as in Example 2, is also a solenoid for such $a$ $\epsilon$ We consider a perturbation of the maps in Example 1 By a similar argument as in Example 3, we get the following $\mathcal{s}o$ Proposition 1 Take a $0< \alpha_{a} <1/4$ Then the map $f_{a,b}(z, w)=$ $(z^{2}, w^{2}+az+bw)$ $\Lambda_{a,b}$ is injective on a saddle set for small $ b >0$

70 proof Note that $\Lambda_{a,0}=\{(z, \pm\alpha_{a}\sqrt{z}); z =1\}$ that $f_{a,0}(z, \pm\alpha_{a}\sqrt{z})=(z^{2}, \alpha_{a}z), f_{a,0}(-z, \pm\alpha_{a}\sqrt{-z})=(z^{2}, -\alpha_{a}z)$ (1) Here we fix the branch of the square root $\sqrt{z}$ Now put $\beta=\max_{(z,w)\in\lambda_{a,b}}\min( w-\alpha_{a}\sqrt{z}, w+\alpha_{a}\sqrt{z} )$ for some If we take a preimage $\beta= w_{0}-\alpha_{a}\sqrt{z_{0}} $ $(z_{0}, w_{0})\in\lambda_{a,b}$ $(z, w)$ of $(z_{0}, w_{0})$, it follows $z_{0}=z^{2}, w_{0}=w^{2}+az+bw$ Set $z=\sqrt{z_{0}}$ Then $w_{0}-\alpha_{a}\sqrt{z_{0}}= w^{2}+az-\alpha_{a}\sqrt{z_{0}}+bw$ $= w^{2}+az-(\alpha_{a}^{2}+a)z+bw$ $= w^{2}-\alpha_{a}^{2}z+bw$ $= (w-\alpha_{a}\sqrt{z})^{2}+2\alpha_{a}\sqrt{z}(w-\alpha_{a}\sqrt{z})+bw$ We may assume $ w+\alpha_{a}\sqrt{z} \geq w-\alpha_{a}\sqrt{z} $ Then $\beta= w_{0}-\alpha_{a}\sqrt{z_{0}} $ $\leq$ $ w-\alpha_{a}\sqrt{z} ^{2}+2 \alpha_{a}\sqrt{z}(w-\alpha_{a}\sqrt{z}) + bw $ $\leq \beta^{2}+2 \alpha_{a} \beta+ bw $ Moreover, since $ w \leq w-\alpha_{a}\sqrt{z} + \alpha_{a}\sqrt{z} \leq\beta+ \alpha_{a},$ $\beta$ satisfies $\beta$ $\beta^{2}+(2 \alpha_{a} -1+ b )\beta+ b\alpha_{a} \geq 0$ Since is small for small, it follows $ b $ $\beta \leq \frac{1-2 \alpha_{a} - b -\sqrt{(1-2 \alpha_{a} - b )^{2}-4 b\alpha_{a} }}{2}$ $\leq \frac{ b\alpha_{a} }{1-2 \alpha_{a} - b }+O( b ^{2})$ $= ( \frac{ \alpha_{a} }{1-2 \alpha_{a} }+O( b )) b $ for small $ b $ Now suppose $(z, w),$ $(z, w )\in\lambda_{a,b}$ satisfy $f_{a,b}(z, w )=f_{a,b}(z, w)$ Then $z =z$ or $z =z$ From (1), $ f_{a,0}(-z, \pm\alpha_{a}\sqrt{-z})-f_{a,0}(z, \pm\alpha_{a}\sqrt{z}) =2 \alpha_{a} >0$ Hence, $z =z$ $ b $ for small Then $w^{\prime 2}+az +bw =w^{2}+az+bw$ implies $(w -w)(w +w+b)=0$ Suppose $w \neq w$ Then $ w-\alpha_{a}\sqrt{z} \leq w+\alpha_{a}\sqrt{z} $

of is 71 implies $ w +\alpha_{a}\sqrt{z} \leq w -\alpha_{a}\sqrt{z} $ for small $ b $ Therefore $ w-\alpha_{a}\sqrt{z} \leq\beta$ $ w +\alpha_{a}\sqrt{z} \leq\beta$ Hence $ w +w \leq w +\alpha_{a}\sqrt{z} + w-\alpha_{a}\sqrt{z} \leq 2\beta\leq(\frac{2 \alpha_{a} }{1-2 \alpha_{a} }+O( b )) b $ Thus, if $ \alpha_{a} <1/4$, then $ w +w <(1+O( b )) b $ This $co$ntradicts $w +w+b=$ $0$ for small $ b $ Thus we conclude $w =w$ This completes the proof $\square$ $\hat{\lambda}_{a,0}$ Recall that is a solenoid for small It is true for any such that $ a $ $a$ $q_{a}(w)=w^{2}+a$ has an attracting fixed point Lemma 1 $q_{a}$ If has an attmcting fixed point $\alpha_{a},\hat{\lambda}_{a,0}$ is a solenoid proof The $\rho$ semiconjugacy defined in Example 1 induces an endomorphism It is expressed by Here $\hat{\lambda}(g_{a})arrow\hat{\lambda}_{a,0}$ $\hat{\rho}$ $\hat{\rho}(\hat{z},\hat{\alpha}_{a})=(\hat{p}(\hat{z}), \alpha_{a}\hat{z})$ $p(z)=z^{2}$ $\hat{\alpha}_{a}=(\cdots, \alpha_{a}, \alpha_{a})$ is a fixed prehistory Evidently it is a homeomorphism Thus is a $\hat{\lambda}_{a,0}\cong\hat{\lambda}(g_{a})$ $\square$ solenoid $ b >0$ By Theorem 7, $\hat{\lambda}_{a,b}$ is also a solenoid for small, hence, so is $ b $ $\Lambda_{a,b}$ for small We also give a higher degree analogue of the examples above Set $f_{\epsilon}(z, w)=$ $(z^{d}, q(w)+\epsilon z)$, where $d\geq 2$ $q$ is a monic hyperbolic polynomial of degree $d$ $f_{0}$ $\Lambda_{0}=S^{1}\cross\{\alpha\}$ Then is Axiom A If $q$ $\alpha,$ has an attracting fixed point is $\Lambda_{\epsilon}$ $f_{0}$ $\Lambda_{0}$ a saddle basic set of We consider the perturbation Proposition 2 Suppose $q$ $\sin(\pi/d)$ $0< \rho <\overline{1+\sin(\pi/d)}$ then $f_{\epsilon}$ for small $ \epsilon >0$ has an attmcting fixed point $\alpha$ $\Lambda_{\epsilon}arrow\Lambda_{\epsilon}i_{\mathcal{S}}$ injective, of hence $\Lambda_{\epsilon}$ multiplier $\rho$ If a solenoid, proof As before, we put $\beta=\max_{(z,w)\in\lambda_{\epsilon}} w-\alpha $ Here the maximum $\beta=$ $ w_{0}-\alpha $ is supposed to be attained at $(z_{0}, w_{0})$ If $f_{\epsilon}(z, w)=(z_{0}, w_{0})$, then $w_{0}=q(w)+\epsilon z$ Therefore $w_{0}-\alpha=q(w)-q(\alpha)+\epsilon z=q (\alpha)(w-\alpha)+\sigma_{j=2}^{d}a_{j}(w-\alpha)^{j}+\epsilon z$ for some $a_{j}$ Thus $\beta= w_{0}-\alpha \leq \rho \beta+\sigma_{j=2}^{d} a_{j} \beta^{j}+ \epsilon,$ that is, $\beta$ satisfies $\Sigma_{j=2}^{d} a_{j} \beta^{j}+( \rho -1)\beta+ \epsilon \geq 0$

near, 72 Since $ \rho <1$, the equation $\sum_{j=2}^{d} a_{j} t^{j}+( \rho -1)t=0$ has a simple root $0$ $ \epsilon $ Hence, for small the equation $\sum_{j=2}^{d} a_{j} t^{j}+( \rho -1)t+ \epsilon =0$ has a simple $ \epsilon $ $t_{\epsilon}$ root the origin It is real analytic in Then we have $\beta\leq t_{\epsilon}=\frac{ \epsilon }{1- \rho }+O( \epsilon ^{2})$ Now suppose Then $f_{\epsilon}(z, w )=f_{\epsilon}(z, w)$ $z^{\prime d}=z^{d}$ $q(w )+\epsilon z =q(w)+\epsilon z$ If we put $\sigma=e^{2\pi i/d},$ $z =\sigma^{j}z$ for some $j\geq 0$ First we show $z =z$ Then, $\alpha$ since $ q (\alpha) >0,$ $q$ is injective in a neighborhood of Thus we have $w =w$ for small the proposition follows $ \epsilon >0$ Since $ q(w )-q(w) \leq q(w )-q(\alpha) + q(\alpha)-q(w) \leq( q (\alpha) +O( \epsilon ))2\beta,$ we have $ \epsilon(1-\sigma^{j})z = q(w )-q(w) \leq 2(\frac{ \epsilon }{1- \rho }+O( \epsilon ^{2}))( \rho +O( \epsilon ))$ Then it follows $ 1- \sigma^{j} \leq\frac{2 \rho }{1- \rho }+O( \epsilon )$ In other words, $z \neq\sigma^{j}z$ if $ 1-\sigma^{j} >$ $\frac{2 \rho }{1- \rho }$ Since $ 1-\sigma^{j} \geq 1-\sigma =2\sin(\pi/d)$ for $1\leq j\leq d-1$, we conclude that $z =z$ if $\sin(\pi/d)>\frac{ \rho }{1- \rho }$, which is equivalent to the assumption This completes the proof $\square$ References [D] R Devaney An introduction chaotic dynamical systems 2nd Ed, Addison-Wesley, Reading, MA 1989 [DHl] L DeMarco & S Hruska Axiom A polynomial skew products of their postcritical sets Ergod Th & Dynam Sys 28 (2008), pp 1749-1779 [DH2] L DeMarco & S Hruska Axiom A polynomial skew products of their postcritical sets-erratum Ergod Th & Dynam Sys 31 (2011), pp 631-636

73 [FSl] JE Fornaess & N Sibony Complex Dynamics in higher dimension II Ann Math Studies 137 (1995), pp 134-182 [FS2] JE Fornaess & N Sibony (1998), pp 305-333 Hyperbolic maps on $\mathbb{p}^{2}$ Math Ann 311 [Jl] M Jonsson Holomorphic motions of hyperbolic sets Michigan Math J 45 (1998), pp 409-415 [J2] M Jonsson Dynamics of polynomial skew products on 314 (1999), pp 403-447 Math Ann [MU] E Mihailescu & M Urba\ {n}ski Estimates for the stable dimension for holomorphic maps Houston Math J 31 (2005), pp 367-389 [N] S Nakane Postcritical sets saddle basic sets for Axiom A polynomial skew products on To appear in Ergod Th & Dynam Sys