The Computer Simulation and Estimation of Membrane Mass Transfer Coefficients of Hollow Fiber Membrane G-L Contactors for SO 2

Similar documents
수소가스화기에서석탄의메탄화반응특성. Characteristics of Coal Methanation in a Hydrogasifier

Temperature Control in Autothermal Reforming Reactor

The Study of Structure Design for Dividing Wall Distillation Column

Effect of Precipitation on Operation Range of the CO 2

Missing Value Estimation and Sensor Fault Identification using Multivariate Statistical Analysis

Temperature Effect on the Retention Behavior of Sugars and Organic Acids on poly (4-vinylpyridine) Resin

Research Article EXPERIMENTAL STUDY OF HEAT TRANSFER CHARACTERISTICS OF STAINLESS STEEL FIBROUS FLOW INSULATOR

The Combined Effect of Chemical reaction, Radiation, MHD on Mixed Convection Heat and Mass Transfer Along a Vertical Moving Surface

Specimen Geometry Effects on Oxidation Behavior of Nuclear Graphite

Fundamentals of Heat Transfer Muhammad Rashid Usman

NATURAL CONVECTION HEAT TRANSFER WITHIN VERTICALLY ECCENTRIC DOMED SKYLIGHTS CAVITIES

Numerical solution of diffusion mass transfer model in adsorption systems. Prof. Nina Paula Gonçalves Salau, D.Sc.

T x. T k x. is a constant of integration. We integrate a second time to obtain an expression for the temperature distribution:

Molecular dynamics simulation of ultrafast laser ablation of fused silica

Particle Removal on Silicon Wafer Surface by Ozone-HF-NH 4

CBE Transport Phenomena I Final Exam. December 19, 2013

STUDY ON 2-D SHOCK WAVE PRESSURE MODEL IN MICRO SCALE LASER SHOCK PEENING

LECTURER: PM DR MAZLAN ABDUL WAHID PM Dr Mazlan Abdul Wahid

One-Dimensional, Steady-State. State Conduction with Thermal Energy Generation

Levitation force analysis of ring and disk shaped permanent magnet-high temperature superconductor

SOLVING THE VISCOUS COMPOSITE CYLINDER PROBLEM BY SOKOLOV S METHOD

11) A thin, uniform rod of mass M is supported by two vertical strings, as shown below.

Substances that are liquids or solids under ordinary conditions may also exist as gases. These are often referred to as vapors.

Mobility of atoms and diffusion. Einstein relation.

Study of C5/C6 isomerization on Pt/H-zeolite catalyst in industrial conditions

A new class of exact solutions of the Navier Stokes equations for swirling flows in porous and rotating pipes

Corresponding author ABSTRACT:

Modeling of trickle bed reactor for hydrotreating of vacuum gas oils: effect of kinetic type on reactor modeling

In the previous section we considered problems where the

SCRAPED SURFACE HEAT EXCHANGER (SSHE)

International ejournals

5. Pressure Vessels and

Energy Procedia 4 (2011) Energy Procedia 00 (2010) GHGT-10

PES 3950/PHYS 6950: Homework Assignment 6

경막형용융결정화에의한파라디옥사논과디에틸렌글리콜혼합물로부터파라디옥사논의정제. Purification of p-dioxanone from p-dioxanone and Diethylene Glycol Mixture by a Layer Melt Crystallization

Search for a Critical Electron Temperature Gradient in DIII-D L-mode Discharges

1 Fundamental Solutions to the Wave Equation

Computational Methods of Solid Mechanics. Project report

COLD STRANGLING HOLLOW PARTS FORCES CALCULATION OF CONICAL AND CONICAL WITH CYLINDRICAL COLLAR

Velocimetry Techniques and Instrumentation

NUMERICAL SIMULATION OF FLUID FLOW IN ENCLOSED ROTATING FILTER AND DISK

Complex Heat Transfer Dimensional Analysis


V7: Diffusional association of proteins and Brownian dynamics simulations

RAO IIT ACADEMY / NSEP Physics / Code : P 152 / Solutions NATIONAL STANDARD EXAMINATION IN PHYSICS SOLUTIONS

Coupled Electromagnetic and Heat Transfer Simulations for RF Applicator Design for Efficient Heating of Materials

PROBLEM SET #3A. A = Ω 2r 2 2 Ω 1r 2 1 r2 2 r2 1

1 Similarity Analysis

Simulation of a bubbling fluidized bed process for capturing CO 2 from flue gas

Current, Resistance and

Calculation of Temperature Rise in Dry-type Air-core Reactors Using Strong Coupling of Fluid-Temperature Field

Analysis of thermal stratified storage tank

Thermal-Fluids I. Chapter 17 Steady heat conduction. Dr. Primal Fernando Ph: (850)

ABSTRACT SIMULATION OF DYNAMIC PRESSURE- Professor Timothy A. Barbari Department of Chemical Engineering

$ i. !((( dv vol. Physics 8.02 Quiz One Equations Fall q 1 q 2 r 2 C = 2 C! V 2 = Q 2 2C F = 4!" or. r ˆ = points from source q to observer

Supplementary material for the paper Platonic Scattering Cancellation for Bending Waves on a Thin Plate. Abstract

Characterization of Gas Flow Ability and Contribution of Diffusion to Total Mass Flux in the Shale

Discovery Guide. Beautiful, mysterious woman pursued by gunmen. Sounds like a spy story...

COMPARISON OF METHODS FOR SOLVING THE HEAT TRANSFER IN ELECTRICAL MACHINES

Part 2: CM3110 Transport Processes and Unit Operations I. Professor Faith Morrison. CM2110/CM Review. Concerned now with rates of heat transfer

Hydroelastic Analysis of a 1900 TEU Container Ship Using Finite Element and Boundary Element Methods

Chapter Introduction to Finite Element Methods

International Journal of Mathematical Archive-9(5), 2018, Available online through ISSN

History and Status of the Chum Salmon Enhancement Program in Korea

Influence of Loading Position and Reaction Gas on Etching Characteristics of PMMA in a Remote Plasma System

Section 11. Timescales Radiation transport in stars

Physics 1502: Lecture 4 Today s Agenda

LINEAR AND NONLINEAR ANALYSES OF A WIND-TUNNEL BALANCE

Natural Convection Heat Transfer in Horizontal Concentric Annulus between Outer Cylinder and Inner Flat Tube

Diffusion and Transport. 10. Friction and the Langevin Equation. Langevin Equation. f d. f ext. f () t f () t. Then Newton s second law is ma f f f t.

T. Raja Rani. Military Technological College, Muscat, Oman. Abstract

Seed Production from Pond Cultured Cherry Salmon, e ll, Oncorhynchus masou (Brevoort) ll ll

INFLUENCE OF GROUND INHOMOGENEITY ON WIND INDUCED GROUND VIBRATIONS. Abstract

The Equation of Continuity and the Equation of Motion in Cartesian, cylindrical, and spherical coordinates

A scaling-up methodology for co-rotating twin-screw extruders

Stellar Structure and Evolution

Dymore User s Manual Two- and three dimensional dynamic inflow models

Modeling for the Recovery of Organic Acid by Bipolar Membrane Electrodialysis

A POWER IDENTITY FOR SECOND-ORDER RECURRENT SEQUENCES

Title :THERMAL TRANSFER AND FLUID MECHANICS IN THE THEORY OF ETHER Author:Thierry DELORT Date:1 st May 2013

To investigate Heat Loss of a Fluid flowing through a Pipeline for Turbulent Flow

ME 425: Aerodynamics

Supplementary Figure 1. Circular parallel lamellae grain size as a function of annealing time at 250 C. Error bars represent the 2σ uncertainty in

Chemo-mechanical coupling and damage enhanced dissolution at intergranular contact

2.25 Advanced Fluid Mechanics

Black Body Radiation and Radiometric Parameters:

Exercise sheet 8 (Modeling large- and small-scale flows) 8.1 Volcanic ash from the Eyjafjallajökull

Chaos and bifurcation of discontinuous dynamical systems with piecewise constant arguments

MAGNETIC FIELD AROUND TWO SEPARATED MAGNETIZING COILS

Eucryotic Cells: Power Plants for ExoPolySaccharides EPS: carbohydrate-unimers oligomers polymers nano-materials

Graduate Theses and Dissertations

Influence of Artificial Roughness on Convective and Boiling Heat Transfer in the Rotating Flow

THERMAL PROPERTIES OF FRACTAL STRUCTURE MATERIALS

University Physics (PHY 2326)

Primer Materials Spring

Youn-Woo Lee School of Chemical and Biological Engineering Seoul National University , 599 Gwanangro, Gwanak-gu, Seoul, Korea

arxiv: v1 [physics.flu-dyn] 21 Dec 2018

Clutches and Brakes Des Mach Elem Mech. Eng. Department Chulalongkorn University

MULTI SCALE POROUS AND COLLOIDAL MATERIALS TEXTURE AND TRANSPORT PROPERTIES P. E. LEVITZ. Transport and invasion properties:

Accurate calculation of the pressure and temperature of water, steam, and ice: Formulation for CFD

Transcription:

Koean Chem. Eng. Res., Vol. 45, No. 1, Febuay, 007, pp. 81-86 SO o l q - h o{ m s n }o k Ç içm *Ç mk 143-701 ne v k 1 * l v l o 305-343 e o q 71- (006 11o 15p, 007 1o 4p }ˆ) The Compute Simulation and Estimation of Membane Mass Tansfe Coefficients of Hollow Fibe Membane G-L Contactos fo SO Removal Yong Kuk Kim, Hee Ouel Song, Hyung Keun Lee* and In-Won Kim Depatment of Chemical Engineeing, Konkuk Univesity, 1 Hwayang-dong, Gwangjin-gu, Seoul 143-701, Koea *Koea Institute of Enegy Reseach, 71- Jang-dong, Yuseong-gu, Daejeon 305-343, Koea (Received 15 Novembe 006; accepted 4 Januay 007) k l e l SO o t -k n p. l l -k p t l p SO l p, p o n p pn l m. SO p l m p t p ~ o, p v p l SO p p v p kk k. ~p o l t p SO p e p p v m. t l np q p p e m. h Abstact Hollow fibe membane G-L contactos ae widely used to emove SO emitted fom industial facilities. In this wok, the mathematical modeling and compute simulation fo hollow membane G-L contactos is caied out to analyze SO absoption behavio in hollow fibe membanes. The model is solved with the finite element method using a commecial softwae. Investigated is the dependency of SO emoval efficiency and mass tansfe chaacteistics on gas velocities, membane mass tansfe coefficients and physical popeties of contactos. The membane mass tansfe coefficients ae estimated by fitting the expeimental data with the simulated SO emoval efficiencies. In addition, a design methodology of membane contactos is suggested. Key wods: SO Removal, Membane Contactos, Hollow-fibe Membane, Membane Mass Tansfe Coefficient 1. op e to l ool o l p p l tl, l vop o l SO p t v l, k eˆ p mm v tl tp v l. p mmp o mm ~p p tn l m, l v p p l m. sp ~ p ~p p p p ~ k l eˆp f v v eˆ, -k p p p p p pl. p To whom coespondence should be addessed. E-mail: inwon@konkuk.ac.k p n q l ˆ(packed towe), ˆ(spay towe), d (ventui scubbe), ˆ(bubble column) p p, v v p n l m. sp q p -k p p lp q n p p p, k~p (flooding), n lv(weeping), (loading)m p p pl k~ ~p o l p t p p v p [1]. p p q p ep t p q (micopoous hydophobic polymeic membane)p pn p, k d ~ m n q p pop e q k d l e p t (hollow fibe membane contacto) e 81

8 n Ë lëp Ë po p p [1-]. p t m p p n ~ p p qp v p. 1) o p p v. ~m k~p p p s l (flooding), (loading) v. ) qp v. 3) -kp p k p. 4) (module) d, d p(scale)p l(up), n(down)p np [3]. 5) ~ p k~p o l lp p l p p. p q~ p v p v m p p mm(fouling), l p p k m e p [3-4]. p p q t p pp v eˆ o l p lv p. p p qp v t n l SO l SO pp ~p o, t p, p m p ~p v l [1, 4-5]. l l l v l ol SO p q t p t l p SO l l p, p o n p pn l l e m p f p v, SO l m p t p ~p o, p v p l SO p v p kk k. ~p o l t p SO p e p v m. t l np q p p e m.. m n y -1. q o{ i m -h m s n t l p ~(SO )m k~( n ) p v p t, v q p nk ƒ v(solution diffusion mechanism)l p p lv. l l } p n nl Fig. 1 p p k~l p v k p p ~ }ov (non-wetted model), p p p l yl ~ yl k~ l p. ~ tpp p k yl p ~, k yl mp pp [1-]. Fig. 1l p P g, P M P i,, l p kp ˆ, C i, C g p ˆ. K L p k ( ) yp v ˆ, ~m k ~ pl p ~ k~ yp, v ~ pl p p pp n pl p(instantaneous eaction)p nl p k l p K L o45 o1 007 k Fig. 1. Non-wetted mode of hydophobic. p p e p [1, 5]. K G yp v ˆ, p K G ~l p ~(k d, v ) pp q (molecula diffusion)p p. p p v ˆ p. p p p s p, e (poosity), p (thickness), p (totuosity)m l p (diffusivity in membane) l p. t p nl t p (tube)p kp v pp, p p v pp e (1) p p p. D M ε = ------------ τ M 1 ------------------------------ R 1 ln( R R 1 ) e (1)l D M p p, ε, δ p, τ M p ˆ. R 1p p kyp, R y vp p [6]. -. s o Fig. t p l t p p ˆ p. R 1p t p v p R p t p n v p. p o l m p t kp t p n o p o (cell). l ˆ p o p o p p v ppp op l p v p. p p t t pp p p, p p v l p o p p v p tp p. SO m v p ~ t p n (shell side) tp, k p t p (lumen side) tp. t (1)

SO o t -k p v 83 v g = v g R ------ 1 R ----- R ------ + ln------ R 3 R 3 ------------------------------------------------------------------ R 3 ------ 4 4 R + ------ + 4ln------ R (5) -3. o o p edš v ep s (bounday condition)p p. Fig.. Hexagonal shaped unit cell of the fibe assembly. kyp SO ~m mp pp p(instantaneous eaction)p t p kyp k d e. t n l ~p p m (fully developed) (lamina flow)p. p t p p p l p t l l. pm p t l SO ~p l v ep n, p (diffusive flow) (axial) l (convective flow)l p pp v v ep. C C v z ------ -------- 1 -- C C = + ------ +-------- z z l l SO p ˆ. v z t l ~m k~p l ˆ [7-8]. o v z t m t n p o vp n l p. t p p o p p e (3)l p p. v l = v l ----- 1 R 1 o ep R 1p t p p v p p. t p n p o p n p n p k. p t t pp p p, p p v l p o p p v p tp p. v g e (4). v g 4 P R R = -------------------------------- 3 ------ 4 R + 4 ln------ 4µl ( R ) t n p pn l e (5) p [1]. () (3) (4) 1) = R 1, 0 z Ll C = 0 C ) = R, 0 z Ll = C 3) =, 0 z Ll ------ = 0 4) z = 0, R l C = C 0 5) z = L, R l ------ C C ------ = 0 z ~ w s p t l SO m p p(instantaneous eaction) l p p. w s p p ~ ˆ p, w s p tkl p p p ˆ. w s p tp SO ˆ, w s p l p convective flux ˆ. -4. o ƒ o ~p t n p SO m v p ~p m t p Œ ~p v l p. t l tp SO m v p ~ t SO p Chapman-Enskog el p m [9]. t p p p p sq n, ~ q p qp p p q, p p ~p qo (mean fee path) qp ~ Knudsen l p p. Knudsen pp e(6) p p [9]. T D K = 9700 poe ------- 0.5 M A l D K Knudsen [cm /s], poe p v (cm), T m [T] M A p ~ p q [g/mol]p ˆ. Knudsen p t kp pp e (7) p ~p m Knudsen p e p p [7, 9]. 1 1 1 ------ = -------- + ------ D M D AB D K l l D M t k ~p [cm /s], D AB Chapman-Enskog el p p [cm /s] p D K Knudesen [cm /s] ˆ. Koean Chem. Eng. Res., Vol. 45, No. 1, Febuay, 007 (6) (7)

84 n Ë lëp Ë po Fig. 3. Concentation contou and total flux pofiles in hollow membane shell side ( = 0.0345 m/s, v g =4.3m/s). 3. y COMSOL p FEMLAB[10]p t SO p ~p o, p v p l v s l k p p, p s l SO m. 3-1. g p p o p t l p SO (contou plot)m ~ (total flux)p Fig. 3l e m. ~p o v g =4.3m/sp p v = 0.0345 m/s p np t n p SO ˆ p. p ny p t p y (R )p ˆ m y p t p t vp k p v ( )p ˆ. nyp SO p o(nondimensional) ˆ. k yl tp SO ny p p l t p ~ mp pl p. ~ yp v l ~p kvp p. t p p pl ny p m y SO p p p p t p n p SO l l p t lvp lt. Fig. 4 t p l t t p pl p ~p o l ˆ p lt p. ~p o p ƒvl SO l p kyp p p lt p. 3-. s n i SO o l l v l l e p SO p e p l p v ( ) m ~ o l p m. e l n t p o45 o1 007 k Fig. 4. Outlet concentation pofile with gas velocity ( = 0.0345 m/s). Table 1. Specification of the hollow fibe membanes Popeties Philos 08-00 Cel 03-00 Module Diamete (m) 0.01 0.01 Length (m) 0.15 0.15 VolumesG(cm 3 ) 11.8 11.8 Fibe Mateial Polypopylene Polypopylene I.D (µm) 40 40 O.D (µm) 310 300 Poe size (µm) 0.1 0.003 Poosity ( ) - 30 Packing density 0.19 0.180 Numbe of fibe 00 00 Fig. 5. Expeimental (Philos08-00) & calculated esults of SO emoval efficiency.

SO o t -k p v 85 Fig. 6. Expeimental (cel03-00) & calculated esults of SO emoval efficiency. Fig. 7. Simulation esults of effects of Gaetz and Shewood numbe in outlet concentation. p Table 1l ˆ l [11]. Philos08-00p Philos p Philosep p 00 p t p lp p, Cel03-00p Celgad p Liqui-cel p 00 lp p. Fig. 5m Fig. 6p v p l SO pp ˆ. ~ o p v l SO pp o p v l pp qkvp k p. p l SO pp k p p. v p p v pp, ~ o p ƒvl pp p qpp l t p. p p ƒv k dp l ~ o p m p lvp k p. Fig. 5l p p pn l ƒ l lp pp e p. e (Ë)p t (Philos08-00)p e p SO pp. p 0.0345 m/sl e l p p pp k p. p Philos08-00p t p v p 0.0345 m/sl p k p. p p l p, m k nl el p pp l l p t p p p v kk l ep e p SO p ƒ l p e ˆ SO pp l p m. Fig. 6p Cel03-00l l p p e l lp SO p lp SO pp p. l p 0.003 m/sp. Cel03-00p nl Philos08-00p nl p o l SO pp, e lp pp p p p p. p p qp p v nl pp ~ o l pp p. Philos08-00l ~o p 4 m/s v 0Íp pp p, Cel03-00p nl k 60Í p p pp p. 3-3. q m l p t p t p l o } e p, p Gzm Sh l Fig. 7p k p. Fig. 7p Gz(gaetz numbe)l p Sh(shewood numbe)l ˆ p l p Gzm Sh pp el p p. v g d Gz = ------------- L R Sh = -------------- o el v g ~p o [m/s], d t n p v [m] k dp [m /s], Lp t p p Rp t n p [m]p. p t p p } n p p pp l p p lv. 1) p v(,,, )p p v, p e p p. ) p Sh. 3) Gz-Sh pn o q pp ~ m Sh l l pl Gz p }. 4) Gz p p k p ~, t p v p p l t p p p, p t o lp p m l Fig. 7p pn l 95Íp SO o 00 p t p v t p o t p p p. p Philos08-00 p p 0.0345 m/s, p Sh 0.464p. SO pp 95Í p SO 0.05p, Fig. 7l p Shm l k 0.6p Gz lp p. t p 00 p n o p 16 L/minp o p 4. m/s, SO.7 10-5 m /sp p t p p Lp 0.65 mp. v, 95Í SO p pp o t p 00 n t p p k 0.65 m lk p k p. (7) Koean Chem. Eng. Res., Vol. 45, No. 1, Febuay, 007

86 n Ë lëp Ë po : adius of hollow fibe [m] R 1 R Sh T v g : inside adius of hollow fibe [m] : outside adius of hollow fibe [m] : fee suface adius of hollow fibe [m] : Shewood numbe (= R/ ) [ ] : tempeatue [K] : gas velocity [m/s] <v g > : aveage gas velocity [m/s] z : axial coodinate on the hollow fibe Fig. 8. Hollow fibe lengths of Gas velocity and Sh-numbe fo 95 SO emoval efficiency. t p 00 p SO pp 95Íp Sh(0.05, 0.1, 0.0464, 1, 1.5)m o (0.55, 1.05, 1.58,.1, 3.15, 4.)l t pp ˆ Fig. 8 p ˆ p. 4. t SO p o l t n p o p tp SO l v ep n o, p v ( ) p l SO p l l m. ep SO p e l p l t l n p v m. p v pn l t p ql n t p, p, ~ o p q p p e m. pm p l l t p v, v p l, SO l q t q q p. k C : dimensionless concentation of SO [-] C 0 : dimensionless initial concentation of SO [-] d : inne hollow diamete [m] : gas diffusion coefficient [m /s] D K : Kundsen diffusion coefficient [cm /s] D M : diffusion coefficient of a gas in s membane poe [cm /s] Gz : Gaetz numbe (= v g d / L) [ ] K G : feed gas mass tansfe coefficient [m/s] K L : Liquid absobent mass tansfe coefficient [m/s] : membane mass tansfe coefficient [m/s] L : membane length [m] M : gas molecula weight [g/mol] P : pessue [atm] m m P : Pessue diffeence along hollow fibe [atm] τ M : totuosity of membane [ ] ε : poousity of membane [ ] µ : viscosity of gas [kg m/s] y 1. Kaoo, S., Gas Absoption Studies in Micopoous Hollow Fibe Membane, Stevens Institute of Technology, Ph.D. Dissetation, Stevens Institute of Technology, USA(199).. Kao, S. and Sika, K. K., Gas Absoption Studies in Micopoous Hollow Fibe Membane Modules, Ind. Eng. Chem. Res., 3(4), 674-684(1993). 3. Zhang, Q. and Cussle, E. L., Micopoous Hollow Fibes fo Gas Absoption: I. Mass Tansfe in the Liquid, J. Memb. Sci., 3(3), 31-33(1985). 4. Zhang, Q. and Cussle, E. L., Micopoous Hollow Fibes fo Gas Absoption: I. Mass Tansfe in Acoss the Membane, J. Memb. Sci., 3(3), 333-345(1985). 5. Keulen, H., Smoldes, C. A., Vesteeg, G. F. and Swaaij, W. P. M. van, Micopoous Hollow Fibes Membanes as Gas-liquid Contactos: Pat. Mass Tansfe with Chemical Reaction, J. Memb. Sci., 78(3), 17-38(1993). 6. Wang, S., Xu, S. and Qin, Y., Mass Tansfe in Membane Absoption-desoption of Ammonia fom Wate, Chinese J. Chem. Eng., 1(3), 160-170(1993). 7. Qin, Y., Joaquim M. S. Cabal and Shichang Wang, Hollowfibe gas Membane Pocess fo Removal of NH 3 fom Solution of NH 3 and CO, AIChE, 4(7), 1945-1956(1996). 8. Li, K., Wang, D., Koe, C. C. and Teo, W. K., Use of Asymmetic Hollow Fibe Modules fo Elimination of H S fom Gas Steams Via a Membane Absoption Method, Chem. Eng. Sci., 53(6), 1111-1119(1998). 9. Waen, L. M., Smith, J. C. and Pete Haiott, Unit Ope. Chem. Eng., 6 th Edition, McGaw Hill(001). 10. FEMLAB Use s Guide, COMSOLAB(004). 11. Kim, I. W., Pak, H. H., Lim, C. W., Jo, H. D., Song, H. O. and Lee, H. K., Effect of Membane Mateial and Absobent Type on SO Removal Using Micopoous Hollow-fibe Membane G-L Contactos, KIGAS, 10(), 14-1(006). o45 o1 007 k