Linear Complexity Over and Trace Representation of Lempel Cohn Eastman Sequences

Similar documents
Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 )

STRENGTH FIELDS AND LAGRANGIANS ON GOsc (2) M

Finite Fields and Their Applications

Fitting a Polynomial to Heat Capacity as a Function of Temperature for Ag. Mathematical Background Document

II The Z Transform. Topics to be covered. 1. Introduction. 2. The Z transform. 3. Z transforms of elementary functions

Solubilities and Thermodynamic Properties of SO 2 in Ionic

INTRODUCTION TO COMPLEX NUMBERS

Abhilasha Classes Class- XII Date: SOLUTION (Chap - 9,10,12) MM 50 Mob no

Module 3: Element Properties Lecture 5: Solid Elements

The Parity of the Number of Irreducible Factors for Some Pentanomials

Learning Enhancement Team

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

Controller Design for Networked Control Systems in Multiple-packet Transmission with Random Delays

COMPLEX NUMBER & QUADRATIC EQUATION

The Schur-Cohn Algorithm

Lecture 7 Circuits Ch. 27

Slobodan Lakić. Communicated by R. Van Keer

Applied Mathematics Letters

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

xl yl m n m n r m r m r r! The inner sum in the last term simplifies because it is a binomial expansion of ( x + y) r : e +.

Numbers Related to Bernoulli-Goss Numbers

MCA-205: Mathematics II (Discrete Mathematical Structures)

Tutorial Worksheet. 1. Find all solutions to the linear system by following the given steps. x + 2y + 3z = 2 2x + 3y + z = 4.

Least squares. Václav Hlaváč. Czech Technical University in Prague

Journal of Engineering and Applied Sciences. Ultraspherical Integration Method for Solving Beam Bending Boundary Value Problem

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

Graphical rules for SU(N)

Trigonometry. Trigonometry. Solutions. Curriculum Ready ACMMG: 223, 224, 245.

Expected Value and Variance

Second degree generalized gauss-seidel iteration method for solving linear system of equations. ABSTRACT

REGULARIZATION IN QUANTUM GAUGE THEORY OF GRAVITATION WITH DE SITTER INNER SYMMETRY

Automated Selection of Optimal Gaussian Fits to Arbitrary Functions in Electronic Structure Theory

The Number of Rows which Equal Certain Row

Lecture 36. Finite Element Methods

REGULAR CUBIC LANGUAGE AND REGULAR CUBIC EXPRESSION

REGULAR STURM-LIOUVILLE OPERATORS WITH TRANSMISSION CONDITIONS AT FINITE INTERIOR DISCONTINUOUS POINTS

Two Coefficients of the Dyson Product

Convolutional Data Transmission System Using Real-Valued Self-Orthogonal Finite-Length Sequences

Interval Valued Neutrosophic Soft Topological Spaces

Al-Zangana Iraqi Journal of Science, 2016, Vol. 57, No.2A, pp:

COMPLEX NUMBERS AND QUADRATIC EQUATIONS

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

ON THE NUMBER OF PRIMITIVE PYTHAGOREAN QUINTUPLES

Numerical Solution of Freholm-Volterra Integral Equations by Using Scaling Function Interpolation Method

An Ising model on 2-D image

SL n (F ) Equals its Own Derived Group

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

= m 1. sin π( ai z ) )

COMP 465: Data Mining More on PageRank

Proving the Pythagorean Theorem

NON-DETERMINISTIC FSA

where the box contains a finite number of gates from the given collection. Examples of gates that are commonly used are the following: a b

6 Roots of Equations: Open Methods

e a = 12.4 i a = 13.5i h a = xi + yj 3 a Let r a = 25cos(20) i + 25sin(20) j b = 15cos(55) i + 15sin(55) j

Physics Dynamics: Atwood Machine

The corresponding link function is the complementary log-log link The logistic model is comparable with the probit model if

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

Nil Elements and Even Square Rings

System in Weibull Distribution

New Algorithms: Linear, Nonlinear, and Integer Programming

Special Relativity and Riemannian Geometry. Department of Mathematical Sciences

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

4.5. QUANTIZED RADIATION FIELD

Effects of polarization on the reflected wave

Lecture 4: Piecewise Cubic Interpolation

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

QUADRATIC EQUATION EXERCISE - 01 CHECK YOUR GRASP

Complement of an Extended Fuzzy Set

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

ME 501A Seminar in Engineering Analysis Page 1

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER

EXACT TRAVELLING WAVE SOLUTIONS FOR THREE NONLINEAR EVOLUTION EQUATIONS BY A BERNOULLI SUB-ODE METHOD

Intermediate Math Circles Wednesday 17 October 2012 Geometry II: Side Lengths

Lecture 13 APPROXIMATION OF SECOMD ORDER DERIVATIVES

1 Definition of Rademacher Complexity

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS

Lecture 3 Camera Models 2 & Camera Calibration. Professor Silvio Savarese Computational Vision and Geometry Lab

Gradient Descent Learning and Backpropagation

Designing Fuzzy Time Series Model Using Generalized Wang s Method and Its application to Forecasting Interest Rate of Bank Indonesia Certificate

A Family of Multivariate Abel Series Distributions. of Order k

Section 8.3 Polar Form of Complex Numbers

Chapter 12 Lyes KADEM [Thermodynamics II] 2007

Abstract tensor systems and diagrammatic representations

Fermi-Dirac statistics

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

Excess Error, Approximation Error, and Estimation Error

A combinatorial proof of multiple angle formulas involving Fibonacci and Lucas numbers

The calculation of ternary vapor-liquid system equilibrium by using P-R equation of state

First Midterm Examination

Xiangwen Li. March 8th and March 13th, 2001

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Valuated Binary Tree: A New Approach in Study of Integers

6 Random Errors in Chemical Analysis

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

ON NILPOTENCY IN NONASSOCIATIVE ALGEBRAS

On Syndrome Decoding of Punctured Reed-Solomon and Gabidulin Codes 1

3/20/2013. Splines There are cases where polynomial interpolation is bad overshoot oscillations. Examplef x. Interpolation at -4,-3,-2,-1,0,1,2,3,4

Transcription:

548 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 6, JUNE 003 Lner Coplexty Over nd Tre Representton of Lepel Cohn Estn Sequenes Tor Helleseth, Fellow, IEEE, Sng-Hyo K, Student Meer, IEEE, nd Jong-Seon No, Meer, IEEE Astrt In ths orrespondene, the lner oplexty over of Lepel Cohn Estn (LCE) sequenes of perod for n odd pre s deterned. For 3 5 nd 7, the ext losed-for expressons for the lner oplexty over of LCE sequenes of perod re derved. Further, the tre representtons for LCE sequenes of perod for 3nd 5 re found y oputng the vlues of ll Fourer oeffents n for the sequenes. Index Ters Lepel Cohn Estn (LCE) sequenes, lner oplexty, sequenes. I. INTRODUCTION Aong propertes of perod sequenes [], [8], the lner oplexty [5], [6], [0], [4], lne, nd orrelton propertes re portnt for the pplton of stre phers nd ode-dvson ultple-ess (CDMA) ounton systes []. A nry sequene s sd to hve the lne property f the dfferene etween the nuer of s nd 0 s n perod of the sequene s t ost one. Let s(t) e nry sequene of perod n. The utoorrelton funton of nry sequene of perod n s defned s (0) s(t)s(t ) : A sequene s defned to hve del utoorrelton f n; f 0odn 0; otherwse. A lot of ttenton [7], [8], [7], [9] hs een devoted to nry sequenes of perod 0 wth del utoorrelton. A nry sequene of even perod n wth the lne property s sd to hve optl utoorrelton f 0 or 04; f n 0od4 or 0; f n od4. Let p e pre nd e postve nteger. Let F p e the fnte feld wth p eleents nd Fp 3 F p nf0g. Let S e nonepty suset of Fp 3 nd prtve eleent of F p. Then the hrterst sequene of perod p 0 of the set S s defned s [9] ; f t S 0; otherwse. Let S e set defned s [9], [] S 0 0 p 0 0 where p s n odd pre nd s prtve eleent of F p. Then, the hrterst sequene of ths set S s referred to s () Lepel Cohn Estn (LCE) sequene [], [], whh s 0- nry sequene of perod p 0,.e., of even length. It hs een shown tht LCE sequenes hve the optl utoorrelton nd lne property. No et l.[5] lso ntrodued nry sequenes of perod p 0 wth optl utoorrelton property y usng the ge of the polynol (z ) d z d over F p, whh turned out to e LCE sequenes. Let (x) denote the qudrt hrter of x defned y (x) ; f x s qudrt resdue 0; f x 0 0; f x s qudrt nonresdue. Helleseth nd Yng [9] desred LCE sequenes y usng the ndtor funton nd the qudrt hrter gven y () ( 0 I(t )0 ( t )) (3) where the ndtor funton I(x) f x 0nd I(x) 0otherwse. Helleseth nd Yng [9] studed the lner oplexty over F of LCE sequenes. Even though LCE sequenes re nry sequenes, they re onstruted sed on the fnte feld F p nd, thus, t s ore nturl to fnd the lner oplexty over F p for LCE sequenes. The tre representton of sequenes s useful for pleentng the genertor of sequenes nd nlyzng ther propertes [6], [], [8]. Thus, t s of gret nterest to represent LCE sequenes y usng the tre funtons. In ths orrespondene, the lner oplexty over F p of LCE sequenes of perod p 0 for n odd pre p s deterned. For p 3; 5; nd 7; the ext losed-for expressons for the lner oplexty over F p of LCE sequenes of perod p 0 re derved. Further, the tre representtons for LCE sequenes of perod p 0 for p 3 nd 5 re found y oputng the vlues of ll Fourer oeffents n F p for the sequenes. II. LINEAR COMPLEXITY OVER F p OF LCE SEQUENCES OF PERIOD p 0 It s well known tht the Fourer trnsfor of p-ry sequene s(t) of perod n p 0 n the fnte feld F p s gven s A n nd ts nverse Fourer trnsfor s 0 s(t) 0t (4) A t (5) where s prtve eleent of F p nd A F p. Usng the Fourer trnsfor of the sequenes, we frst fnd n expresson for A 0, 0 n 0 of LCE sequenes s n the followng le. Le : Let the p-d expnson of e gven s Mnusrpt reeved August 4, 00; revsed Jnury, 003. Ths work ws supported n prt y BK, ITRC, nd The Norwegn Reserh Counl. T. Helleseth s wth the Deprtent of Inforts, Unversty of Bergen, N-500 Bergen, Norwy (e-l: Tor.Helleseth@.u.no). S.-H. K nd J.-S. No re wth the Shool of Eletrl Engneerng nd Coputer Sene, Seoul Ntonl Unversty, Seoul, Kore (e-l: ksh@l.snu..kr; jsno@snu..kr). Counted y A. M. Klpper, Assote Edtor for Sequenes. Dgtl Ojet Identfer 0.09/TIT.003.894 008-9448/03$7.00 003 IEEE p (6) where 0 p 0. Then, A 0 of the LCE sequenes defned n (3) s gven s (p0)a 0 0(0) (0) 0 p 0 od p: (7)

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 6, JUNE 003 549 Proof: Usng the Fourer trnsfor of the sequenes n (4), the relton for A0 n e derved s follows: na0 s(t) t ( 0 I( t )0 ( t )) t t 0 (0) 0 ( t ) t : (8) For 0, (8) n e gven s n na0 p 0 0 0 ( t ) n p 0 0 ( t )() p 0 0 0 0 odp: Thus, we hve proved tht the le holds for 0. For nonzero, (8) n e rewrtten s na0 0(0) 0 0(0) 0 xf yf (x )x 0 () (y)(y 0 ) : (9) As z vres over F p, z tkes ll the qudrt resdues n F p extly twe nd the zero eleent one. Slrly, z tkes ll the qudrt nonresdues n F p s vlues extly twe nd the zero eleent one. It s ler tht ll the qudrt resdues nd nonresdues together wth the eleent 0 over ll eleents n F p. Usng the defnton of the qudrt hrter () n (), (9) s odfed s na 0 0(0) 0 zf [(z )(z 0 ) (z )(z 0 ) ] 0(0) 0 zf [(z 0 ) 0 (z 0 ) ] 0(0) 0 l0 l (0) 0l ( 0 l ) zf z l : The nner su only ontrutes when l p 0, n ths se l 0. Note tht when l 0then 0 l 0. Therefore, we otn na 0 0(0) 0 (p 0 ) p 0 Redung odulo p for oth sdes, we hve the relton (p 0 )A 0 0(0) p 0 Fro the result of Lus [] gven y (0) redues to (7). p 0 p 0 (0) 0 : (0) 0 od p: (0) od p It s lredy known fro Blhut s theore [3], [4] tht the lner oplexty of perod sequenes n e deterned y oputng the Hng weght of ther Fourer trnsfor. Thus, we need to deterne the rdnlty of the set f j A 0 60; 0 n 0 g, whh s lulted fro (7). We hve proved the followng result. Theore : Let C e the nuer of ntegers, 0 p 0 stsfyng the relton p 0 (0) od p () where the s re oeffents n the p-d expnson p of. Then the lner oplexty over F p of the LCE sequene of perod n p 0 defned n (3) equls L p n 0 C: () To deonstrte ths tehnque, we wll lulte the lner oplexty over F p of the LCE sequene of perod n p 0 n the se of p 3; 5; nd 7. But t s not esy to fnd the lner oplexty over F p of LCE sequenes for p>7. A. Lner Coplexty Over F3 of LCE Sequenes of Perod 3 0 Usng the result of Theore, the lner oplexty over F3 of LCE sequenes of perod n 3 0 s derved n the followng theore. Theore 3: The lner oplexty over F3 of the LCE sequene of perod n 3 0 s gven s nd L3 3 0 : Proof: For p 3, t s ler tht 0 0; 3 0 ; even; f even odd; f odd. Then () s rewrtten s (0) od 3: (3) Thus, ll the s n the 3-d expnson of should e or. The nuer of solutons of ths syste s sne seletng 0; ;...; 0 unquely deternes. However, even though t stsfes (3), the soluton orrespondng to 0 0 ust e exluded sne t orresponds to 3 0. We onlude tht C 0 nd the lner oplexty over F3 of the LCE sequene of perod 3 0 equls L3 3 0 : B. Lner Coplexty Over F5 of LCE Sequenes of Perod 5 0 In ths se, the lner oplexty over F5 of LCE sequenes of perod 5 0 s derved y ountng nonzero Fourer oeffents of the sequenes s n the followng theore. Theore 4: The lner oplexty over F5 of the LCE sequene of perod n 5 0 s gven s L5 5 0 0 where d s the lrgest nteger less thn or equl to d.

550 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 6, JUNE 003 Proof: Sne 5 0 s n even nteger for ny nteger, () for p 5n e rewrtten s od5 (4) where the s re oeffents n the 5-d expnson 5 of, 0 5 0, nd F5. It n e esly derved tht 0 0; 0; ; 3 3; 4 od 5: In order to stsfy (4), ll the s re lrger thn or equl to for 0 0 nd the nuer of ourrenes 3n the 5-d expnson of should e ultple of 4 euse the order of eleent 3 n F5 s 4, tht s, 3 4 od5. Tht s, 3ours tes nd or 4 ours 0 tes n the 5-d expnson of. For 0 5 0, the nuer of ntegers stsfyng (4) n e ounted s C 0 0 where 5 0 (4; 4; 4;...; 4) s exluded even though the nuer of ourrenes 3n the 5-d expnson of s 0od4, euse >5 0. Therefore, the lner oplexty over F5 of the LCE sequene of perod 5 0 s gven s L5 5 0 0 C 5 0 0 : C. Lner Coplexty Over F7 of LCE Sequenes of Perod 7 0 Slrly to the prevous two ses of p 3nd 5, the lner oplexty over F7 of the LCE sequene of perod 7 0 s derved y ountng nonzero Fourer oeffents of the sequenes s n the followng theore. Theore 5: The lner oplexty over F7 of the LCE sequene of perod n 7 0 s gven s L7 7 0 0 u0 w0 v0 u ; 3v j; 6w k; D where d s the lrgest nteger less thn or equl to d nd D 0 u 0 0 3v 0 j 0 6w 0 k nd k; 0 k 5 s postve nteger stsfyng 0 od 6; f s even 3 k 3 od 6; f s odd. Proof: Usng the relton 7 0 even; f s even odd; f s odd () for p 7n e expressed s 3 0 3 3 3 (5) (0) od 7 (6) where F7. Usng (6), the theore n e proved n slr nner to tht of the prevous theore. III. TRACE REPRESENTATION OF LCE SEQUENCES OF PERIOD p 0 In ths seton, the tre representton of LCE sequenes of perod p 0 for p 3nd 5 s derved y usng the tre funtons fro F p to F p, where kj, even though they re nry sequenes. For our sequenes, the A s n (5) re n F p. If the Fourer oeffents A s for ll eleents n oset orrespondng to the eleent hve the se vlue, then the suton of ll eleents n the oset kes the tre funton A tr( t ). Further, f A s hve the se vlues for ll eleents wthn the se osets of F p, (5) n e expressed s lner onton of the tre funtons over F p gven y A tr k (t ) (7) L where L s set of oset leders for the set of yloto osets odulo p 0, nd for eh L, F p s the sllest sufeld of F p ontnng. Thus, t s enough to fnd the Fourer oeffents A s for ll oset leders for the set of yloto osets odulo p 0 f A s hve the se vlues for ll eleents wthn the se oset. Let (0; ; ;...; ) e vetor orrespondng to the oeffents n the p-d expnson p of ; 0 p 0. It s ler tht ll ntegers orrespondng to the yl shft of vetor (0; ; ;...; ) elong to the se yloto oset of F p. The tre representton of the sequenes of perod p 0 s derved y oputng ll the A oeffents, 0 p 0 n (7) for the LCE sequenes n (3). A. Tre Representton of LCE Sequenes of Perod 3 0 In order to fnd the tre representton of LCE sequenes of perod 3 0, let e prtve eleent of the fnte feld F3. Let tr k (t ) denote the tre funton fro F3 to F3, where k j nd F3 s the sllest sufeld of F3 suh tht F3. We n lssfy the oset leders for the set of yloto osets odulo 3 0 s follows. I o : Set of odd oset leders, where every dgt n the 3-d expnson of oset leder only tkes the vlues or 0; for exple, 339(; ; ). I e : Set of even oset leders exludng the oset leder 0, where every dgt n the 3-d expnson of oset leder only tkes the vlues or 0; for exple, 0 9 (; 0; ). I o : Set of odd oset leders nludng I o. I e : Set of even oset leders nludng I e. Usng the ove notton, the tre representton of the LCE sequene of perod 3 0 s gven n the followng theore. Theore 6: The tre representton of the LCE sequene of perod n 3 0 s gven y I ni tr k ( t ) I ni tr k ( t ) I tr k ( t ): Proof: For the LCE sequenes of perod 3 0, the oeffents A F3, 0 3 0 defned n (7) n e rewrtten s A 0 0(0) (0) 0 od 3: (8) Now, we hve to fnd ll A s, 0 3 0 for the tre representton of the LCE sequenes of perod 3 0.For 0, t s esy

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 6, JUNE 003 55 to fnd tht A0. Clerly, for odd, 3 0 odnd for even, 3 0 0od. Then (8) n e odfed s follows: (A0 (0) )(0) 0 od 3: (9) Note tht j 0 n 0, j 3 0, where A0 for j 0s lredy found. In the 3-d expnson of 3 nd j j 3, t s ler tht j p 0 0 0 for ll, 0 0. Let us onsder three ses s follows. Cse : A0 A j 0: We hve to fnd ll j n 0, j 3 0 suh tht A0 0 n (9), whh s rewrtten s (0) od 3: (0) A neessry ondton for (0) s tht the s n the 3-d expnson 3 of only tke the vlues or, whh ens tht the j s only tke the vlues 0 or. Sne 0 od3nd od3, the nuer of ourrenes, 0 0 n the 3-d expnson of stsfyng (0) should e odd for odd nd even for even nd, thus, the nuer of ourrenes should e even for ny nteger. Therefore, the nuer of ourrenes of n the lst of j ; 0 0 should e even for ny nteger nd, thus, j s even. Therefore, the oset leder of j suh tht A j 0elongs to the set I e, where j 0s exluded. Cse : A0 A j : In ths se, we hve to fnd ll j n 0 ; j 3 0 suh tht A j n (9). The followng two suses re onsdered. ) Cse of even nteger (.e., j even nteger): We n rewrte (9) s 0(0) od 3 () where ll s n the 3-d expnson of hve to tke the vlues or. The nuer of ourrenes n the 3-d expnson of should e odd for even nd even for odd, whh ens tht the nuer of ourrenes, 0 0 n the 3-d expnson of should e odd for ny nteger. Therefore, ll j s only tke the vlue 0 or nd the nuer of ourrenes of j n the 3-d expnson of j should e odd for ny nteger, whh ens tht j s odd. Ths ontrdts the ssupton tht j s n even nteger. Therefore, there s no even nteger j whh kes A j. ) Cse of odd nteger (.e., j odd nteger): Equton (9) n e wrtten s 0 od3: () Equton () ens tht t lest one of s n the 3-d expnson of hs to tke the vlue 0, whh ens tht t lest one of j s n the 3-d expnson of j hs to tke the vlue. Therefore, the oset leder of j elongs to the set I o ni o. Cse 3: A0 A j : In ths se, ll j n 0, j 3 0 suh tht A j n (9), hve to e deterned, whh n e esly found euse we hve lredy found ll j s suh tht A j 0or. Clerly, the renng sets of oset leders for the set of yloto osets odulo 3 0 re I e ni e nd I o. For p 3, the tre representton for LCE sequene of perod 80 s gven n the followng exple, where the tre funton s defned n Theore 6. Exple 7: For n 3 4 0 80nd 4, the LCE sequene s(t) of perod 80 s otned s 0000000000000000 000000000000000000000000: The oset leders for the set of yloto osets odulo 3 4 0 n e lssfed s I o f; 3g I e f4; 0; 40g I o ni o f5; 7; ; 7; 3; 5; 4; 53g I e ni e f0; ; 8; 4; 6; 0; ; 6; 44; 50g: Then the LCE sequene s(t) of perod 80 n e expressed s lner onton of tre funtons over F3 s follows: ftr( 4 5t )tr( 4 7t )tr( 4 t )tr( 4 7t ) tr( 4 3t )tr( 4 5t )tr( 4 4t )tr( 4 53t )g ftr( 0t )tr( 4 t )tr( 4 8t )tr( 4 4t ) tr( 4 6t )tr( 0t )tr( 4 t )tr( 4 6t ) tr( 4 44t )tr( 50t )g ftr( 4 t )tr( 4 3t )g where s prtve eleent of F3. B. Tre Representton of LCE Sequenes of Perod 5 0 For the perod 5 0, the tre representton of LCE sequenes s derved slrly to the se of perod 3 0. Let e prtve eleent of the fnte feld F5. Let tr k (t ) denote the tre funton fro F5 to F5, where k j nd F 5 s the sllest sufeld of F5 suh tht F5. The oset leders for the set of yloto osets odulo 5 0 n e lssfed s follows. I o : Set of odd oset leders, where every dgt n the 5-d expnson of oset leder only tkes the vlues 0,, or nd the nuer of ourrenes of n the 5-d expnson of oset leder s od4. I o 3 : Set of odd oset leders, where every dgt n the 5-d expnson of oset leder only tkes the vlues 0,, or nd the nuer of ourrenes of n the 5-d expnson of oset leder s 3od4. I e 0 : Set of even oset leders exludng oset leder 0, where every dgt n the 5-d expnson of oset leder only tkes the vlues 0,,or nd the nuer of ourrenes of n the 5-d expnson of oset leder s 0od4. I e : Set of even oset leders, where every dgt n the 5-d expnson of oset leder only tkes the vlues 0,, or nd the nuer of ourrenes of n the 5-d expnson of oset leder s od4. I o : Set of odd oset leders nludng I o nd I o 3. I e : Set of even oset leders nludng I e 0 nd I o. Usng the preedng notton, the tre representton of LCE sequene of perod 5 0 s gven n the followng theore.

55 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 6, JUNE 003 Theore 8: The tre representton of LCE sequene of perod n 5 0 s gven s I nfi [I g I nfi [I g I I tr k ( t ) tr k ( t ) tr k ( t ): 3 tr k ( t ) I 3 tr k ( t ) Proof: For the LCE sequenes of perod 5 0, the oeffents A F5, 0 5 0 defned n (7) n e rewrtten s 3A 0 0(0) (0) 0 od 5: (3) Usng (3), the theore n e proved n the se nner s n the prevous theore. For p 5, the tre representton for LCE sequene of perod 4 s gven n the followng exple, where the tre funton s defned n Theore 8. Exple 9: For n 5 3 0 4 nd 3, the LCE sequene s(t) s gven s 0000000000000 000000000000 000000000000000000000 0000000000000000: The oset leders for the set of yloto osets odulo 5 3 0 n e lssfed s follows: I o f; 7; ; 37g I3 o f3g I0 e f; ; 6g I e f6; 3g I o nfi o [ I3 o g f3; 9; 3; 7; 9; ; 3; 33; 39; 43; 47; 49; 63; 69; 73; 93; 99g I e nfi e [ I3 e g f0; 4; 8; 4; 6; 8; ; 4; 34; 38; 4; 44; 48; 64; 68; 74; 94g: Then, the LCE sequene s(t) of perod 4 n e expressed s lner onton of tre funtons over F5 s follows: I nfi [I g I nfi [I g tr k ( t ) 3 tr k ( t ) REFERENCES [] L. D. Buert, Cyl Dfferene Sets (Leture Notes n Mthets). New York: Sprnger-Verlg, 97. [] E. R. Berlekp, Alger Codng Theory, revsed ed. Lgun Hlls, CA: Aegen Prk, 984. [3] R. E. Blhut, Trnsfor tehnques for error ontrol odes, IBM J. Res. Develop., vol. 3, pp. 99 35, 979. [4], Theory nd Prte of Error Control Codes. New York: Addson-Wesley, 983. [5] H. Chung nd J.-S. No, Lner spn of extended sequenes nd sded GMW sequenes, IEEE Trns. Infor. Theory, vol. 45, pp. 060 064, Sept. 999. [6] C. Dng, T. Helleseth, nd W. Shn, On the lner oplexty of Legendre sequenes, IEEE Trns. Infor. Theory, vol. 44, pp. 76 78, My 998. [7] H. Doertn, Ks power funtons, perutton polynols nd yl dfferene sets, n Pro. NATO Advned Study Insttute Workshop on Dfferene Sets, Sequenes nd Ther Correlton Propertes,, Bd Wndshe, Gerny, Aug. 3 4, 998. [8] S. W. Golo, Shft-Regster Sequenes. Sn Frnso/Lgun Hlls, CA: Holden- Dy/Aegen Prk, 967/98. [9] T. Helleseth nd K. Yng, On nry sequenes of perod wth optl utoorrelton, n Pro. 00 Conf. Sequenes nd Ther Appltons (SETA 0), Bergen, Norwy, My 3 7, 00, pp. 9 30. [0] D. Jungnkel, Fnte Felds. Mnnhe, Gerny: B. I. Wssenshftsverlg, 993. [] J.-H. K nd H.-Y. Song, Chrterst polynol nd lner oplexty of Hll s sext resdue sequenes, n Pro. 00 Conf. Sequenes nd Ther Appltons (SETA 0), Bergen, Norwy, My 3 7, 00, pp. 33 34. [] A. Lepel, M. Cohn, nd W. L. Estn, A lss of nry sequenes wth optl utoorrelton propertes, IEEE Trns. Infor. Theory, vol. IT 3, pp. 38 4, Jn. 977. [3] R. Ldl nd H. Nederreter, Fnte felds, n Enyloped of Mthets nd Its Appltons. Redng, MA: Addson-Wesley, 983, vol. 0. [4] F. J. MWlls nd N. J. A. Slone, The Theory of Error-Corretng Codes. Asterd, The Netherlnds: North-Hollnd, 977. [5] J.-S. No, H. Chung, H.-Y. Song, K. Yng, J.-D. Lee, nd T. Helleseth, New onstruton for nry sequenes of perod wth optl utoorrelton usng ( ), IEEE Trns. Infor. Theory, vol. 47, pp. 638 644, My 00. [6] J.-S. No, H. Chung, nd M.-S. Yun, Bnry pseudorndo sequenes of perod wth del utoorrelton generted y the polynol ( ), IEEE Trns. Infor. Theory, vol. 45, pp. 78 8, My 999. [7] J.-S. No, S. W. Golo, G. Gong, H.-K. Lee, nd P. Gl, Bnry pseudorndo sequenes of perod wth del utoorrelton, IEEE Trns. Infor. Theory, vol. 44, pp. 84 87, Mr. 998. [8] J.-S. No, H.-K. Lee, H. Chung, H.-Y. Song, nd K. Yng, Tre representton of Legendre sequene of Mersenne pre perod, IEEE Trns. Infor. Theory, vol. 4, pp. 54 55, Nov. 996. [9] J.-S. No, K. Yng, H. Chung, nd H.-Y. Song, On the onstruton of nry sequenes wth del utoorrelton property, n Pro. 996 IEEE Int. Syp. Inforton Theory nd Its Appltons (ISITA 96), Vtor, BC, Cnd, Sept. 7 0, 996, pp. 837 840. [0] R. A. Sholtz nd L. R. Welh, GMW sequenes, IEEE Trns. Infor. Theory, vol. IT 30, pp. 548 553, My 984. [] V. M. Sdelnkov, Soe -vlued pseudo-rndo nd nerly equdstnt odes, Prol. Pered. Infor., vol. 5, no., pp. 6, 969. [] M. K. Son, J. K. Our, R. A. Sholtz, nd B. K. Levtt, Spred Spetru Countons, revsed ed. Rokvlle, MD/New York: Coputer Sene/MGrw-Hll, 985/994, vol.. [3] T. Storer, Cylotoy nd Dfferene Sets (Leture Notes n Advned Mthets). Chgo, IL: Mrkh, 967. [4] R. Turyn, The lner generton of the Legendre sequenes, J. So. Ind. Appl. Mth, vol., no., pp. 5 7, 964. I I tr k ( t ) tr k ( t ) I 3 tr k ( t ) where s prtve eleent of F5.