The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

Similar documents
Antonio Pich. IFIC, CSIC Univ. Valencia.

Lecture 12 Weak Decays of Hadrons

A. Pich. IFIC, Univ. Valencia - CSIC. arxiv:

IX. Electroweak unification

Electroweak Theory: 2

Elementary Particles II

Beyond Standard Model Effects in Flavour Physics: p.1

Lepton Flavor Violation

Photon Coupling with Matter, u R

Shahram Rahatlou University of Rome

Current knowledge tells us that matter is made of fundamental particle called fermions,

Theory of CP Violation

A. Pich. IFIC, U. València - CSIC. TAE 2018, Centro de Física de Benasque Pedro Pascual, Benasque, Spain, 2-15 September,

Physics Highlights from 12 Years at LEP

Flavour Physics Lecture 1

Weak Interactions: towards the Standard Model of Physics

Electroweak Theory: 5

Adding families: GIM mechanism and CKM matrix

Particle Physics. Lecture 12: Hadron Decays.!Resonances!Heavy Meson and Baryons!Decays and Quantum numbers!ckm matrix

The Cabibbo-Kobayashi-Maskawa (CKM) matrix

Particle Physics II CP violation. Lecture 3. N. Tuning. (also known as Physics of Anti-matter ) Niels Tuning (1)

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

The weak interaction Part II

Standard Model of Particle Physics SS 2013

Moriond QCD La Thuile, March 14 21, Flavour physics in the LHC era. An introduction. Clara Matteuzzi. INFN and Universita Milano-Bicocca

S 3 Symmetry as the Origin of CKM Matrix

Interactions... + similar terms for µ and τ Feynman rule: gauge-boson propagator: ig 2 2 γ λ(1 γ 5 ) = i(g µν k µ k ν /M 2 W ) k 2 M 2 W

Fundamental Symmetries - 2

Problems for SM/Higgs (I)

Lecture 14 Mixing and CP Violation

CKM Matrix and CP Violation in Standard Model

Flavour physics Lecture 1

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

Basics of Higgs Physics

From Friday: Neutrino Summary. Three neutrinos in the Standard Model:!e,!µ,!" Only left-handed neutrinos and right-handed antineutrinos are observed.

HIGGS&AT&LHC. Electroweak&symmetry&breaking&and&Higgs& Shahram&Rahatlou. Fisica&delle&Par,celle&Elementari,&Anno&Accademico&

Unitary Triangle Analysis: Past, Present, Future

CP VIOLATION. Thomas Mannel. Theoretical Physics I, Siegen University. Les nabis School 2011

Electroweak Theory, SSB, and the Higgs: Lecture 2

Electroweak interactions of quarks. Benoit Clément, Université Joseph Fourier/LPSC Grenoble

Standard Model of Particle Physics SS 2012

EFFECTS OF NEW LEPTONS IN ELECTROWEAK PRECISION DATA

PARTICLE PHYSICS Major Option

Models of Neutrino Masses

Overview. The quest of Particle Physics research is to understand the fundamental particles of nature and their interactions.

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

Introduction to the SM (5)

Matter, antimatter, colour and flavour in particle physics

12 Best Reasons to Like CP Violation

Hidden two-higgs doublet model

The simplest Extension of the Standard Model

FLAVOR PHYSICS BEYOND THE STANDARD MODEL

Gauge U(1) Dark Symmetry and Radiative Light Fermion Masses

Electroweak Physics and Searches for New Physics at HERA

Particle Physics: Problem Sheet 5

Recent CP violation measurements

Gian Gopal Particle Attributes Quantum Numbers 1

Back to Gauge Symmetry. The Standard Model of Par0cle Physics

Top Quark Physics at the LHC

Theoretical Review on Lepton Universality and LFV

Recent results on CKM/CPV from Belle

arxiv: v1 [hep-ph] 16 Mar 2017

Finding the Higgs boson

Particules Élémentaires, Gravitation et Cosmologie Année Le Modèle Standard et ses extensions. The Flavour Sector

May. 30 (2017) at KAIST Byeong Rok Ko (IBS/CAPP)

Lecture 11. Weak interactions

Recent CP violation measurements. Advanced topics in Particle Physics: LHC physics, 2011 Jeroen van Tilburg 1/38

Flavor oscillations of solar neutrinos

Introduction to flavour physics

Lecture 23. November 16, Developing the SM s electroweak theory. Fermion mass generation using a Higgs weak doublet

Introduction to Neutrino Physics. TRAN Minh Tâm

Lepton-flavor violation in tau-lepton decay and the related topics

Electroweak unification

12.2 Problem Set 2 Solutions

Measuring V ub From Exclusive Semileptonic Decays

Precision EW measurements at Run 2 and beyond

TPP entrance examination (2012)

Maria Dimou In collaboration with: C. Hagedorn, S.F. King, C. Luhn. Tuesday group seminar 17/03/15 University of Liverpool

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries

Discussion on (Heavy) Flavor Physics

Yang-Hwan, Ahn (KIAS)

General scan in flavor parameter space in the models with vector quark doublets and an enhancement in B X s γ process

arxiv: v1 [hep-ph] 30 Jun 2014

Minimal Flavor Violating Z boson. Xing-Bo Yuan. Yonsei University

Measurements of the phase φ s at LHCb

HIGGS AT HADRON COLLIDER

Fermions of the ElectroWeak Theory

Review of Higgs results at LHC (ATLAS and CMS results)

S = 2 decay in Warped Extra Dimensions

Baryon-Lepton Duplicity as the Progenitor of Long-Lived Dark Matter

Introduction to Operator Product Expansion

Foundations of Physics III Quantum and Particle Physics Lecture 13

La Fisica dei Sapori Pesanti

Electroweak Physics. Krishna S. Kumar. University of Massachusetts, Amherst

Conference Summary. K.K. Gan The Ohio State University. K.K. Gan Tau2000 1

Fermions of the ElectroWeak Theory

Hadronic Effects in B -Decays

Leptons and SU(2) U(1)

Electroweak Theory: 3

Phenomenology of the Higgs Triplet Model at the LHC

Transcription:

http://arxiv.org/pd/0705.464 The Standard Model Antonio Pich IFIC, CSIC Univ. Valencia Gauge Invariance: QED, QCD Electroweak Uniication: Symmetry reaking: Higgs Mechanism Electroweak Phenomenology Flavour Dynamics SU() L U(1) Y 010 International School on Astroparticle Physics (ISAPP 010) Zaragoza, Spain, 13- July 010

Standard Model Parameters QCD: α ( M ) 1 S Z EW Gauge / Scalar Sector: 4 g, g, µ, λ α, θw, MW, MH α F, G, M, M Z H

G F α 1 ( ) = 1.166 371 ± 0.000 006 10 GeV M ( ) 5 = 137. 035 999 710 ± 0.000 000 096 Z = 91. 187 5 ± 0.001 GeV INPUTS ( M Z ) α = 18.93 ± 0.05 1 M W sin W sin θ = 1 W θ = M M πα W Z G F G ν µ µ g g e g F MW W ν e [ Exp: 80 ] M = 80. 94 GeV 79.96.399 ± 0.03 W sin θ = 0.1 W ( ) ( 0.31)

The Photon Couples to Virtual Pairs Vacuum Polarized Dielectric Medium α = α( m ) = 137.035999710 ( 9) ; α ( M ) = 18.93 ± 0.5 0 1 1 1 6 Z e + ( l l and qq contributions included )

W l,d i W e v, µ v, τ v, du, sc e µ τ ν l,u j uj = u, c ; d cosθc sinθc d s sinθc cosθ C s ( W l νl ) ( W all) Γ 1 r ( W l νl ) = = 11.1% Γ 3+ N C QCD: N C αs ( M ) 1 Z + 3.115 π ( ) r W l ν l 10.8% Experiment: ( W e νe ) = ( ± ) ( W µνµ ) = ( ± ) ( W τ ντ ) = ( ± ) Universal r 10.65 0.17 % r 10.59 0.15 % r 11.44 0. % W lν l Couplings

LEPTON UNIVERSALITY g g µ e g g µ τ

g µ / ge τ µ τ e π µ π e 1.0018 ± 0.0015 1.001± 0.0016 g / g τ µ K µ K e 1.004 ± 0.007 τ τ τ e µ τ 1.0006 ± 0.00 K πµ K πe W µ W e 1.00 ± 0.00 0.997 ± 0.010 g τ / ge Γ Γ Γ τ π π µ Γ τ K K µ W τ W µ 0.996 ± 0.005 0.979 ± 0.017 1.039 ± 0.013 τ τ τ µ µ τ 1.0005 ± 0.003 W τ W e 1.036 ± 0.014

Z Z l l +, v v l l ( ) ( Z ll v ) l a l Γ + ( Z ) Γ( Z νν l l) + + Z l l ( Z l l ) ( θ ) Γinv Γ invisible = N = N = 1.955 N Γll Γ 1 4sin + 1 ν ν ν W ( 1.989) Experiment: µ Γinv = 5.94 ± 0.016 Γ ll N ν = N =.9840 ± 0.008 v 3.04 (.99)

+ e e γ,z e γ, Z e θ e + e + dσ α = + + + + 8 { A (1 cos θ) cosθ - h } (1 cos θ) D cosθ dω s N C αs ( M Z ) Nl = 1 ; Nq = NC 1 + + ; h = ± 1 π A = 1+ vν Re( χ) + (v + a) (v + a) e e e χ = 4 a a Re( χ) + 8 v a v a e e e C = v a Re( χ) + (v + a ) v a e e e χ χ χ = G M F Z πα s s M + isγ / M Z Z Z D = 4 a v Re( χ) + 4 v a (v + a ) e e e χ

+ e e γ,z e γ, Z e θ e + e + dσ α = + + + + 8 { A (1 cos θ) cosθ - h } (1 cos θ) D cosθ dω s N C F Pol () s () s N N F F h + N N = 3 8 A =+ 1 h = 1 ( ) ( ) σ σ C 4πα = ; σ = ( h =+ 1) ( h = 1) σ + σ A 3s N A Pol F ( s) ( + 1) ( 1) ( + 1) ( 1) F F + ( + 1) ( 1) ( + 1) ( 1) F + NF + N + N N N N N N = 3 8 D A

Z Peak (s = M Z ) σ 1π Γ Γ = ; Γ Γ( Z M e Z ΓZ ) 3 3 () s = ; () s = ; () s = 4 4 Pol F e Pol F e σ σ 3 LR = = 4 L R LR () s e ; F () s σl + σr v a Final Polarization A = Only Available or =τ v + a 1 vl = 1+ 4sin θ 1 l Sensitive to Higher Order Corrections

Sensitive to Heavier Particles: TOP, HIGGS

Evidence o Electroweak Corrections August 009 LEPEWWG September 005 α 1 ( M Z ) = 18.93 ± 0.05 Low Values o M H Preerred

R Γ( Z bb ) Γ( Z hadrons) b LEPEWWG September 005 ernabéu-pich-santamaría 1988

LEPEWWG September 005 m = (17.7 ±.9) GeV t M H = (300 ) GeV + 700 186 α 1 ( M Z ) = 18.93 ± 0.05 Heavy Quarks (Leptons) Favour High (Low) M H

LEPEWWG August 009 m t = (173.1 ± 1.3) GeV (CDF + D0)

CDF / D0 (January 010) LEPEWWG (August 009) H W + W 114.4 GeV < < 157 (186) GeV (95% CL) M H M H [16,166] excluded (95% CL)

e W e + e W + W ν e e + W + e γ, Z W e + W + Evidence o Gauge Sel-Interactions

+ e e ZZ e Z e e + Z e γ, Z Z e +? Z No Evidence o γ ZZ or ZZZ couplings

Searching or the HIGGS ranching Ratios D. Denegri Total Decay Width Interaction proportional to mass ( M, M, m ) W Z The Higgs decays into the heaviest possible particles

The Large Hadron Collider ATLAS CMS

Quarks Leptons osons up down electron neutrino e e photon µ gluon charm strange muon neutrino µ Z 0 W ± τ top beauty tau neutrino τ Higgs

FERMION MASSESS Scalar Fermion Couplings allowed by Gauge Symmetry 0 ( ) ( ) ( ) ( d ) φ ( u) φ () l φ Y = ( qu, qd ) L c ( q ) ( ) (, ) h.c. ( 0) d R + c q ( ) u R vl l L c l + ( 0) R + φ φ φ + + SS H = 1 + d v + + { m } q q q mq q u u qu m ll Y d d l Fermion Masses are New Free Parameters H m v m q, m,,, d q m u l = c c c Couplings Fixed: ( d) ( u) ( l) v g H = m v

FERMION GENERATIONS NG = 3 Identical Copies Q = 0 Q = 1 v j u j l j d j Q Q Masses are the only dierence = + 3 = 13 ( j = ) 1,, N G WHY? Y ( + ) (0) ( + ) ( d) φ ( u) φ () l φ = ( u j, d j) cjk d (0) kr cjk u ( ) kr ( vj, lj) c h.c. L + L j k l + (0) kr + j k φ φ φ SS H = 1+ d + + l + h.c. v { d M d u M } u u l M l Y L R L R L R Arbitrary Non-Diagonal Complex Mass Matrices ( d) ( u) ( l),,,, v d u l c jk jk c jk c jk M M M =

DIAGONALIZATION OF MASS MATRICES = = = = M H U S S U d d d d d d d M H U S S U u u u u u u u = = M H U S S U l l l l l l l H = H U U = U U = 1 S S = S S = 1 µ ( 1 ) + H { d d + u u + } d u l l l Y = v = diag ( m, m, m ) ; = diag ( m, m, m ) ; = diag ( m, m, m ) u u c t d d s b l e µ τ d S d ; u S u ; l S l L d L L u L L l L d S U d ; u S U u ; l S U l R d d R R u u R R l l R Mass Eigenstates Weak Eigenstates = ; = L L L L R R R R u d = u d ; QUARK MIXING = V V S S CC CC L L L L u d NC NC

Z NC e = Zµ sin θ cos θ W W µ γ [ v a γ ] 5 Flavour Conserving Neutral Currents CC g µ µ = W µ uiγ ( 1 γ5) Vi j dj + vl γ ( 1 γ5) l + h.c. ij l Flavour Changing Charged Currents u c t d s b

L g µ = W µ ν γ (1 γ ) V l + h.c. ( l ) ( l ) CC i 5 ij j ij IF mν = 0 i ν lj Separate Lepton Number Conservation ν i V () l ij i IF ν R νi exist and m 0 g L = Wµ ν γ (1 γ ) l + h.c. ( l ) µ CC l 5 l ν ( Minimal SM without ) Le, Lµ, L τ ( Le + Lµ + Lτ Conserved ) R UT r ( µ eγ) < 1. 10 ; r ( τ µγ) < 4.4 10 11 8 (90 % CL)

Measurements o V ij Γ( ) V dj ueν i e ij d j V ij W u i e ν e We measure decays o hadrons (no ree quarks) Important QCD Uncertainties

V ij CKM entry Value Source V tb V V V V V V V ud us cd cs cb ub tb q V tq 0.9745 ± 0.000 Nuclear β decay 0.9746 ± 0.0019 0.9741± 0.006 pe ve + 0 + n π π e ν 0.46 ± 0.001 K π e ve 0.165 ± 0.0031 τ decays 0.59 ± 0.0015 K / π µν, Lattice 0.44 ± 0.001 0.30 ± 0.011 vd cx 0.9 ± 0. 06 D πν l, Lattice 0.985 ± 0.104 D Klν, Lattice 0.0386 ± 0.0011 0.0415 ± 0.0007 0.0407 ± 0.0007 0.0034 ± 0.0004 0.0041± 0.0003 0.0038 ± 0.0003 * D / Dl vl b clv π lv b ulv > 0.89 t bw / qw > 0.74 ; < 1 pp tb+ X l l l e ( ) V + V + V = 0.9995 ± 0.0010 V uj + V cj =. 00 ± 0.07 (LEP) ud us ub j

QUARK MIXING MATRIX Unitary N N Matrix: parameters G N 1 arbitrary phases: G G N G V V = V V = 1 φ e i ; e i i j u u d d i i j j θ V ij φ ( j i e i θ ) V ij V ij Physical Parameters: 1 ( 1) G G N N Moduli ; 1 ( 1) ( ) G G phases N N

N = : 1 angle, 0 phases (Cabibbo) V cos θ sin θ C C = sin θc cos θ C No N = 3 : 3 angles, 1 phase (CKM) c cos θ ; s sin θ ij ij ij ij V = s s c c s c s s c s iδ13 c1 c13 s1 c13 s13 e iδ13 iδ13 s1 c3 c1 s3 s13 e c1 c3 s1 s3 s13 e s3 c13 iδ13 iδ13 1 3 1 3 13 e 1 3 1 3 13 e c3 c13 3 1 λ / λ Aλ ( ρ iη ) λ 1 λ / A λ + 3 Aλ (1 ρ iη) Aλ 1 4 ( λ ) + δ13 0 (η 0) λ θ ρ η sin C 0.5 ; A 0.81 ; 0.37

Standard Model Parameters QCD: α ( M ) 1 S Z EW Gauge / Scalar Sector: 4 g g µ h α θ M M α G M M,,,, W, W, H, F, Z, H Yukawa Sector: m, m, m e m, m, m d s m, m, m u c t θ, θ, θ, δ 1 3 µ τ b 13 18 Free Parameters (+ Neutrino Masses / Mixings?) TOO MANY!

, : Violated maximally in weak interactions : Symmetry o nearly all observed phenomena 0 Slight (~ 0. %) in K decays (1964) Sizeable in decays (001) Huge Matter Antimatter Asymmetry in our Universe aryogenesis 0 Theorem: Thus, requires: Complex Phases Intererences

Meson Antimeson Mixing 0 0 0 Interering Amplitudes 0 Signal AAR Γ Γ 0 0 ( J/ ψ KS) ( J/ ψ KS) 0 0 ( J/ ψ KS) ( J/ ψ KS) Γ +Γ 0

* * * ud ub cd cb td tb V V + V V + V V = 0 * * Vud Vub Vcd V * * cb V V V V td tb cd cb UTit 1 η η 1 λ = 0.34 ± 0.014 1 ρ ρ 1 λ = 0.154 ± 0.0 α= 9.0 ± 3.4 ; β =.0 ± 0.8 ; γ = 65.6 ± 3.3

Neutrino Oscillations http://hitoshi.berkeley.edu/neutrino Lepton Mixing ν R,? NEW PHYSICS

Neutrino Oscillations González-García, Maltoni, Salvado, 010 5 1 (7.59 0.1) 10 ev m = ± 3 3 (.43 0.13) 10 ev m = ± sin ( θ ) = 0.87 ± 0.04 1 sin ( θ ) > 0.9 3 sin ( θ ) < 0.19 13

LEPTON FLAVOUR VIOLATION 90% CL Upper Limits on r(l X ) [AAR / ELLE] Decay U.L. Decay U.L. Decay U.L. µ e γ 1. 10 11 µ e e + e 1.0 10 1 µ e γγ 7. 10 11 τ e γ 3.3 10 8 τ e e + e 3.6 10 8 τ e e + µ.7 10 8 τ µ γ 4.4 10 8 τ e µ + µ 3.7 10 8 τ µ e + µ.3 10 8 τ e e µ +.0 10 8 τ µ µ + µ 3. 10 8 τ e π 0 8.0 10 8 τ µ π 0 1.1 10 7 τ e η 1.6 10 7 τ µ η 1.3 10 7 τ e η 9. 10 8 τ µ η 6.5 10 8 τ e Κ * 0 5.9 10 8 τ e Κ S 3.3 10 8 τ µ Κ S 4.0 10 8 τ µ ρ 0.6 10 8 τ e K + K 1.4 10 7 τ e K + π 1.6 10 7 τ e π + K 3. 10 7 τ µ K + K.5 10 7 τ µ K + π 3. 10 7 τ µ π + K.6 10 7 τ e π + π 1. 10 7 τ µ π + π.9 10 7 τ Λπ 7. 10 8 τ e + K K 1.5 10 7 τ e + K π 1.8 10 7 τ e + π π.0 10 7 τ µ Κ * 0 5.9 10 8 τ e φ 3.1 10 8 τ µ ω 8.9 10 8 τ µ + K K 4.4 10 7 τ µ + K π. 10 7 τ µ + π π 0.7 10 7

THE STANDARD THEORY OF FUNDAMENTAL INTERACTIONS ( ) ( ) ( ) SU 3 SU U 1 C L Y Electroweak + Strong Forces Gauge Symmetry Dynamics 3 Gauge Parameters: ( ) α, α, θ s M Z W All Known Experimental Facts Explained Problem with Mass Scales / Mixings: - 15 Additional Parameters - Why 3 Families? - Why Let Right? m > M - Why t Z? - Does the Higgs Exist? - Flavour Mixing - Violation - Neutrino Masses / Oscillations

e µ τ