Summary 7. ELECTROMAGNETIC JOINT. ROTATING MAGNETIC FIELD. SPACE-PHASOR THEORY... 2

Similar documents
CHAPTER 17. Solutions for Exercises. Using the expressions given in the Exercise statement for the currents, we have

ECEN474/704: (Analog) VLSI Circuit Design Spring 2018

Active Load. Reading S&S (5ed): Sec. 7.2 S&S (6ed): Sec. 8.2

Electric potential energy Electrostatic force does work on a particle : Potential energy (: i initial state f : final state):

Exercises for Frequency Response. ECE 102, Fall 2012, F. Najmabadi

LEAP FROG TECHNIQUE. Operational Simulation of LC Ladder Filters ECEN 622 (ESS) TAMU-AMSC

Optimization of the Electron Gun with a Permanent Ion Trap

ANALOG ELECTRONICS DR NORLAILI MOHD NOH

6. Cascode Amplifiers and Cascode Current Mirrors

Section 4.2 Radians, Arc Length, and Area of a Sector

Example 11: The man shown in Figure (a) pulls on the cord with a force of 70

Phys 331: Ch 9,.6-.7 Noninertial Frames: Centrifugal and Corriolis forces 1. And and

Consider the simple circuit of Figure 1 in which a load impedance of r is connected to a voltage source. The no load voltage of r

T-model: - + v o. v i. i o. v e. R i

is needed and this can be established by multiplying A, obtained in step 3, by, resulting V = A x y =. = x, located in 1 st quadrant rotated about 2

Radiation Resistance of System G( Iron Torus is not used as we can see ) ( ) 2

Ch. 3: Inverse Kinematics Ch. 4: Velocity Kinematics. The Interventional Centre

FEEDBACK AMPLIFIERS. β f

5.1 Moment of a Force Scalar Formation

Energy & Work

Physics 207 Lecture 16

24-2: Electric Potential Energy. 24-1: What is physics

Let s start from a first-order low pass filter we already discussed.

Chapter Fifiteen. Surfaces Revisited

University of Southern California School Of Engineering Department Of Electrical Engineering

Exam 1. Sept. 22, 8:00-9:30 PM EE 129. Material: Chapters 1-8 Labs 1-3

ELECTROMAGNETIC INDUCTION PREVIOUS EAMCET BITS

Introduction of Two Port Network Negative Feedback (Uni lateral Case) Feedback Topology Analysis of feedback applications

Chapter 9 Compressible Flow 667

March 15. Induction and Inductance Chapter 31

EE 221 Practice Problems for the Final Exam

College of Engineering Department of Electronics and Communication Engineering. Test 2 MODEL ANSWERS

CHAPTER GAUSS'S LAW

Lecture 2 Feedback Amplifier

β A Constant-G m Biasing

, where. This is a highpass filter. The frequency response is the same as that for P.P.14.1 RC. Thus, the sketches of H and φ are shown below.

hitt Phy2049: Magnetism 6/10/2011 Magnetic Field Units Force Between Two Parallel Currents Force Between Two Anti-Parallel Currents

OBJECTIVE To investigate the parallel connection of R, L, and C. 1 Electricity & Electronics Constructor EEC470

CIRCUIT ANALYSIS II Chapter 1 Sinusoidal Alternating Waveforms and Phasor Concept. Sinusoidal Alternating Waveforms and

Exam-style practice: A Level

which represents a straight line whose slope is C 1.

Modeling, Simulation & Control of Induction Generators Used in Wind Energy Conversion

ECEN474/704: (Analog) VLSI Circuit Design Spring 2016

Frequency Response of Amplifiers

2/4/2012. τ = Reasoning Strategy 1. Select the object to which the equations for equilibrium are to be applied. Ch 9. Rotational Dynamics

CHAPTER 9 FREQUENCY RESPONSE

gravity r2,1 r2 r1 by m 2,1

Chapter 6 : Gibbs Free Energy

Subjects of this chapter - Propagation harmonic waves - Harmonic waves on an interface (Boundary condition) - Introduction of phasor

Hotelling s Rule. Therefore arbitrage forces P(t) = P o e rt.

Integral Vector Operations and Related Theorems Applications in Mechanics and E&M

Introduction to Electronic circuits.

CHAPTER 10 ROTATIONAL MOTION

School of Chemical & Biological Engineering, Konkuk University

Lecture #2 : Impedance matching for narrowband block

Design and Tuning of PID Override Control System Based on Signal Filtering

THE MINING ACT RE! 41P12SWSI2*

Sensorless Control of Induction Motor using Simulink by Direct Synthesis Technique

ANALOG ELECTRONICS 1 DR NORLAILI MOHD NOH

CHAPTER 2 ELECTRIC FIELD

Chapter 4 Motion in Two and Three Dimensions

The two main types of FETs are the junction field effect transistor (JFET) and the metal oxide field effect transistor (MOSFET).

Chapter 23: Electric Potential

Exercises for Cascode Amplifiers. ECE 102, Fall 2012, F. Najmabadi

The Forming Theory and the NC Machining for The Rotary Burs with the Spectral Edge Distribution

ZVS-ZCS Bidirectional Full-Bridge DC-DC Converter

Chapter 31 Faraday s Law

Modelling and Simulation of Multiple Single - Phase Induction Motors in Parallel Operation

11. HAFAT İş-Enerji Power of a force: Power in the ability of a force to do work

Physics 1501 Lecture 19

AN ALGORITHM FOR CALCULATING THE CYCLETIME AND GREENTIMES FOR A SIGNALIZED INTERSECTION

Wp/Lmin. Wn/Lmin 2.5V

ALL QUESTIONS ARE WORTH 20 POINTS. WORK OUT FIVE PROBLEMS.

Chapter 7. Systems 7.1 INTRODUCTION 7.2 MATHEMATICAL MODELING OF LIQUID LEVEL SYSTEMS. Steady State Flow. A. Bazoune

5. Differential Amplifiers

6. Introduction to Transistor Amplifiers: Concepts and Small-Signal Model

CIRCLE YOUR DIVISION: Div. 1 (9:30 am) Div. 2 (11:30 am) Div. 3 (2:30 pm) Prof. Ruan Prof. Naik Mr. Singh

Design of sensor less induction motor based on MRAS using PI & FUZZY Controller

Work, Energy, and Power. AP Physics C

Chapter 2: Descriptive Statistics

Quick Visit to Bernoulli Land

Can a watch-sized electromagnet deflect a bullet? (from James Bond movie)

Section Induction motor drives

Physics 181. Particle Systems

Cross Efficiency of Decision Making Units with the Negative Data in Data Envelopment Analysis

2/24/2014. The point mass. Impulse for a single collision The impulse of a force is a vector. The Center of Mass. System of particles

A note on A New Approach for the Selection of Advanced Manufacturing Technologies: Data Envelopment Analysis with Double Frontiers

Performance Evaluation of Wound Rotor (Slip Ring) Induction Motor with Leading Power Factor

1 st VS 2 nd Laws of Thermodynamics

Chapter 3. Electric Flux Density, Gauss s Law and Divergence

element k Using FEM to Solve Truss Problems

ELG4139: Op Amp-based Active Filters

Summary chapter 4. Electric field s can distort charge distributions in atoms and molecules by stretching and rotating:

Electrical Circuits II (ECE233b)

IGEE 401 Power Electronic Systems. Solution to Midterm Examination Fall 2004

Solution: (a) C 4 1 AI IC 4. (b) IBC 4

ASSESSMENT OF STRESSES ON INDUCTION MOTOR UNDER DIFFERENT FAULT CONDITIONS

V. Principles of Irreversible Thermodynamics. s = S - S 0 (7.3) s = = - g i, k. "Flux": = da i. "Force": = -Â g a ik k = X i. Â J i X i (7.

The Backpropagation Algorithm

(8) Gain Stage and Simple Output Stage

Transcription:

uay 7. ELECTROMAGETIC JOIT. ROTATIG MAGETIC FIELD. PACE-PHAOR THEORY... 7.1 ELECTROMAGETIC JOIT... 7. UMER OF POLE... 4 7. DITRIUTED WIDIG... 5 7.4 TORQUE EXPREIO... 6 7.5 PACE PHAOR... 7 7.6 THREE-PHAE MACHIE AD THE ROTATIG MAGETIC FIELD... 8 7.7 PACE PHAOR ALGERA... 11 7.7.1 pace pha they appled t an electcal achne... 1

7. Electanetc jnt. Rtatn anetc feld. pace-pha they 7.1 Electanetc jnt Cnde an tpc tatn achne, wth ne t wndn. Fue 7-1 Itpc t pweed achne cncentated wndn In de t calculate the anetc feld H (and the flux denty, we need t apply the Apee' Law, that t pef the Lne nteal aln a cled path,.e. ne an the flux lne f Fue 7-1. Due t the efactn law, the tanent f the anle β between the nal t the epaatn uface and the dectn f the utput flux fle equal t the at between the peeablte f the tw ateal (feanetc ateal and a. ut μfe=, the flux lne pependcula t the epaatn uface, (tβ=μ/μfe. Futhee, the anetc feld H nde the feanetc ateal ay be cndeed equal t ze (μfe=. Thu, the lne nteal f H aln a flux lne ha nly the cntbutn due t the tw eent f flux lne nde the aap (I the anettve fce due t the t cuent: H dl H C / Fue 7- Qualtatve tend f the anettve fce aln the a ap cncentated wndn In the a, the flux denty =μh. Thu, the apltude f the flux denty cntant (f half ped:

( ( Fue 7- Qualtatve tend f the flux denty aln the a ap cncentated wndn The ft hanc f a quae wave ha an apltude f 4/π f the apltude f the quae wave. c( 4 ( 1 Cnde the Fue 7-4. Fue 7-4 Itpc t pweed achne cncentated wndn The flux lnkae ψ (flux lnked wth the t cl, due t the t cuent l l ld nd b 4 4 ( 1 Un the defntn f the nductance: l L 4 l ( μ / 4/π μ /

Cnde, nw, the tat wndn, wth a enec echancal ptn θ f the t epect the tat. Fue 7-5 Itpc t pweed achne cncentated wndn The flux lnkae wth the tat wndn, due t the t cuent : l l ld c 4 n n 4 ( 1 L l L c 4 In a la anne l L 4 7. ube f ple Cnde the tuctue f Fue 7-6. θ

Fue 7-6 Itpc t pweed achne, fu ple cncentated wndn Yu fnd tw th' and tw uth'. Th achne ha fu ple. If yu walk aln the aap, yu fnd a ped f the anetc quantte equal t an half f the echancal ped (π. Th ean that the fequency f the electcal quantte tw te the fequency f the echancal ne. Wth np ple pa, the at np. In anthe way, the echancal peed een n the electcal wld np te the echancal peed een n the echancal wld. ω=npω 7. Dtbuted wndn Cnde nw a achne wth a t wth dtbuted wndn ntead f a cncentated ne. 1 b(θ θ 1 θ 1 Fue 7-7: Flux denty wavef aln the a-ap n a dtbuted wndn achne, due t tat cuent 1 The dtbutn f tun n the lt pduce an effect (wndn fact that eay t analyze. Each cl pduce a feld epeented by a pace pha. The vect u f thee feld pvde the eultn feld (ee Fue 7-8

ψ ψ e -jε k j k e ψ e jε ψ Fue 7-8: Wndn fact Yu need t ntduce a ceffcent kw: wndn fact (kw <=1 k w 4 l 7.4 Tque expen Wth bth tat and t cuent The tque expen L L L L T e W, cnt b(

b( -θ Applyn the upeptn Pncple: The eney denty 1/ H. b b b c c k k w w 4 4 Wth μfe=, thee n eney ted n the feanetc ateal. Theefe, the eney ted nly n the a-ap. l Te W c 1 1 1 b HdV dv V V ld d c d c c The ft te de nt depend n the echancal ptn, t patal devatve ze. d The ecnd te ha an aveae value whch de nt depend n the echancal ptn and a c[(+θ] whe nteal between and π equal t. The thd ne : c c c c c c The nteal between and π f the ft pat equal t. Theefe the ecnd pat the nly dffeent f ze, T l e c l d c eatve ean an attactve tque: k ψψ n(θ (Electanetc Jnt 7.5 pace pha n l If we cnde nly the ft hanc and nelectn the hhet hanc, the tuatn n the a ap ay be epeented by a vect whe dectn aln the th pla ax (Fue 7-9.

Fue 7-9: Mf epeentatn by ean f a pace pha The pace pha (whe apltude a functn f te allw the knwlede f the value f the cepndn quantty at any lcatn wthn the a-ap and at each ntant. In fact, n de t knw the value f the apltude at a ven pnt f the a ap, t uffcent t pject the pha nt the equed dectn. It appea that M (, t M ( t c( (Fue 7-1. M(,t M(t Fue 7-1: pace pha applcatn All electcal quantte (vltae and cuent and anetc quantte (f and fluxe can be epeented by pace pha, allwn f eay ntepetatn f electanetc phenena. 7.6 Thee-phae achne and the tatn anetc feld Cnde thee wndn, equal each the but wth a dplaceent f 1. Lk at the Fue 7-11.

1 1 ' ' 1 Fue 7-11: Thee-phae achne uppe t upply the achne by ean f a yetcal thee-phae pwe upply. At teadytate, the cuent wll aue the wavef f Fue 7-1: they have the ae apltude, ae fequency and a dplaceent f 1 1(t (t (t t1 t π/ω t Fue 7-1: Thee-phae cuent At te t=, the cuent 1 aue t axu value Iax whle ==Iax c(1 =-.5 Iax. Applyn the upeptn pncple, the ttal flux ae the u f the thee fluxe due t the thee cuent. Thu, the ttal flux ha the dectn f 1 and an apltude equal t / f the flux ψ1 (ee Fue 7-1.

1 ψ ψ1 1 ' ψ ' ψtt 1 Fue 7-1: Ttal flux at t= At t=t1, the cuent aue t axu value Iax whle 1==-.5 Iax. (Fue 7-14. Thu, the ttal flux ha the dectn f and an apltude equal t the pevu ne. ψtt ψ 1 ψ1 ψ 1 ' ' 1 Fue 7-14: Ttal flux at t=t1 At t=t, the cuent aue t axu value Iax whle 1==-.5 Iax. (Fue 7-15. Thu, the ttal flux ha the dectn f and an apltude equal t the pevu ne. It ean that, at teady tate, wth a yetcal pwe upply, the ttal flux aue a cntant value and t vn at a cntant peed: f a tw ple achne, the peed f the tatn flux Ω equal t the anula fequency ω f the electcal quantte (f np ple pa, t eult ω=np Ω. Th effect called "tatn feld" (cap anetc tante and the letne f the electechancal cnven n ac achne.

1 ψ1 1 ' ψ ' ψ ψtt 1 Fue 7-15: Ttal flux at t=t 7.7 pace pha aleba Cnde the efeence fae,β f Fue 7-16 ( ha the ae dectn f the anetc ax 1 β 1 β 1 ' ' 1 Fue 7-16: feence fae, fxed wth the tat wndn uppe t have thee cuent nt the wndn wth a ttal effect epeented by the pace pha I. The expen f the pace pha f the cuent a a functn f the tw cuent and β the fllwn: j ( Cnveely, knwn the pace pha, the value f wndn cuent can be calculated ply pjectn the pace pha aln the dectn f the cepndn anetc ax; f exaple: R( whee R defned a the pjectn f the pha nt the anetc ax f phae "". The ttal effect acheved by un thee wndn, dplaced by 1 electcal deee n pace, and thee-phae cuent, ay be ealy calculated by pjectn. The fula a fllw: ( 1

j whee e On the the hand, t pble t calculate, knwn the pace pha and aun that the u f the phae cuent ze, the value f a phae cuent un the fula: 1 R1( whee R1 defned a the pjectn f the pha nt the anetc ax f phae "1". Tadtnally (f th cue, hweve, the pace pha defned a fllw: ( 1 R1( 1 bette: 1 ( ( ( a t antan the ae expen f pwe and eney bth n the phae quantte and n the pace pha ( ean "eal pat f". The pace pha, lke all vect, cpletely defned by tw vaable: the apltude and the auent ( phae anle by t cpnent wth epect t tw thnal axe (efeence fae. q β d Fue 7-17: Dffeent feence fae The axe f a enec efeence fae ae cnly aked wth "d" and "q" (whee d the eal ax, whle q epeent the anay ax. If the efeence fae fxed wth the tat (wth the eal ax alned wth 1, the tw axe ae called and β (a we aw. Gven β a the pha wth epect t a efeence fae "β", the cepndn pha n a efeence fae "dq" dplaced by an anle wth epect "β " : dq j e The pha alway the ae, but t "een" f a dffeent vewpnt. The peatn f the devatve f a pha lead t the fllwn elatnhp: dq j d d e d j j d e j e j dt dt dt dt j 7.7.1 pace pha they appled t an electcal achne uppe t upply the achne by ean f a yetcal thee-phae pwe upply. At teadytate, the cuent wll aue the wavef f Fue 7-1. e

Applyn the pace Pha fula [ ( 1 ] the cuent pace pha aue jt jt jt the value Iaxe Iaxe Ie. If the ae fula appled t the vltae, the vltae pace pha ha a cntant apltude, equal t the value f the lne-lne vltae and t vn at a cntant peed ω. The actve pwe f the thee-phae ccut tadtnally calculated by: P=VphIphc(φ P=qt(VllIphc(φ, whee Vph and Iph epeent the phae vltae and phae cuent, φ the dplaceent anle between the and Vll the lne t lne vltae. Un the pace pha epeentatn yu have: P=VIc(φ (wthut any quae t f, whee V and I epeent the vltae and cuent pace pha.