Status of deuteron stripping reaction theories

Similar documents
Problems in deuteron stripping reaction theories

Update on the study of the 14 C+n 15 C system. M. McCleskey, A.M. Mukhamedzhanov, V. Goldberg, and R.E. Tribble

Theory of Nuclear reactions. Scattering theory: multi-channel!

The ANC for 15 C 14 C+n and the astrophysical 14 C(n,γ) 15 C rate

Semi-Classical perturbation theory Coulomb only First-order most used

Theory Challenges for describing Nuclear Reactions

Three- and four-particle scattering

The Coulomb Problem in Momentum Space without Screening. Ch. Elster

ENHANCEMENT OF THE NEAR-SIDE COMPONENT IN QUASI-ADIABATIC CALCULATIONS OF THE 66Zn(d,p)67Zn REACTION

Nucleon Transfer within Distorted Wave Born Approximation

Direct reactions methodologies for use at fragmentation beam energies

Towards Faddeev-AGS equations in a Coulomb basis in momentum space

Reassessing the Vibrational Nuclear Structure of 112 Cd

Evaluation of inclusive breakup cross sections in reactions induced by weakly-bound nuclei within a three-body model

Two neutron transfer in Sn isotopes

arxiv:nucl-th/ v1 14 Mar 2000

Deuteron induced reactions

nuclear states nuclear stability

Theory and Calculation of Two-nucleon Transfer Reactions

Description of (p, pn) reactions induced by Borromean nuclei

Recent applications of Green s function methods to link structure and reactions

arxiv: v1 [nucl-th] 24 Oct 2016

Deuteron induced reactions, spin distributions and the surrogate method

Indirect methods for nuclear astrophysics: reactions with RIBs. The ANC method

Indirect Methods in Nuclear Astrophysics

NON-LOCAL OPTICAL POTENTIALS

SOME ASPECTS OF TRANSFER REACTIONS IN LIGHT AND HEAVY ION COLLISIONS

Nucleon knockout reactions Status and open questions. Alexandra Gade INT workshop, August 2011

Linking nuclear reactions and nuclear structure to on the way to the drip lines

Variatonal description of continuum states

Determining Two Reaction Rates in Novae using the ANCs Technique. Tariq Al-Abdullah Hashemite University, Jordan Russbach, March 2011

The many facets of breakup reactions with exotic beams

Crawling Towards a (more) complete description of deuteron-induced reactions

arxiv: v1 [nucl-th] 7 Apr 2011

Workshop on low-energy nuclear reaction dynamics

EFFECTS OF NONLOCALITY ON TRANSFER REACTIONS. Luke Titus

Single-particle and cluster excitations

The role of core excitations in break-up reactions

Nuclear Reactions - Experiment I

Compound Nucleus Reactions

Eikonal method for halo nuclei

Experimental Investigation of Few-Nucleon Dynamics at Medium Energies

Asymptotic normalization coefficients for α + 3 He 7 Be from the peripheral α-particle transfer reactions and their astrophysical application

Inclusive deuteron induced reactions

Scattering and Reactions of Halo Nuclei

Understanding/calculating the nucleon self-energy at positive and negative energy

Spectroscopic Factors of Ar isotopes from transfer and knock-out reactions

Few- Systems. Selected Topics in Correlated Hyperspherical Harmonics. Body. A. Kievsky

Nuclear electric dipole moment in the Gaussian expansion method

Solar Fusion Cross Sections for the pp chain and CNO cycles

Central density. Consider nuclear charge density. Frois & Papanicolas, Ann. Rev. Nucl. Part. Sci. 37, 133 (1987) QMPT 540

Correlations in isospin asymmetric matter and nuclei

Dynamics of the scattering of 11 Li on 208 Pb at energies around the Coulomb barrier

Recent advances in nuclear reaction theories for weakly bound nuclei

Coulomb breakup of light composite nuclei. Abstract

Charge exchange reactions and photo-nuclear reactions

Electroproduction of p-shell hypernuclei

Asymmetry dependence of Gogny-based optical potential

Towards a universal nuclear structure model. Xavier Roca-Maza Congresso del Dipartimento di Fisica Milano, June 28 29, 2017

DETERMINE SPECTROSCOPIC FACTORS USING ASYMPTOTIC NORMALIZATION COEFFICIENTS

Proton deuteron elastic scattering above the deuteron breakup

Pairing Correlations in Nuclei on Neutron Drip Line

Four-nucleon scattering

Relativistic Impulse Approximation Analysis of Unstable Nuclei: Calcium and Nickel Isotopes

Low-energy reactions involving halo nuclei: a microscopic version of CDCC

R-matrix Analysis (I)

The National Superconducting Cyclotron State University

Quantum Theory of Many-Particle Systems, Phys. 540

arxiv:nucl-th/ v1 23 Mar 2004

Studying Nuclear Structure

PHY982. Week Starting date Topic

Nuclear Structure and Reactions using Lattice Effective Field Theory

Subbarrier fusion of carbon isotopes ~ from resonance structure to fusion oscillations ~

Nuclear Reactions Part III Grigory Rogachev

Neutron spectroscopic factors from transfer reactions

X. Chen, Y. -W. Lui, H. L. Clark, Y. Tokimoto, and D. H. Youngblood

Physic 492 Lecture 16

Determining Compound-Nuclear Reaction Cross Sections via Surrogate Reactions: Approximation Schemes for (n,f) Reactions

Modern Theory of Nuclear Forces

Nuclear structure I: Introduction and nuclear interactions

Radiative-capture reactions

Parity-Violating Asymmetry for 208 Pb

Proton Elastic Scattering and Neutron Distribution of Unstable Nuclei

Resonance scattering and α- transfer reactions for nuclear astrophysics.

Evgeny Epelbaum. Forschungszentrum Jülich & Universität Bonn

Three-cluster dynamics within an ab initio framework

Feynman diagrams in nuclear physics at low and intermediate energies

DIRECT REACTIONS WITH EXOTIC NUCLEI

Manifestations of Neutron Spin Polarizabilities in Compton Scattering on d and He-3

arxiv:nucl-ex/ v1 21 Jun 2001

PHY492: Nuclear & Particle Physics. Lecture 4 Nature of the nuclear force. Reminder: Investigate

Shells Orthogonality. Wave functions

I. 1. Nuclear Structure Study of 50 Mn by Charge-exchange (p,n) Reaction on 50 Cr

An Introduction to. Nuclear Physics. Yatramohan Jana. Alpha Science International Ltd. Oxford, U.K.

PHY492: Nuclear & Particle Physics. Lecture 6 Models of the Nucleus Liquid Drop, Fermi Gas, Shell

Lesson 5 The Shell Model

Connecting fundamental models with nuclear reaction evaluations

From Halo EFT to Reaction EFT

Quantum Physics III (8.06) Spring 2008 Assignment 10

Coulomb dissociation of 34 Na and its relevance in nuclear astrophysics

Transcription:

Status of deuteron stripping reaction theories Pang Danyang School of Physics and Nuclear Energy Engineering, Beihang University, Beijing November 9, 2015 DY Pang

Outline 1 Current/Popular models for (d, p) reactions 2 Problems Nonlocality of optical model potentials Inconsistency in neutron-nucleus potentials Inner part of the single-particle wave functions/overlap functions Coulomb problem in Faddeev method for (d,p) reactions DY Pang

Why study (d,p) reactions For nuclear structure: Angular distributions spin and parity of nuclei Amplitudes of cross sections spectroscopic factors, ANCs For nuclear astrophysics: indirect methods for (n,γ) Test case for few/3-body reaction theories It is essential to know the uncertainty of the reaction models DY Pang

Description of the (d,p) reactions Transition amplitude: M dp = χ ( ) pf IF A U pa + V pn U pf Ψ (+) i I F A (r n ) = A + 1 Φ A (ξ) Φ F (ξ, r n ) HΨ (+) i (r, R) = EΨ (+) i (r, R), H = T R + H np + U na + U pa H np = T r + V np DY Pang

Description of the (d,p) reactions Transition amplitude: M dp = χ ( ) pf IF A U pa + V pn U pf Ψ (+) i I F A (r n ) = A + 1 Φ A (ξ) Φ F (ξ, r n ) HΨ (+) i (r, R) = EΨ (+) i (r, R), H = T R + H np + U na + U pa H np = T r + V np expand Ψ (+) i with eigenfunctions of H np : Ψ (+) i (r, R) = ϕ 0 (r)χ (+) 0 (R)+ dkϕ k (ε k, r)χ (+) k (ε k, R) DWBA, ADWA, CDCC: different approx to Ψ (+) i DY Pang

Distorted wave Born approximation: DWBA Ψ (+) i (r, R) = ϕ 0 (r)χ (+) 0 (R) + DWBA takes the first term of Ψ (+) i : Ψ (+) i (r, R) ϕ 0 (r)χ (+) 0 (R) Mdp DWBA = χ ( ) pf ψ na V ϕ 0 (r)χ (+) 0 (R) with DWBA: 1970 use optical model potential for U da dkϕ k (ε k, r)χ (+) k (ε k, R) Assume breakup effect taken into account in U da Omit all except elastic component in the 3-body wave function Tobocman, PhysRev 94, 1655 (1954); Austern, Direct nuclear reaction theories, DY Pang

Improvement: the adiabatic model: ADWA The 3-body wave function: [E + ε d ˆT ] cm U na U pa ϕ d χ 0 (R) + dk [E ε k ˆT ] cm U na U pa ϕ k (ε k )χ k (ε k, R) = 0 the adiabatic approx: replacing ε k with ε d : [ E + ε d ˆT ] cm (U na + U pa ) χ ad(+) d (R) = 0 With the adiabatic approximation: M ADWA dp = χ ( ) pf ψ na U pa + V pn U pf ϕ 0 (r) χ ad(+) d effective d A interaction (zero-range): U da = U na + U pa Johnson, and Soper, Phys Rev C 1, 976 (1970) DY Pang

Further Improvement: CDCC In the CDCC method Continuum states are Discretised into bin states Ψ (+) i (r, R) = ϕ 0 (r)χ (+) 0 (R)+ dkϕ k (ε k, r)χ (+) k (ε k, R) Ψ (+)CDCC i (r, R) = ϕ 0 (r)χ (+) 0 (R)+ ϕ bin j=1 j (r)χ (+) j (R) DY Pang

Further Improvement: CDCC In the CDCC method Continuum states are Discretised into bin states Ψ (+) i (r, R) = ϕ 0 (r)χ (+) 0 (R)+ dkϕ k (ε k, r)χ (+) k (ε k, R) Ψ (+)CDCC i (r, R) = ϕ 0 (r)χ (+) 0 (R)+ ϕ bin j=1 j (r)χ (+) j (R) 3-body equation turned into Coupled-Channel equations: (T R +ϵ i E +U ii )χ (+) i (R) = U ij χ (+) j (R) j i U ij (R) = ϕ i (r) U na + U pa ϕ j (r) Mitsuji Kawai, Masanobu Yahiro, Yasunori Iseri, Hirofumi Kameyama, Masayasu Kamimura, Prog Theor Phys Suppl 89, 1986 DY Pang

Weinberg expansion method Expend the 3-body wave function with Weinberg states: Ψ i (r, R) (+) = i ϕ W i (r)χ W i (R) [ ε d T r α i V np ]ϕ W i = 0, i = 1, 2, The first term gives close results as CDCC new effective deuteron potential U da Pang, Timofeyuk, Johnson, and Tostevin, Phys Rev C 87, 064613 (2013) Johnson, J Phys G: Nucl Part Phys 41, 094005 (2014) DY Pang

Comparisons between DWBA, ADWA, and CDCC 14 C 58 Ni 116 Sn dσ/dω (mb/sr) dσ/dω (mb/sr) 10 1 10 0 10 0 10 1 234 MeV 0 5 10 15 20 25 30 35 θ cm (deg) 60 MeV CDCC ADWA DWBA CDCC ADWA DWBA 0 5 10 15 20 25 θ cm (deg) dσ/dω (mb/sr) dσ/dω (mb/sr) 10 1 10 0 10 1 10 1 10 0 10 1 10 2 58 Ni, 10 MeV 0 30 60 90 120 150 θ cm (deg) 56 MeV CDCC ADWA DWBA CDCC ADWA DWBA 0 10 20 30 40 50 60 70 80 θ cm (deg) dσ/dω (mb/sr) dσ/dω (mb/sr) 10 1 10 0 10 1 10 0 10 1 10 2 122 MeV CDCC ADWA DWBA 0 20 40 60 80 100 120 θ cm (deg) DWBA ADWA 10 3 792 MeV 10 4 0 10 20 30 40 50 60 70 θ cm (deg) Pang and Mukhamedzhanov, PhysRevC 90, 044611 (2014); Mukhamedzhanov, Pang, Bertulani, and Kadyrov, PhysRevC 90, 034604 (2014) DY Pang

Problem 1: nonlocality of optical model potentials DY Pang

Problems: nonlocality of optical potentials M ADWA dp = M CDCC dp = (pn)-a interaction χ ( ) pf ψ na U pa + V pn U pf ϕ 0 (r) χ ad(+) d χ ( ) pf ψ na U pa + V pn U pf n ϕ n (r)χ bin(+) n { U ADWA,ZR da (R) = U na + U pa Uij CDCC (R) = ϕ i (r) U na + U pa ϕ j (r) DY Pang

Problems: nonlocality of optical potentials M ADWA dp = M CDCC dp = (pn)-a interaction χ ( ) pf ψ na U pa + V pn U pf ϕ 0 (r) χ ad(+) d χ ( ) pf ψ na U pa + V pn U pf n ϕ n (r)χ bin(+) n { U ADWA,ZR da (R) = U na + U pa Uij CDCC (R) = ϕ i (r) U na + U pa ϕ j (r) Optical model potentials: U na and U pa energy dependent nonlocality of the potential NK Timofeyuk and RC Johnson, PRL 110, 112501 (2013) DY Pang

Problems: nonlocality of optical potentials M ADWA dp = M CDCC dp = (pn)-a interaction χ ( ) pf ψ na U pa + V pn U pf ϕ 0 (r) χ ad(+) d χ ( ) pf ψ na U pa + V pn U pf n ϕ n (r)χ bin(+) n { U ADWA,ZR da (R) = U na + U pa Uij CDCC (R) = ϕ i (r) U na + U pa ϕ j (r) Optical model potentials: U na and U pa energy dependent nonlocality of the potential In ADWA and CDCC, E n = E p = E d /2 : (the E d /2 rule) NK Timofeyuk and RC Johnson, PRL 110, 112501 (2013) DY Pang

Problems: nonlocality of optical potentials M ADWA dp = M CDCC dp = (pn)-a interaction χ ( ) pf ψ na U pa + V pn U pf ϕ 0 (r) χ ad(+) d χ ( ) pf ψ na U pa + V pn U pf n ϕ n (r)χ bin(+) n { U ADWA,ZR da (R) = U na + U pa Uij CDCC (R) = ϕ i (r) U na + U pa ϕ j (r) Optical model potentials: U na and U pa energy dependent nonlocality of the potential In ADWA and CDCC, E n = E p = E d /2 : (the E d /2 rule) Nonlocality effect: E n,p shift from E d 2 by around 40 MeV NK Timofeyuk and RC Johnson, PRL 110, 112501 (2013) DY Pang

Effect of nonlocality to spectroscopic factors change of spectroscopic factors by 5-27% due to nonlocality effect NK Timofeyuk and RC Johnson, PRC 87, 064610 (2013) DY Pang

Systematic nonlocal nucleon-nucleus potential Tian Yuan, Pang Danyang, and Ma Zhongyu, IJMPE 24, 1550006 (2015) DY Pang

Problem 2: inconsistency in neutron-nucleus potentials DY Pang

Inconsistency in neutron potentials V na and U na M ADWA dp = χ ( ) pf ψ na U pa + V pn U pf ϕ 0 (r) χ ad(+) d Distorted waves χ ad(+) d complex U na dσ el dω Single particle wave function ψ na real V na E binding DY Pang

Inconsistency in neutron potentials V na and U na M ADWA dp = χ ( ) pf ψ na U pa + V pn U pf ϕ 0 (r) χ ad(+) d Distorted waves χ ad(+) d complex U na dσ el dω Single particle wave function ψ na real V na E binding Mukhamedzhanov, Pang, Bertulani, Kadyrov, PRC 90, 034604 (2014) DY Pang dispersive optical model potentials?

Dispersive optical model potential Rui Li, Weili Sun, et al, PRC 87, 054611 (2013)

Dispersive optical model potential Rui Li, Weili Sun, et al, PRC 87, 054611 (2013) DY Pang

Problem 3: inner part of the overlap function: SF and ANC DY Pang

Transition amplitude of (d,p) reactions The deuteron stripping amplitude in the post form is: M dp = χ ( ) pf IF A U pa + V pn U pf Ψ (+) i the overlap function I F A : I F A (r n ) = A + 1 Φ A (ξ) Φ F (ξ, r n ) Model-independent definition of the spectroscopic factor (SF): SF = IA F 2 (rn )rndr 2 n DY Pang

SF, ANC, and single-particle ANC Asymptotics of the overlap function (ANC): I F A(l na j na ) (r na) r na>r na ClnA j na iκ na h (1) l na (iκ na r na ) DY Pang

SF, ANC, and single-particle ANC Asymptotics of the overlap function (ANC): IA(l F na j na ) (r na) r na>r na ClnA j na iκ na h (1) l na (iκ na r na ) Asymptotics of the neutron sp wf (SPANC): ψ na(nr l na j na )(r na ) r na>r na bnrlna j na iκ na h (1) l na (iκ na r na ) DY Pang

SF, ANC, and single-particle ANC Asymptotics of the overlap function (ANC): IA(l F na j na ) (r na) r na>r na ClnA j na iκ na h (1) l na (iκ na r na ) Asymptotics of the neutron sp wf (SPANC): ψ na(nr l na j na )(r na ) r na>r na bnrlna j na iκ na h (1) l na (iκ na r na ) Asymptotically: I F A(l na j na ) proportional to ψ na(n r l na j na ): IA(l F na j na ) (r na) r na>r = na C lna j na ψ b na(nr l na j na )(r na ) nr l na j na DY Pang

SF, ANC, and single-particle ANC Asymptotics of the overlap function (ANC): IA(l F na j na ) (r na) r na>r na ClnA j na iκ na h (1) l na (iκ na r na ) Asymptotics of the neutron sp wf (SPANC): ψ na(nr l na j na )(r na ) r na>r na bnrlna j na iκ na h (1) l na (iκ na r na ) Asymptotically: I F A(l na j na ) proportional to ψ na(n r l na j na ): IA(l F na j na ) (r na) r na>r = na C lna j na ψ b na(nr l na j na )(r na ) nr l na j na Assumption: such proportionality extends to all r na : I F A(l na j na ) (r na) = C l na j na b nrl na j na ψ na (r na ) SF nrl na j na = C l na j na b nrl na j na DY Pang

Extration of SF and ANC from experimental data spectroscopic factor in transition amplitude: M dp = SF 1/2 n rl na j na χ ( ) pf ψ na(n r l na j na ) U pa + V pn U pf Ψ (+) i DY Pang

Extration of SF and ANC from experimental data spectroscopic factor in transition amplitude: M dp = SF 1/2 n rl na j na χ ( ) pf ψ na(n r l na j na ) U pa + V pn U pf Ψ (+) i Experimentally, SF nrl na j na and C lna j na are obtained by SF nr l na j na = dσexp /dω dσ th /dω C2 l na j na = SF nr l na j na b 2 n r l na j na dσ/dω (mb/sr) 10 1 10 0 CDCC ADWA DWBA 10 1 58 Ni, 10 MeV 0 30 60 90 120 150 θ cm (deg) DY Pang

Single-particle potential for ψ na(nr l na j na ) ψ na(nrl na j na ) obtained with a Woods-Saxon potential: V (r, r 0, a 0 ) = V 0 1 + exp [ (r r 0 A 1/3 )/a 0 ] DY Pang

Single-particle potential for ψ na(nr l na j na ) ψ na(nrl na j na ) obtained with a Woods-Saxon potential: V (r, r 0, a 0 ) = V 0 1 + exp [ (r r 0 A 1/3 )/a 0 ] φ(r na ) 10 1 59 Ni, 2p3/2 r 0 =10 fm r 0 =11 fm r 0 =12 fm 10 2 r 0 =13 fm 0 2 4 6 8 10 r na (fm) normalized SF 100 080 060 040 020 b 2 1 3/2 (fm 1/2 ) 11 13 15 18 22 27 32 DWBA ADWA CDCC 000 10 11 12 13 14 15 16 17 r 0 (fm) M dp = SF 1/2 n r l na j na χ ( ) pf ψ na V pf Ψ (+) i, C 2 = SF b 2 DY Pang

Peripherality of a transfer reaction φ(r) R x 04 02 00 02 04 35 30 25 20 15 10 05 dσ/dω (mb/sr) dσ/dω (mb/sr) 10 1 10 0 10 1 10 0 10 1 θ cm (deg) 58 Ni, 10 MeV 10 1 0 2 4 6 8 10 12 0 20 40 60 80 r na (fm) θ cm (deg) 10 MeV 56 MeV 00 0 2 4 6 8 10 12 r na (fm) DY Pang 58 Ni, 56 MeV 10 2 0 10 20 30 40

Peripherality of a transfer reaction φ(r) R x 04 02 00 02 04 35 30 25 20 15 10 05 dσ/dω (mb/sr) dσ/dω (mb/sr) 10 1 10 0 10 1 10 0 10 1 θ cm (deg) 58 Ni, 10 MeV 10 1 0 2 4 6 8 10 12 0 20 40 60 80 r na (fm) θ cm (deg) 10 MeV 56 MeV 00 0 2 4 6 8 10 12 r na (fm) DY Pang 58 Ni, 56 MeV 10 2 0 10 20 30 40

Peripherality of a transfer reaction φ(r) R x 04 02 00 02 04 35 30 25 20 15 10 05 dσ/dω (mb/sr) dσ/dω (mb/sr) 10 1 10 0 10 1 10 0 10 1 θ cm (deg) 58 Ni, 10 MeV 10 1 0 2 4 6 8 10 12 0 20 40 60 80 r na (fm) θ cm (deg) 10 MeV 56 MeV 00 0 2 4 6 8 10 12 r na (fm) DY Pang 58 Ni, 56 MeV 10 2 0 10 20 30 40

Peripherality of a transfer reaction φ(r) R x 04 02 00 02 04 35 30 25 20 15 10 05 dσ/dω (mb/sr) dσ/dω (mb/sr) 10 1 10 0 10 1 10 0 10 1 θ cm (deg) 58 Ni, 10 MeV 10 1 0 2 4 6 8 10 12 0 20 40 60 80 r na (fm) θ cm (deg) 10 MeV 56 MeV 00 0 2 4 6 8 10 12 r na (fm) DY Pang 58 Ni, 56 MeV 10 2 0 10 20 30 40

Peripherality of a transfer reaction φ(r) R x 04 02 00 02 04 35 30 25 20 15 10 05 dσ/dω (mb/sr) dσ/dω (mb/sr) 10 1 10 0 10 1 10 0 10 1 θ cm (deg) 58 Ni, 10 MeV 10 1 0 2 4 6 8 10 12 0 20 40 60 80 r na (fm) θ cm (deg) 10 MeV 56 MeV 00 0 2 4 6 8 10 12 r na (fm) DY Pang 58 Ni, 56 MeV 10 2 0 10 20 30 40

Peripherality of a transfer reaction φ(r) R x 04 02 00 02 04 35 30 25 20 15 10 05 dσ/dω (mb/sr) dσ/dω (mb/sr) 10 1 10 0 10 1 10 0 10 1 θ cm (deg) 58 Ni, 10 MeV 10 1 0 2 4 6 8 10 12 0 20 40 60 80 r na (fm) θ cm (deg) 10 MeV 56 MeV 00 0 2 4 6 8 10 12 r na (fm) DY Pang 58 Ni, 56 MeV 10 2 0 10 20 30 40

Peripherality of a transfer reaction φ(r) R x 04 02 00 02 04 35 30 25 20 15 10 05 dσ/dω (mb/sr) dσ/dω (mb/sr) 10 1 10 0 10 1 10 0 10 1 θ cm (deg) 58 Ni, 10 MeV 10 1 0 2 4 6 8 10 12 0 20 40 60 80 r na (fm) θ cm (deg) 10 MeV 56 MeV 00 0 2 4 6 8 10 12 r na (fm) DY Pang 58 Ni, 56 MeV 10 2 0 10 20 30 40

Peripherality of a transfer reaction φ(r) R x 04 02 00 02 04 35 30 25 20 15 10 05 dσ/dω (mb/sr) dσ/dω (mb/sr) 10 1 10 0 10 1 10 0 10 1 θ cm (deg) 58 Ni, 10 MeV 10 1 0 2 4 6 8 10 12 0 20 40 60 80 r na (fm) θ cm (deg) 10 MeV 56 MeV 00 0 2 4 6 8 10 12 r na (fm) DY Pang 58 Ni, 56 MeV 10 2 0 10 20 30 40

Peripherality of a transfer reaction φ(r) R x 04 02 00 02 04 35 30 25 20 15 10 05 dσ/dω (mb/sr) dσ/dω (mb/sr) 10 1 10 0 10 1 10 0 10 1 θ cm (deg) 58 Ni, 10 MeV 10 1 0 2 4 6 8 10 12 0 20 40 60 80 r na (fm) θ cm (deg) 10 MeV 56 MeV 00 0 2 4 6 8 10 12 r na (fm) DY Pang 58 Ni, 56 MeV 10 2 0 10 20 30 40

Peripherality of a transfer reaction φ(r) R x 04 02 00 02 04 35 30 25 20 15 10 05 dσ/dω (mb/sr) dσ/dω (mb/sr) 10 1 10 0 10 1 10 0 10 1 θ cm (deg) 58 Ni, 10 MeV 10 1 0 2 4 6 8 10 12 0 20 40 60 80 r na (fm) θ cm (deg) 10 MeV 56 MeV 00 0 2 4 6 8 10 12 r na (fm) DY Pang 58 Ni, 56 MeV 10 2 0 10 20 30 40

peripherality shown by ANC: the 58 Ni case normalized ANC 12 10 08 06 58 Ni 10 MeV 56 MeV 1 11 12 13 14 15 16 17 r 0 (fm) Cl 2 dσ exp /dω na j na (r 0 ) = M int (r 0 ) b n rl na j na (r 0 ) + M 2 ext DY Pang

Application of the Combined method: ideally For the 58 Ni(d,p) 59 Ni reaction: C 2 (fm 1 ) SF 12 10 08 06 04 02 00 300 250 200 150 100 50 56 MeV ( 80) 10 MeV 10 11 12 13 14 15 16 17 r 0 (fm) DY Pang

Application of the Combined method: in reality For the 58 Ni(d,p) 59 Ni reaction: C 2 (fm 1 ) SF 12 10 08 06 04 02 00 300 250 200 150 100 50 56 MeV 10 MeV 10 11 12 13 14 15 16 17 r 0 (fm) Pang, Mukhamedzhanov, PRC 90, 044611 (2014) DY Pang

Problem 4: Coulomb potential in few-body reaction theory DY Pang

few-body method DY Pang

few-body method d + A p + B(A + n) d + A p + (na) n + (pa) p + n + A elastic scattering neutron transfer proton transfer breakup reaction DY Pang

Faddeev method for the (d,p) reactions Faddeev: treat all 3-body reaction channels simultaneously Mukhamedzhanov, Eremenko and Sattraov, PRC 86, 034001 (2012) DY Pang

Faddeev method for the (d,p) reactions Faddeev: treat all 3-body reaction channels simultaneously Mukhamedzhanov, Eremenko and Sattraov, PRC 86, 034001 (2012) DY Pang

Comparison between Faddeev and CDCC Screening method for Coulomb potential does not converge for Z > 20 nuclei Upadhyay, Deltuva, and Nunes, PhysRev C 85, 054621 (2012) DY Pang

proposals for Coulomb problems DY Pang

Summary Current models: DWBA, ADWA, CDCC Faddeev method and Coulomb problem Thanks to Prof Akram Mukhamedzhanov and Dr AI Sattraov (TAMU), Profs Ron Johnson, Jeff Tostevin, and Dr Natasha Timofeyuk (Surrey), and Prof Ma ZhongYu (CIAE) DY Pang

Difficulty in integrations with Coulomb wave functions Mukhamedzhanov, Eremenko and Sattraov, PRC 86, 034001 (2012) DY Pang