arxiv: v1 [astro-ph.sr] 9 Sep 2011

Similar documents
PDF hosted at the Radboud Repository of the Radboud University Nijmegen

Abstract. Introduction. A. Miglio, J. Montalbán, P. Eggenberger and A. Noels

Observations of Red Giants in the NGC 6633 cluster by the Space Mission CoRoT

CoRoT ground-based asteroseismological programme. Ennio Poretti, Monica Rainer and the SGBWG

Stars burn hydrogen into helium through

Astronomy. Astrophysics. Seismic modelling of the β Cephei star HD (V1449 Aquilae)

Revised instability domains of SPB and β Cephei stars

Multiperiodicity in the light variations of the β Cephei star

arxiv: v2 [astro-ph.sr] 26 Oct 2010

arxiv: v1 [astro-ph.sr] 19 Jul 2010

THE PHOTOMETRIC VARIABILITY OF ζ ORI AA OBSERVED BY BRITE* **

arxiv: v1 [astro-ph.sr] 13 Feb 2013

arxiv: v1 [astro-ph.sr] 9 Sep 2010

arxiv: v1 [astro-ph] 22 Oct 2007

Asteroseismology from Line-profile variations

Asteroseismology of the β Cep star HD II. Seismic constraints on core overshooting, internal rotation and stellar parameters

List of submitted target proposals

arxiv: v1 [astro-ph.sr] 19 Aug 2016

Pulsation in Herbig stars: an idea of Francesco and its realization

Cyclic variations in the periods of RR Lyr stars arxiv: v1 [astro-ph.sr] 29 Jan 2018

The BRITE satellite and Delta Scuti Stars: The Magnificent Seven

HD An Am star showing both δ Scuti and γ Dor pulsations discovered through MOST photometry

arxiv: v1 [astro-ph.sr] 5 Sep 2014

UMR8109, Université Pierre et Marie Curie, Université Denis Diderot, Obs. de Paris, Meudon Cedex, France.

arxiv: v1 [astro-ph.sr] 21 Sep 2013

Evolving pulsation of the slowly rotating magnetic β Cep star ξ 1 CMa arxiv: v1 [astro-ph.sr] 7 Dec 2017

Pulsations in hot supergiants

Detection of solar-like oscillations in the red giant star ɛ Ophiuchi by MOST spacebased photometry ABSTRACT. 0.8 )days.

Evidence for nonlinear resonant mode coupling in the β Cephei star HD (V1449 Aquilae) from CoRoT photometry, ABSTRACT

arxiv: v1 [astro-ph.sr] 23 Mar 2012

Spectroscopic monitoring of 10 new northern slowly pulsating B star candidates discovered from the HIPPARCOS mission

Stochastic excitation mechanism. Sun. pressure modes periods : 5 min Physics tested depth of conv env diffusion rotation He abundance

The CoRoT Mission Pre-Launch Status

The p and k factors of the Classical Cepheid δ Cep

The life of stars & their planets

Observational Asteroseismology of slowly pulsating B stars

Microvariability of Red Giant Stars

SONG overview. Jørgen Christensen-Dalsgaard Department of Physics and Astronomy Aarhus University

Variability of β Cephei and SPB stars

arxiv: v1 [astro-ph] 22 Jun 2007

The Linear Oscillation Zoo Within Giant Stars: A Probe Of Their Deep Interiors

arxiv: v1 [astro-ph.sr] 18 Oct 2016

I. Observations, oscillation frequencies and stellar parameters

arxiv: v1 [astro-ph.sr] 30 Mar 2011

Delta Scuti stars: Observational aspects

Analysing the Hipparcos epoch photometry of λ Bootis stars

ASTRONOMY AND ASTROPHYSICS LIBRARY

Development of Techniques for Data Interpretation

Frequency in c/d

arxiv: v2 [astro-ph.sr] 1 Sep 2013

Astronomy. Astrophysics. Gravito-inertial and pressure modes detected in the B3 IV CoRoT target HD 43317,,

Asterosismologia presente e futuro. Studio della struttura ed evoluzione delle stelle per mezzo delle oscillazioni osservate sulla superficie

Date of delivery: 29 June 2011 Journal and vol/article ref: IAU Number of pages (not including this page): 5

arxiv:astro-ph/ v1 12 Feb 2007

Helioseismology: GONG/BiSON/SoHO

arxiv: v1 [astro-ph.sr] 5 Sep 2014

Discovery of magnetic fields in the β Cephei star ξ 1 CMa and in several slowly pulsating B stars

Time-dependent Behaviour of the Low Amplitude δ Scuti Star HD 52788

arxiv:astro-ph/ v1 12 Apr 2006

CCD photometry of δ Scuti stars 7 Aql and 8 Aql

arxiv: v1 [astro-ph.sr] 27 Dec 2011

Repe$$ve music and gap filling in full disc helioseismology and asteroseismology of solar- like stars. Eric Fossat Laboratoire Lagrange, O.C.A.

Modelling the synchrotron emission from O-star colliding wind binaries

Red-giant seismic properties analyzed with CoRoT

The CHEOPS Mission Consortium David Ehrenreich

arxiv: v2 [astro-ph] 4 Nov 2008

Monitoring the Behavior of Star Spots Using Photometric Data

Introduction. 1. Processing chain

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

The magnetic properties of Am stars

Asteroseismology. Conny Aerts. Universities of Leuven and Nijmegen. Material: Springer Monograph, 2010 FAMIAS software package (W.

arxiv: v1 [astro-ph.sr] 18 Jan 2011

arxiv:astro-ph/ v1 2 Nov 2000

arxiv:astro-ph/ v1 15 Mar 2007

Pulsations and Magnetic Fields in Massive Stars. Matteo Cantiello KITP Fellow Kavli Institute for Theoretical Physics, UCSB

arxiv: v1 [astro-ph.sr] 13 Jul 2009

arxiv: v1 [astro-ph] 28 Dec 2008

Photometric Observations of the δ Scuti Star UV Trianguli and its Evolutionary Status

arxiv: v3 [astro-ph.sr] 18 Oct 2016

arxiv: v1 [astro-ph.sr] 29 Jan 2013

PDF hosted at the Radboud Repository of the Radboud University Nijmegen

Asteroseismology of β Cephei stars. Anne Thoul Chercheur FNRS Université de Liège, Belgium and KITP, Santa Barbara, CA

The physics of red-giant oscillations

EPOCH-DEPENDENT ABSORPTION LINE PROFILE VARIABILITY IN λcep

New high resolution synthetic stellar libraries for the Gaia Mission

The discovery of global oscillations in

arxiv: v1 [astro-ph.sr] 18 Jun 2014

SPECTRAL MODELLING OF MASSIVE BINARY SYSTEMS: THE EXAMPLE OF LZ CEP

Kepler s first view of O-star variability: K2 data of five O stars in Campaign 0 as a proof of concept for O-star asteroseismology

Preparing the COROT space mission: incidence and characterisation of pulsation in the Lower Instability Strip

TNG photometry of the open cluster NGC 6939

arxiv: v2 [astro-ph.sr] 24 Feb 2017

On the multiperiodicity of the δ Scuti star BDS 1269A (VW Arietis).

THE LIFE OF STARS AND THEIR PLANETS

dell Osservatorio 3, I Padova, Italy I Padova, Italy 98195, USA Wien, Austria 1. Introduction

arxiv: v2 [astro-ph.sr] 16 May 2013

MOST Photometry of the roap star HD

What CoRoT tells us about δ Scuti stars

Astronomy. Astrophysics. On the use of the Fourier transform to determine the projected rotational velocity of line-profile variable B stars

Transcription:

**Volume Title** ASP Conference Series, Vol. **Volume Number** **Author** c **Copyright Year** Astronomical Society of the Pacific CoRoT observations of O stars: diverse origins of variability arxiv:1109.1999v1 [astro-ph.sr] 9 Sep 2011 R. Blomme 1, M. Briquet 2, P. Degroote 2, L. Mahy 3, C. Aerts 2,4, J. Cuypers 1, M. Godart 3, E. Gosset 3, M. Hareter 5, J. Montalban 3, T. Morel 3, M.F. Nieva 6,7, A. Noels 3, R. Oreiro 2, E. Poretti 8, N. Przybilla 7, M. Rainer 8, G. Rauw 3, F. Schiller 7, S. Simon-Diaz 9,10, K. Smolders 2, P. Ventura 11, M. Vučković 2, M. Auvergne 12, A. Baglin 12, F. Baudin 13, C. Catala 12, E. Michel 12 and R. Samadi 12 1 Royal Observatory of Belgium, Ringlaan 3, 1180 Brussels, Belgium 2 Instituut voor Sterrenkunde, K.U. Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium 3 Institut d Astrophysique et de Géophysique, University of Liège, Bât. B5C, Allée du 6 Août 17, 4000 Liège, Belgium 4 Department of Astrophysics, IMAPP, University of Nijmegen, PO Box 9010, 6500 GL Nijmegen, The Netherlands 5 Institut für Astronomie, Universität Wien, Türkenschanzstrasse 17, 1180 Vienna, Austria 6 Max Planck Institute for Astrophysics, Karl Schwarzschild Str. 1, Garching bei München 85741, Germany 7 Dr. Karl Remeis Observatory & ECAP, University of Erlangen-Nuremberg, Sternwartstrasse 7, 96049 Bamberg, Germany 8 INAF Osservatorio Astronomico di Brera, via E. Bianchi 46, 23807 Merate (LC), Italy 9 Instituto de Astrofísica de Canarias, 38200 La Laguna, Tenerife, Spain 10 Departamento de Astrofísica, Universidad de La Laguna, 38205 La Laguna, Tenerife, Spain 11 INAF, Osservatorio Astronomico di Roma, Via Frascati 33, 00040 Monteporzio Catone (Roma), Italy 12 LESIA, UMR 8109, Observatoire de Paris, 5 place Jules Janssen, 92195 Meudon Cedex, France 13 Institut d Astrophysique Spatiale (IAS), Bâtiment 121, Université Paris-Sud, 91405 Orsay Cedex, France Abstract. Six O-type stars were observed continuously by the CoRoT satellite during a 34.3-day run. The unprecedented quality of the data allows us to detect even low-amplitude stellar pulsations in some of these stars (HD 46202 and the binaries HD 46149 and Plaskett s star). These cover both opacity-driven modes and solar-like stochastic oscillations, both of importance to the asteroseismological modelling of O 1

2 Blomme et al. stars. Additional effects can be seen in the CoRoT light curves, such as binarity and rotational modulation. Some of the hottest O-type stars (HD 46223, HD 46150 and HD 46966) are dominated by the presence of red-noise: we speculate that this is related to a sub-surface convection zone. 1. Introduction The CoRoT satellite (Baglin et al. 2006) observed the NGC 2244 cluster and the Mon OB2 association from 08 Oct to 12 Nov 2008. As part of this 34.3-day run, highprecision photometric data were collected every 32 sec on six O-type stars (see Table 1). Below we discuss the light curve analysis of each of the stars in turn, going from the latest spectral type to the earliest one. Table 1. O-type stars observed by CoRoT during run SRa02 star spectral type binary period HD 46202 O9 V HD 46149 O8.5 V + OB-type P 2.27 yr HD 46966 O8 V HD 47129 O7.5 I + O6 I P = 14.39625 d HD 46150 O5.5 V ((f)) HD 46223 O4 V ((f + )) 2. Analysis 2.1. HD 46202 (O9 V) This star was studied by Briquet et al. (2011). In the periodogram they found a number of β-cep like pulsation frequencies. The time-frequency diagram (see Fig. 1, left) shows that these frequencies are stable, at least during our campaign, confirming that they are indeed caused by pulsations driven by the opacity mechanism. Asteroseismic modelling of HD 46202 was done using the Code Liégeois d Évolution Stellaire (CLÉS, Scuflaire et al. 2008). The best agreement with the observed frequencies was found for models in the 23.3 24.9 M range, with a core overshooting of 0.05 0.15 times the pressure scale height. The modelling showed that the observed modes are not excited in these models, thereby presenting a considerable challenge to the theoretical interpretation of the observations. 2.2. HD 46149 (O8.5 V + OB-type) Degroote et al. (2010) found a rotation period of about 11.8 days in the light curve of HD 46149, which they attribute to the primary. They also found a number of frequencies with a constant spacing of 0.48 ± 0.02 d 1. This is similar to stochastically excited p-modes. The time-frequency diagram indicates that these frequencies are not present during the whole duration of the observing run. A more detailed analysis shows that they have a lifetime of 3-4 days.

CoRoT observations of O stars 3 Figure 1. Time-frequency diagram of HD 46202 (left) and HD 46966 (right). The grey scale is proportional to the semi-amplitude, which was calculated from a Lomb- Scargle analysis on a sliding 5-day window of the observations (centred on the time given on the x-axis). The time is relative to the start of the observations. 2.3. HD 46966 (O8 V) Blomme et al. (2011) applied classical prewhitening to the periodogram of HD 46966. About 300 frequencies are required before the noise level is reached. Significance tests show that all 300 frequencies are significant. It is, however, highly suspicious that so many pulsation frequencies would be present in a single star. The time-frequency diagram (Fig. 1, right) clearly shows that none of these frequencies are stable. They are therefore not pulsational frequencies. A search for harmonics, linear combinations or frequency spacings did not turn up any significant results. Modelling with the ATON evolution code and the MAD pulsation code predicts pulsations in the 2 4 d 1 range, but no clear equivalent is seen in the observations. All the above points to variations of a more chaotic or stochastic nature. A good description of this is given by a red-noise spectrum: red noise power increases as a power law toward lower frequencies. In Fig. 2, we fit the HD 46966 periodogram with a function that differs slightly from a power law at lower frequencies. It is important to stress that this red noise is not an instrumental effect, because its behaviour is different from star to star in the simultaneous CoRoT observations discussed here. Instead, it is caused by the star itself and it indicates stochastic, chaotic or quasiperiodic effects. It is seen in a number of other astrophysical situations, such as the optical light curves of Mira variables and red supergiants as well as in the X-ray light curves of active galaxies, dwarf novae and high-mass X-ray binaries (see references in Blomme et al. 2011). At the moment we can only speculate about the possible causes of this red noise in O-type stars. One possibility is that it is caused by the sub-surface convection zone found in theoretical modelling (Cantiello et al. 2009). This zone is assumed to be responsible for a number of surface effects, such as microturbulence. Other possibilities include some type of granulation, or the onset of clumping in the wind. 2.4. HD 47129 (O7.5 I + O6 I) This is the well-known binary Plaskett s star. Mahy et al. (2011) found the orbital period (P = 14.39625 d) in the observed light curve. They also found another significant

4 Blomme et al. Figure 2. Fit (red line) to the red-noise component in the periodogram of HD 46966 (black line). frequency (0.823 d 1 ) with many harmonics. They tentatively ascribe this frequency to non-radial pulsations (NRPs), possibly generated by the tidal interaction from both components. The primary and secondary are known not to be tidally locked, because they have very different rotational velocities. Modelling with the ATON code shows that l = 2, 3, 4 NRPs with 0.8 d 1 are indeed possible. 2.5. HD 46150 (O5.5 V ((f))) and HD 46223 (O4 V ((f + ))) These two stars behave in very similar ways, and are therefore discussed together. Blomme et al. (2011) found 500 significant frequencies in their analysis, but a timefrequency diagram shows that none of these are stable during the observing run. The ATON evolution code and MAD pulsation code were used to predict theoretical frequencies, but none of these were detected in the observations. Similarly to HD 46966, a description of the periodogram in terms of red noise is more appropriate. 3. Hertzsprung-Russell diagram Fig. 3 shows the position of the stars discussed here in the Hertzsprung-Russell (HR) diagram. We also added ζ Oph which shows β-cep pulsations in the MOST photometry (Walker et al. 2005). We use green squares to indicate those stars that show pulsations, and red diamonds for red noise. This figure describes the extension of the β-cep strip to the hottest stars. The three stars HD 46966, HD 46202 and ζ Oph are especially constraining in defining the extension of the β-cep strip because HD 46202 and ζ Oph show β-cep pulsations, but HD 46966 does not. 4. Conclusions The CoRoT data of six O-type stars show diverse origins for their variability. They show β-cep pulsations (HD 46202), solar-like oscillations (HD 46149), the effect of rotation

CoRoT observations of O stars 5 Figure 3. HR diagram indicating the position of the stars discussed here, as well as ζ Oph. T eff and log L are from the papers cited in the text. Green squares indicate pulsations, red diamonds indicate the presence of red noise. Solid lines connect the binary components for HD 46149 and HD 47129. The stellar tracks are from Brott et al. (2011), with a Zero-Age Main Sequence rotational velocity of 220 km s 1. (HD 46149), the binary period and tidally induced NRPs (HD 47129), as well as red noise (HD 46966, 46150, 46223). Modelling the pulsations is possible for HD 46149 and HD 47129, but the other stars present problems. Although only six stars were studied, they can help in mapping out the extension of the β-cep strip to the hottest part of HR diagram. The red noise we find in a number of these stars is intriguing. We cannot confidently identify its cause, but we speculate that it may be related to the sub-surface convection zone expected in these stars, or could be caused by granulation, or might indicate the onset of clumping in the wind. Quantitative modelling of these phenomena is urgently required to see which explanation best fits the data. References Baglin, A., Auvergne, M., Barge, P., et al. 2006, in The CoRoT Mission Pre-Launch Status, edited by M. Fridlund et al. (ESA, Noordwijk), vol. 1306 of ESA Special Publ., 33 Blomme, R., Mahy, L., Catala, C., et al. 2011, A&A, 533, A4 Briquet, M., Aerts, C., Baglin, A., et al. 2011, A&A, 527, A112 Brott, I., de Mink, S. E., Cantiello, M., et al. 2011, A&A, 530, A115 Cantiello, M., Langer, N., Brott, I., et al. 2009, A&A, 499, 279 Degroote, P., Briquet, M., Auvergne, M., et al. 2010, A&A, 519, A38 Mahy, L., Gosset, E., Baudin, F., et al. 2011, A&A, 525, A101 Scuflaire, R., Théado, S., Montalbán, J., et al. 2008, Ap&SS, 316, 83 Walker, G. A. H., Kuschnig, R., Matthews, J. M., et al. 2005, ApJ, 623, L145