A A π A A B B u

Similar documents
Topic 2 [312 marks] The rectangle ABCD is inscribed in a circle. Sides [AD] and [AB] have lengths

`G 12 */" T A5&2/, ]&>b ; A%/=W, 62 S 35&.1?& S + ( A; 2 ]/0 ; 5 ; L) ( >>S.

COUNTY OF NEVADA COMMUNITY DEVELOPMENT AGENCY PLANNING DEPARTMENT

SCTT The pqr-method august 2016

CAT. NO /irtl,417~ S- ~ I ';, A RIDER PUBLICATION BY H. A. MIDDLETON

Parts Manual. EPIC II Critical Care Bed REF 2031

Bivariate distributions

CBSE CLASS X MATH -SOLUTION Therefore, 0.6, 0.25 and 0.3 are greater than or equal to 0 and less than or equal to 1.

elegant Pavilions Rediscover The Perfect Destination

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Problem Set 8 Fall 2007

1 INFO Sep 05

3 Operations on One R.V. - Expectation

The integrals in Gradshteyn and Ryzhik. Part 10: The digamma function


Algebraic theories in the presence of binding operators, substitution, etc.

The Radical Axis. MA 341 Topics in Geometry Lecture 24

HYDROMETRIC NETWORK REQUIREMENTS OKANAGAN BASIN FOR THE. Prepared for. Photo: Belgo Creek at Highway 33

STEP Support Programme. STEP III Coordinate Geometry Solutions

35H MPa Hydraulic Cylinder 3.5 MPa Hydraulic Cylinder 35H-3

New Bern. south corridor station area plans. Transit Station Area Plan. Uptown. South End. New Bern. Scaleybark. Woodlawn. Tyvola. Archdale.

Information Theory. Lecture 7


SPACE TYPES & REQUIREMENTS

So, eqn. to the bisector containing (-1, 4) is = x + 27y = 0

TESA IP40 protection against dust (TLC) Connector for a forward thinking approach to your overall quality control system


Suggested solutions, TMA4125 Calculus 4N

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

Supporting Information. Organocatalytic Synthesis of 4-Aryl-1,2,3,4-tetrahydropyridines from. Morita-Baylis-Hillman Carbonates through a One-Pot

F l a s h-b a s e d S S D s i n E n t e r p r i s e F l a s h-b a s e d S S D s ( S o-s ltiad t e D r i v e s ) a r e b e c o m i n g a n a t t r a c

Concept of Luminosity

LOCUS. Definition: The set of all points (and only those points) which satisfy the given geometrical condition(s) (or properties) is called a locus.

LIST OF FORMULAS FOR STK1100 AND STK1110

A Probability Primer. A random walk down a probabilistic path leading to some stochastic thoughts on chance events and uncertain outcomes.

Probability Theory. Richard F. Bass

Lecture # 37. Prof. John W. Sutherland. Nov. 28, 2005

Udaan School Of Mathematics Class X Chapter 10 Circles Maths

Problem Sheet 1. You may assume that both F and F are σ-fields. (a) Show that F F is not a σ-field. (b) Let X : Ω R be defined by 1 if n = 1

American Cakery. ... made by erlenbacher

CORRELATION AND REGRESSION

TUCBOR. is feaiherinp hit nest. The day before Thanks, as to reflect great discredit upon that paper. Clocks and Jewelry repaired and warranted.

Introduction to Normal Distribution

A B C DEF A AE E F A A AB F F A

Lecture 2: Repetition of probability theory and statistics

M $ 4 65\ K;$ 5, 65\ M $ C! 4 /2 K;$ M $ /+5\ 8$ A5 =+0,7 ;* C! 4.4/ =! K;$,7 $,+7; ;J zy U;K z< mj ]!.,,+7;

Lecture 4: Conditional expectation and independence

Scenarios, probability and possible futures

Table of z values and probabilities for the standard normal distribution. z is the first column plus the top row. Each cell shows P(X z).

Exercises Measure Theoretic Probability

ers The Extraordinary Boogie and Swing Festival MUNICH GERMANY 9

upon during the winter Porter Bik, cor. Monroe midnight, a r e deserted, save for those

G r a y T a k e s P o s t. A s N e w Y S e c ' y

EL TOP VIEW LENS 67-31EP3-UR0500H-AM

Solution Of Class 10 th CBSE SA-II Board (Set-1)Mathematics

A random variable is a quantity whose value is determined by the outcome of an experiment.

Measure theory and stochastic processes TA Session Problems No. 3

EL Power TOP VIEW LED C70301H-AM

Mean and variance. Compute the mean and variance of the distribution with density

An Envelope for Left Alternative Algebras

UC Berkeley Department of Electrical Engineering and Computer Science. EE 126: Probablity and Random Processes. Problem Set 4: Solutions Fall 2007

EL Power TOP VIEW LED C70301H-AM

Pushbutton Units and Indicator Lights

EL Mini TOP VIEW LED SB0100L-AM

CCE PR Revised & Un-Revised

The P/Q Mathematics Study Guide

215 Problem 1. (a) Define the total variation distance µ ν tv for probability distributions µ, ν on a finite set S. Show that

Rings and groups. Ya. Sysak

2017, Amazon Web Services, Inc. or its Affiliates. All rights reserved.

Whitney Grummon. She kick started a fire in my soul Teaching me a tool to cleanse my mind That ll last a life time. That s how I will remember

semi-annual Activities Fair, aimed at extra-cwrricular activities which the School

MATH 412 Fourier Series and PDE- Spring 2010 SOLUTIONS to HOMEWORK 5

5. Introduction to Euclid s Geometry

Aspects of Pairing Inversion

Coding Theory ( Mathematical Background I)

UCSD ECE153 Handout #34 Prof. Young-Han Kim Tuesday, May 27, Solutions to Homework Set #6 (Prepared by TA Fatemeh Arbabjolfaei)

Continuity of equilibria for two-person zero-sum games with noncompact action sets and unbounded payoffs

Optimization problems on the rank and inertia of the Hermitian matrix expression A BX (BX) with applications

Let X and Y denote two random variables. The joint distribution of these random

LOWELL JOURNAL NEWS FROM HAWAII.

page 1 Total ( )

EL Mini TOP VIEW LED IB0100L-AM

A L A BA M A L A W R E V IE W


Summary of Chapters 7-9

Topic 2: Probability & Distributions. Road Map Probability & Distributions. ECO220Y5Y: Quantitative Methods in Economics. Dr.

Probability- the good parts version. I. Random variables and their distributions; continuous random variables.

T h e C S E T I P r o j e c t

Hanoi Open Mathematical Olympiad

Jointly continuous distributions and the multivariate Normal

CBSE 10th Mathematics 2016 Solved Paper All India

International Mathematical Olympiad. Preliminary Selection Contest 2017 Hong Kong. Outline of Solutions 5. 3*

Separation of Variables in Linear PDE: One-Dimensional Problems

Problem Set 1. MAS 622J/1.126J: Pattern Recognition and Analysis. Due: 5:00 p.m. on September 20

Exercise Exercise Homework #6 Solutions Thursday 6 April 2006

ACM 116: Lectures 3 4

Formulas for probability theory and linear models SF2941

THE METHOD OF SEPARATION OF VARIABLES

EL Mini TOP VIEW LED UB0200L-AM

Section 8.3 Higher-Order Logic A logic is higher-order if it allows predicate names or function names to be quantified or to be arguments of a

MAS113 Introduction to Probability and Statistics. Proofs of theorems

Transcription:

A A π A A B B u

u( = 1 u( = 0 A π(a) = 1 π(b) = 0 B π(a) = 0 π(b) = 1 π(a) = π(b) = 0.5 p π p p 0 b s p π (s) p 0 (s)e bπ(s), A p π (A) A e bπ p 0. π p π = p 0 p 0 p π p 0 b b > 0 p π π b < 0 p π π b = 0 p π = p 0 π e π p π (s e) }{{} p 0 (s) L(s e) }{{}}{{} e bπ(s) }{{}. p π

e bπ(s) s π p(s) p 0 (s) p(s e, π) p(s) L(s e) L(s π). A A

Z S Σ σ Σ f : S (Z)

A B Z = {, } S = {A, B} f(a) = f(b) = (, 0.5;, 0.5) A f(a) = f(b) = B f(a) = f(b) = F F A A F f u f f(a) = (, 1;, 0) f(b) = (, 0;, 1)

f f u f F u : Z R p : F (S) f g, g F g g u(g(s)) p f u(g (s)) p f. S f f u f = u f p f = p f f u π : S R π(s) = u(f(s)) s S u( ) = 1 u( ) = 0 π(a) = π(b) = 0.5u( )+0.5u( ) = 0.5 A π(a) = u( ) = 1 π(b) = u( ) = 0 A A A u p Π p : Π (S) π Σ p S g g g(s) g (s) u(g(s)) u(g (s)) S

p : Π (S) π π E c p π (E) = 0 p π (E) = 0 π n π p πn (E) p π (E) π = π E p π (A E) = p π (A E) A E π = π + c p π = p π E E E p p p π (s) p 0 (s)ν(s, π(s)) p 0 π ν p π (E) > 0 p π (E) > 0 π = π E p π (A) = p π (A) E E p π (A E) = p π (A E)

ν b ν(π(s)) = e bπ(s) s p : Π (S) p 0 b π A p π (A) e bπ p 0. A = {s} s A p π (s) p 0 (s)e bπ(s). p π (s) p π (s ) = p 0(s) )) p 0 (s ) eb(π(s) π(s. p 0 p 0 π π p 0 b = 0 b = 0 b > 0 b < 0 b = 2 p 0 (A) = p 0 (B) =

0.5 π(a) = π(b) = 0.5 p = p 0 u( ) = 1 u( ) = 0 A π(a) = 1 π(b) = 0 e b(π(a) π(b)) = e 2 = 2 p 0 (A)/p 0 (B) = 1 p π (A)/p π (B) = 2 A p 0 (A) = 1/2 p π (A) = 2/3 p(s π) p π (s) L(s π) = e bπ(s) p(s π) }{{} = p(s) }{{} L(s π). }{{} p 0 e bπ(s) s s p 0 p 0 (A) = p 0 (B) = 0.5 A p = 2/3 p = 1/3 p 0 (A) = 4/5 A A p 0 (A) = 4/5 p π (A) = 8/9

π(a) π(b) = u( ) u( ) = 1 u( ) u( ) = 2 p π (A) = 16/17 u(x) = x q r rq u(x) = x π(r) = rq r µ σ 2 p π (r r 0 ) e bπ p 0 = 1 r r 0 2πσ r 2 +µ 2 2r(µ+bqσ 2 ) 2σ 2 r = r r 0 e e bqr e (r µ) 2 2σ 2 r r 0 r r 0 e r (r µ ) 2 2σ 2 r, µ = µ+bqσ 2 p 0 (r r 0 ) N (µ, σ 2 ) p π (r r 0 ) N (µ+ bqσ 2, σ 2 ) σ 2 µ bqσ 2 σ 2 t t t + 1

t + 1 t t+1

A A π A = u A A A A U 0 (A) A p 0 U A (A) p π π = u A u A U A (A) > U 0 (A) A A A u A U A (A) U 0 (A) b e bx b > 0 b < 0 b = 0 p A (s) e bu(a(s)) p 0 (s) s p A (u A)

p 0 (u A) b > 0 p 0 (u A) b < 0 p 0 (u A) b = 0 A U A (A) U 0 (A) b A B s s p 0 e s s e B e A e u(a(s)) > u(a(s )) A B p(s)/p(s ) r r r 0 = p 0 (s)/p 0 (s ) s s r A = e bu(a(s)) /e bu(a(s )) > 1 A r e = L(s e)/l(s e) s r < r 0 < r r e < r 0 r A. A B B r A > 1 r e

E E A B s s A B s B u(b(s)) > u(a(s)) > u(a(s )) > u(b(s )), p 0 b 0 b > b 0 A A B r A p(s)/p(s ) r p 0 (s)/p 0 (s ) = r 0 < r A A p A (s)/p A (s ) = e b(u(a(s)) u(a(s ))) r 0 b 0 = r r 0 u(a(s)) u(a(s )). b > b 0 p A (s)/p A (s ) = e b(u(a(s)) u(a(s ))) r 0 > r B

p 0 (A) = p 0 (B) = 0.5 A B e L(B e)/l(a e) > 1 B b = 2 e A π(a) = 1 π(b) = 0 e p π (A) p π (B) = p 0(A) p 0 (B) ebπ(a) L(A e) ebπ(b) L(B e) = 1 e 2 e 0 L(A e) L(B e) = 2 L(A e) L(B e). B L(B e)/l(a e) > 2 1 < L(B e)/l(a e) < 2

t = 0 1 A λ B λ 1 A t = 0 p 0 (A)/p 0 (B) = λ 0 > 1 t = 1 e B B p 0 (B e)/p 0 (A e) = µ > 1 b λ 0 µ λ = 1 λ > 1 t = 0 p(a) λp(b) > 0 p(a) p(b) = λ 0 λ, p = p 0 t = 0 π(a) π(b) = 1 + λ A B t = 1 p π (A)/p π (B) = e b(1+λ) /µ p(a) p(b) = eb(1+λ) µ λ. λ = 1 λ 0 > 1 = λ

µ > e 2b λ = λ 0 e b(1+λ 0) /λ 0 µ b > 0 e b(1+λ 0) /λ 0 λ 0 λ 0 b = 1 w = 1 α A B p(a) (1 + α) + (1 p(a)) (1 α) α = 2p(A) 1 p 0 (A) = 2/3 α = 1/3 π(a) π(b) = (4/3) (2/3) = 2 b = 1 p 0 (A) = 2/3 p π (A) = 4/5 α = 2p π (A) 1 = 3/5 33.3 60 b > 0 r 0 = p 0 (A)/p 0 (B) > 1 p(a) p(a) p(a) 1 b 1 r k = p(a)/p(b) k α k = 2p(A) 1 = 2 r k r k + 1 1 = 2r k (1 + r k ) r k + 1 r k+1 = r k 1 r k + 1. r k+1 r 0 = ebπ(a) e bπ(b) = eb (1+αk) e b (1 α k) = ( ) b 1 + αk = 1 α k ( ) b 2rk = r b 2 k.

r k = r 1+b+b2 + b k 0 b 1 p(a) = r k /(r k + 1) p(a) p(a) 1 b 1

A B A π A (A) > π A (B) B π B (B) > π B (A) b = 2 y + αm y m α 0 A m = 1 B m = 1

π(a) = 1 + α A π(b) = 1 α B π(a) π(b) = 2α b = 2 4 α y = 1 p(a) = 1/9 1 + α/9 (8/9)α = 1 7α/9 α < 9/7 p(a)/p(b) = 1/8 α (1, 9/7) p π (A) > 1/2 b = 2 U D p 0 (U)/p 0 (D) = r 0 1 r U = e 2 r 0 = r 0 /2 r 0 2 1 r 0 < 2 r D = 2r 0 > 1

p 0 e bπ(s) e bπ(s)

b

p : Π (S) π A B C p π (A) p π (B) p π (C) S Σ S S = {A, B} π p π (A) = (π(a) π(b))2 + 1 (π(a) π(b)) 2 + 2 p π (B) = 1 (π(a) π(b)) 2 + 2 A B π(a) π(b)

p π = p π π π S Σ S π p 0 h : Π S R + π A S p π (A) p 0 (A)h π (A). p 0 µ : S X R + π A S p π (A) p 0 (A)µ A (π(a)). p 0 ν : X R + π A S p π (A) p 0 (A)ν(π(A)). p 0 (S) b R π A S p π (A) p 0 (A)e bπ(a).

a p 0 = p a S = {A S : p 0 (A) > 0} h π (A) = p π (A)/p 0 (A) A S h π (A) = 0 A / S A S h π p 0 (A) = 0 p π (A) = 0 A / S A S x X π(a, x) A x A a E 1,..., E n S S A π(a, x) a E i E j i j E = E i E j p π(a,x) (E i )/p π(a,x) (E j ) = p 0 (E i )/p 0 (E j ) 1 p π(a,x) (A) = i µ A (x) = p π(a,x) (E i ) = i p π(a,x) (E j ) p 0 (E j ) ( )( ) 1 p0 (A) pπ(a,x) (A) p 0 (A) 1 p π(a,x) (A) p 0 (E i ) = p π(a,x)(e j ) (1 p 0 (A)) p 0 (E j ) p π(a,π(a)) (A) p 0 (A)µ A (π(a)) = (1 p 0 (A)) 1 p π(a,π(a)) (A) = p 0(E j ) pπ(a,π(a))(a) p π(a,π(a)) (E j ) π A B S π π A B a C S E j = C p π (A) p π (B) = p π (A) p π (B) = p π (A)/p π (C) p π (B)/p π (C) = p 0(C) p 0 (C) pπ(a,π(a))(a)/p π(a,π(a)) (C) p π(b,π(b)) (B)/p π(b,π(b)) (C) = p 0(A)µ A (π(a)) p 0 (B)µ B (π(b)) A, B S A S A / S µ A (x) = 1 p π (A) = p 0 (A) = 0 A / S µ A π A S C

A S ν : X R + ν(x) = µ A (x) x X x x π = x B = A A S x X p x (A) p x (A ) = p 0(A) p 0 (A ) µa(x) ν(x) x p x = p a = p µ A (x) = ν(x) p π (A) p 0 (A) ν(π(a)) A S A / S p π (A) = p 0 (A) = 0 A / S A, B S x y x, y x + y X p x π x,y p x (s) = x s A p x (s) = 0 s / A π x,y = p x + y p π x,y = p px p π x,y (A)/p π x,y (B) = p px (A)/p px (B) ν(x + y)/ν(y) = ν(x)/ν(0) σ(x) = (ν(x)/ν(0)) σ x y σ(x + y) = σ(x) + σ(y) m N y = mx σ(mx) = mσ(x) n N y = x/n σ(x) = σ(ny) = nσ(y) σ(x/n) = σ(x)/n y = x σ( x) = σ(x) b = σ(1) q X σ(q) = bq ν(q) = ν(0)e bq x X {q n } n N x p πqn p πx ν(q n ) ν(x) ν(q n ) = ν(0)e bqn ν(q n ) ν(0)e bx ν(x) ν(0)e bx ν(x) = ν(0)e bx ν x R

p : Π (S) p 0 b R π A B π A B p 0 (B) > 0 p π (A) p π (B) = p 0(A) p 0 (B) ebπ(a) e bπ(b) a Π p = p a S p π (A) > 0 π Π A S Σ(S) Σ S Π(S) Π Σ(S) p S (S, Σ(S)) b S R π Π(S) A S a Π(S) A S p 0 (A) = p a (A) p S (A)e ba p 0 (A) = p S A S A Σ(S) b = b S π Σ(S) A S p π (A) p 0 (A)e bπ(a) A B p 0 (B) > 0 π δ π (A, B) = p π (A)/p π (B) p 0 (A)/p 0 (B) δ π (A, B) = b(π(a) π(b)) E 1, E 2,... E n S A E 1 π Π π = π(a) A E 1 π = π(b) π Π(S) h = π(a) E 1 h = π(b) δ π (A, B) = δ π (A E 1, B) = δ π (A E 1, B) = δ π (A E 1, B E 2 ) = δ π (A E 1, E 2 ) = δ π (A E 1, E 2 ) = δ π (E 1, E 2 ) = b(π(a) π(b)) π Π(S) p π(a) = p π(b) = p 0 p = p a Σ Σ(S) π π(s)

π Π π Π E π E p π (E) = 1 π π {E 1,..., E n } π g p π ( i E i ) = 1 p π ( i E i ) = 1 p π (A i E i ) = p π (A) p π (A) = i p π(a E i ) p π (A) i p 0(A E i )e bπ(a E i) p 0 (S \ i E i ) = 0 A ebf p = i p 0(A E i )e bπ(a E i) p π (A) A ebπ p 0 {A n } n N b 0 π n p π (A n )/p π (A 1 ) = p π (A 1 ) = 0 b 0 p : Π π M R x e bx M b = 0 b 0 p 0 b π π {A n } n N π E E π π E y π E p 0 (s E : π(s) y) = p 0 (E)/2 E π E(y) E \ E(y) n E 2 n

M R e bx M x X X {x n } n N n p 0 (A n )e bxn p 0 (A 1 )e bx 1 π π(a n) = x n n N π(s) = x 1 n A n n N π n π n (A n ) = x n π n (s) = x 1 s / A n π π n A 1 A n N N 1 n N = p π (A 1 ) n N p π (A n ) = p π (A 1 ) n N p 0 (A n )e bxn p 0 (A 1 )e bx 1 p π (A n ) p π (A 1 ) = p π(a 1 ) p πn (A n ) p πn (A 1 ) n N p π(a 1 ) n N 1 = Np π (A 1 ) N p π (A 1 ) = 0 A 1 e bx p : Π (S) p 0 b R A B p 0 (B) > 0 π m > 0 π(s) m s A B p π (A) p π (B) = A ebπ p B ebπ p p 0 b π π M e bx M x X b 0 b = 0 n N [m, M] 2 n (M m)/2 n s I n (s) e bf I min n π n π n (s) = I min n (s) (s)/b π n f

e bπ(s) (M m)/2 n e bπn(s) e bπ(s) s e bπn(s) e bπ(s) s p πn (A) p πn (B) = A ebπn(s) p n B ebπn(s) p p π (A) p π (B) = n p πn (A) n p πn (B) = n = n A ebπn(s) p n B ebπn(s) p = A ebπ(s) p B ebπ(s) p p 0 (B) > 0 p πn (s) [m, M] A B A A n = {s A : e bπ(s) 2 n } π p 0 b A B p 0 (B) > 0 π m > 0 e bπ(s) m A B m π A B p 0 (B) > 0 π M R e bx M x X n N A n = {s A : e bπ(s) 2 n } B n n A \ A n = n B \ B n = p 0 (B) > 0 n 0 N n n 0 p 0 (B n ) > 0 A n B n n n 0 p π (A) p π (B) = n = p π (A n ) p π (B n ) = n A ebπ(s) p B ebπ(s) p e bπ(s) p A n B n e bπ(s) p = n e bπ(s) p A n n B n e bπ(s) p e bx M x X M

p 0 (B n0 ) > 0 π(s) 2 n 0 B n 0 m > 0 n n 0 B n e bπ(s) p B n0 e bπ(s) p 2 n 0 p 0 (B n0 ) m

π : S R π(s) = u(o(s)) p π (s) e bπ(s) c = c C p π (s i )u(c(s i )) i 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 π α = β = 2 p 0 b(π( ) π( )) = 4