Calculation of uncertainties on DD, DT n/γ flux at potential irradiation positions (vertical ports) and KN2 U3 by TMC code (L11) Henrik Sjöstrand

Similar documents
Improved nuclear data for material damage applications in LWR spectra

TENDL-TMC for dpa and pka

In collaboration with NRG

FUSION NEUTRONICS EXPERIMENTS AT FNG: ACHIEVEMENTS IN THE PAST 10 YEARS AND FUTURE PERSPECTIVES

Calibration of JET Neutron Detectors at 14 MeV neutron energy

TENDL 2017: better cross sections, better covariances

Observation of modes at frequencies above the Alfvén frequency in JET

Nuclear data uncertainty propagation using a Total Monte Carlo approach

Challenges in nuclear data evaluation of actinide nuclei

Chapter 5: Applications Fission simulations

Neutron Emission Spectroscopy Measurements with a Single Crystal Diamond Detector at JET

Complete activation data libraries for all incident particles, all energies and including covariance data

Nuclear Data Uncertainty Quantification for Applications in Energy, Security, and Isotope Production

Nuclear Data Section Department of Nuclear Sciences and Applications

Tandem Collimators System

Some thoughts on Fission Yield Data in Estimating Reactor Core Radionuclide Activities (for anti-neutrino estimation)

Nuclear Data Activities at the IAEA-NDS

PROPAGATION OF NUCLEAR DATA UNCERTAINTIES IN FUEL CYCLE USING MONTE-CARLO TECHNIQUE

Temporal Evolution of Temperature and Argon Impurity Density Profiles Observed by X-ray Imaging Spectrometer Measurements at Wendelstein 7-X

The emissivity of W coatings deposited on carbon materials for fusion applications

Cross-section Measurements of Relativistic Deuteron Reactions on Copper by Activation Method

Neutronics experiments for validation of activation and neutron transport data for fusion application at the DT neutron generator of TU Dresden

Neutron streaming studies along JET shielding penetrations

Nuclear Data Activities in the IAEA-NDS

This is the submitted version of a paper presented at PHYSOR 2014 International Conference; Kyoto, Japan; 28 Sep. - 3 Oct., 2014.

New developments in JET gamma emission tomography

Nuclear data uncertainty quantification and data assimilation for a lead-cooled fast reactor

Testing for Chaos in Type-I ELM Dynamics on JET with the ILW. Fabio Pisano

Development of MPPC-based detectors for high count rate DT campaigns at JET

Integral Benchmark Experiments of the Japanese Evaluated Nuclear Data Library (JENDL)-3.3 for the Fusion Reactor Design

(Tandem Collimators for the Tangential GammaRay Spectrometer - KM6T-TC)

Fission yield calculations with TALYS/GEF

In situ wavelength calibration of the edge CXS spectrometers on JET

ITER oriented neutronics benchmark experiments on neutron streaming and shutdown dose rate at JET

Neutronics experiments for validation of activation and neutron transport data for fusion application at the DT neutron generator of TU Dresden

Study of Impacts on Tritium Breeding Ratio of a Fusion DEMO Reactor

(NUCLEAR) DATA EVALUATION METHODOLOGY INCLUDING ESTIMATES OF COVARIANCE

Integrated equilibrium reconstruction and MHD stability analysis of tokamak plasmas in the EU-IM platform

Status of Subgroup 24

The Updated Version of Chinese Evaluated Nuclear Data Library (CENDL-3.1)

Nuclear data for advanced nuclear systems

Present status of fusion neutronics activity and comments to neutron diagnostics for TBM

M.Cagnazzo Atominstitut, Vienna University of Technology Stadionallee 2, 1020 Wien, Austria

Enhanced physics simulations platforms

TENDL-2011 processing and criticality benchmarking

Fusion Neutronics, Nuclear Data, Design & Analyses - Overview of Recent FZK Activities -

Determination of neutron induced fission fragment spin distribution after neutron evaporation

Nuclear Analysis of the HCLL Blanket Concept for the European DEMO Using the TRIPOLI-4 Monte Carlo Code

Unified Monte Carlo evaluation method

ACTIVATION ANALYSIS OF DECOMISSIONING OPERATIONS FOR RESEARCH REACTORS

Correlations in nuclear data from integral constraints

A Detailed Analysis of Geodesic Least Squares Regression and Its Application to Edge-Localized Modes in Fusion Plasmas

Progress in R&D Efforts on Neutronics and Nuclear Data for Fusion Technology Applications

Monte Carlo Nuclear Data Assimilation via integral information

First ANDES annual meeting

Applied Nuclear Physics in Sweden - A brief overview -

Analyses of shielding benchmark experiments using FENDL-3 cross-section data starter library for ITER and IFMIF applications

Multiscale modelling of sheath physics in edge transport codes

Preliminary Uncertainty Analysis at ANL

Nuclear Data Uncertainty Analysis in Criticality Safety. Oliver Buss, Axel Hoefer, Jens-Christian Neuber AREVA NP GmbH, PEPA-G (Offenbach, Germany)

From cutting-edge pointwise cross-section to groupwise reaction rate: A primer

Central Solenoid Winding Pack Design

Thermo-mechanical analyses and ways of optimization of the helium cooled DEMO First Wall under RCC-MRx rules

Needs for Nuclear Reactions on Actinides

ARTICLE. EASY-II(12): a system for modelling of n, d, p, γ, α activation and transmutation processes

Issues for Neutron Calculations for ITER Fusion Reactor

PIA and REWIND: Two New Methodologies for Cross Section Adjustment. G. Palmiotti and M. Salvatores

Comparative Transport Analysis of JET and JT-60U Discharges

The updated version of the Chinese Evaluated Nuclear Data Library (CENDL-3.1) and China nuclear data evaluation activities

Magnetic Flux Surface Measurements at Wendelstein 7-X

arxiv: v2 [physics.ins-det] 16 Jun 2017

Status of TBM Neutronics Experiment

JET Neutron Calibration 2013

Diamond detectors in Bonner Spheres A Novel Approach for Real-time Neutron Spectroscopy

Application of Bayesian Monte Carlo Analysis to Criticality Safety Assessment

The European Activation File: EAF-2005 decay data library

SINBAD Benchmark Database and FNS/JAEA Liquid Oxygen TOF Experiment Analysis. I. Kodeli Jožef Stefan Institute Ljubljana, Slovenia

Neutron Spectra Measurement and Calculations Using Data Libraries CIELO, JEFF-3.2 and ENDF/B-VII.1 in Spherical Iron Benchmark Assemblies

Joint ICTP-IAEA Workshop on Nuclear Reaction Data for Advanced Reactor Technologies May 2010

Benchmark Test of JENDL High Energy File with MCNP

IMPACT OF THE FISSION YIELD COVARIANCE DATA IN BURN-UP CALCULATIONS

JRC Place on dd Month YYYY Event Name 1

LA-UR Approved for public release; distribution is unlimited.

RESEARCH IN THE FIELD OF NEUTRONICS AND NUCLEAR DATA FOR FUSION

A TEMPERATURE DEPENDENT ENDF/B-VI.8 ACE LIBRARY FOR UO2, THO2, ZIRC4, SS AISI-348, H2O, B4C AND AG-IN-CD

ANALYSIS OF THE COOLANT DENSITY REACTIVITY COEFFICIENT IN LFRs AND SFRs VIA MONTE CARLO PERTURBATION/SENSITIVITY

Neutron emission spectroscopy of DT plasmas at enhanced energy resolution with diamond detectors

State the main interaction when an alpha particle is scattered by a gold nucleus

Nuclear Structure and Decay Data in Europe

Neutronics Experiments for ITER at JAERI/FNS

Characterization of waste by R2S methodology: SEACAB system. Candan Töre 25/11/2017, RADKOR2017, ANKARA

The Lead-Based VENUS-F Facility: Status of the FREYA Project

Nuclear Data Activities at the IAEA Nuclear Data Section

Modelling and Analysis of the JET EP2 Neutral Beam Full Energy Ion Dump Curved End Plate

ORNL Nuclear Data Evaluation Accomplishments for FY 2013

Analysis of the TRIGA Reactor Benchmarks with TRIPOLI 4.4

Turbulent Transport Analysis of JET H-mode and Hybrid Plasmas using QuaLiKiz, TGLF and GLF23

Published online: 27 Aug 2014.

The cross-section data from neutron activation experiments on niobium in the NPI p-7li quasi-monoenergetic neutron field

Deuterium Balmer/Stark spectroscopy and impurity profiles: first results from mirror-link divertor spectroscopy system on the JET ITER-like wall

Transcription:

Calculation of uncertainties on DD, DT n/γ flux at potential irradiation positions (vertical ports) and KN2 U3 by TMC code (L11) Henrik Sjöstrand

Acknowledgements Henrik Sjöstrand and JET Contributors* EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK Department of Physics and Astronomy, Uppsala University, Box 516, 751 20, Uppsala, Sweden * See the Appendix of F. Romanelli et al., Proceedings of the 25th IAEA Fusion Energy Conference 2014, Saint Petersburg, Russia

Neutron measurements: neutron activation systems The KN2 neutron activation system is the reference for measurement of neutron emission @ JET. Sample close to plasma activated; 115 In(n,n ) 115m In 93 Nb(n,2n) 92m Nb Activation + decay constant integrated reaction rate + activation cross-section local neutron flux + machine response (MCNP) neutron emission 3

Neutron activation systems and nuclear data ( E) ( E) ( ) ( ) R = σ E Φ E E R is the activations rate σ Φ a ND i.e. T a, activation cross-section = f(neutron emission, ND ), neutron flux transport nuclear data ( E) Inferred neutron emissi on = f ( σ, ND ) T a 115 In(n,n ) 115m In We need to propagate the uncertainty of σ a and ND T to R in order to infer the uncertainty of the neutron emission T 4

Total Monte Carlo: TMC

TMC Straight forward and transparent treatment of the uncertainty propagation No linearization as used in perturbation methods. Non Gaussian behavior in input and output can be 100 modelled. More complete uncertainty 40 quantification 20 - angular distributions - cross-correlation: e.g. cross sections / angular distributions 80 60 K eff Pb208 LFR 0.98 1.00 1.02 1.05 1.07 6

Example TMC for 115 In(n,n )In 115m TENDL 2013 TALYS calculation normalized to IRDFF1.0; 50 files 7

Results: 115 In(n,n ) 115m In activation reaction One group cross-section Reaction rate 252 Cf JET DD JET DT This work TENDL2013 [mbarn] 190.5 (6.6±0.7 %) 76.0 (7.4±0.7%) 37.4 (7.2±0.7 %) Gediminas et al. IRDFF1.0 190.6 (1.7 %) 76.1 (2.2 %) 37.5 (1.4 %) E.M. Zsolnay et al. IRDFFF1.0 Exp. 197.4 (1.4 %) - - Calc. 190.6 (1.7 %) TMC high uncertainties, likely due too strong E n -E n correlations. IRDFF1.0 small uncertainty (1.7%) comparing to C/E (3.6%). G. Stankunas, P. Batistoni, S. Conroy, H.Sjöstrand, Nuclear Instruments and Methods in Physics Research Section A 788, 168-172, (2015) E.M. Zsolnay, R. Capote, H.J. Nolthenius, A. Trkov, Summary Description of the New International Reactor Dosimetric and Fusion File (IRDFF release 1.0), INDC(NDS)-0616 8

TENDL transition TENDL2013 qualitative comparisons to experimental data for determining ND-uncertainty bands TENDL2015 quantitative comparisons to experimental data based on a more consistent implementation of Bayes theorem [1] [2] [1] P. Helgesson, H.Sjöstrand et al., Combining Total Monte Carlo and Unified Monte Carlo: Bayesian nuclear data uncertainty quantification from auto-generated experimental covariances, Progress in Nuclear Energy, accepted (2016) [2] A.J. Koning, Bayesian Monte Carlo method for nuclear data evaluation The European Physical Journal A 51 (12), 1-16, 2015 9

TMC for transport uncertainties 52 Cr, 54,56 Fe, 58,60 Ni, and 63,65 Cu, considered to have the largest impact TENDL 2015 random files processed to ACE format MCNP6 (~300 random files /isotope) transport uncertainty in the reaction rate 115 In(n,n ) 115m In (DD and DT) 93 Nb(n,2n) 92m Nb (DT) Results compared to FENDL 2.1 10

JET MCNP model 11

MCNP model zoom in around activation foil Intermediate port Activation foil 12

Results for ΔND t TENDL2015 Number of TENDL2015 files Typically Gaussian uncertainties 25 20 15 10 5 0 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 R Indium meta stable IE (DT) 10-7 FENDL vs. TENDL (%) STD ND (%) Δ (STD ND) (%) DD - below - R ( 115 In) 1.8 0.8 0.04 DD - above - R ( 115 In) 3.2 1.7 0.1 DT - below - R ( 115 In) 4.4 3.8 0.2 DT - above - R ( 115 In) 3.7 4.5 0.2 DT - below - R ( 93 Nb) 0.9 1.1 0.05 DT - above - R ( 93 Nb) 2.1 2.2 0.1 DT - below - photon - 3.8 0.2 DT - above - photon - 3.4 0.2 13

Conclusion TENDL and the TMC method has been used to: propagated uncertainty in the activation reaction 115 In(n,n ) 115m In DD and DT, TENDL2013; 7 % uncertainty (probably an over estimation) IRDFF1.0 (DD); 2 % (might be an under estimation). calculatate reaction rate uncertainty due to uncertainty in the nuclear data of the JET machine: DD: 1-2 % DT: 4 %, 115 In, 0.3 MeV Th. DT: 1 2 %, 93 Nb, 8 MeV Th. Choice of activation foil is important! TENDL2015 comprehensive covariance information; improvements possible. The effort to improve the TENDL covariance information, can increase or decrease the final uncertainty estimates. 14

THANK YOU FOR LISTENING Acknowledgment This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the Euratom research and training programme 2014-2018 under grant agreement No 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission. Henrik Sjöstrand, ND2016 15

Questions? The TMC method has been used to: propagated uncertainty in the activation reaction 115 In(n,n ) 115m In DD and DT, TENDL2013: 7 % uncertainty (probably an over estimation) IRDFF1.0 2 % (probably an under estimation). calculatate reaction rate uncertainty due to uncertainty in the nuclear data of the JET machine: DD: 1-2 %, 115 In DT: 4 %, 115 In, 0.3 MeV DT: 1 2 %, 93 Nb, 8 MeV Choice of activation foil is important! TENDL2015 comprehensive covariance information; improvements possible. The effort to improve the TENDL covariance information, can increase or decrease the final uncertainty estimates. 16

Results DT - TENDL2015 Row STD ND (%) Δ (STD ND) (%) STD STAT (%) Δ (STD STAT) (%) Averaged IE flux 4 cells 2,6 0,36 3,9 0,011 Indium meta stable IE 4,3 1,1 9,5 0,056 D1 fission chamber flux 3,4 0,61 6,2 0,02 D2 fission chamber flux 4,9 0,63 7,1 0,029 D3 fission chamber flux 3,5 0,67 6,7 0,023 417 (foam above IE)flux 2,8 0,18 2 0,0047 417 Indium meta stable 3,2 0,43 4,8 0,016 411(Air collumen above the cell) 3,3 0,14 0,72 0,0017 Indium meta stable 411 4,4 0,21 1,7 0,0061 395(Intermediate port) flux 3,3 0,14 0,35 0,00082 372(Big area below the IE) flux 2,9 0,12 0,2 0,00045 Indium meta stable 372 3,8 0,16 0,44 0,0013 Averaged P-IE flux 4 cells 4,2 0,84 8,1 0,034 D1 fission chamber P-flux 4,4 0,81 8,1 0,033 D2 fission chamber P-flux 5,1 1 10 0,047 D3 fission chamber P-flux 3,8 1,1 9,4 0,043 (foam above IE)P- flux 4,1 0,32 3,8 0,011 411(P-flux) 3,1 0,15 1,3 0,0033 395 p-flux flux 3,4 0,15 0,6 0,0013 372 p-flux 3,8 0,16 0,38 0,00091 LTIS -7204:n 2,6 3,2 14 0,11 LTIS -7206:p 4,1 0,39 4,6 0,015 LTIS -7205:p 3,3 0,38 4,3 0,013 Number of TENDL2015 files 25 20 15 10 5 0 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5 1.6 R Indium meta stable IE (DT) Typically Gaussian uncertainties Preferably, STD ND > STD STAT 17 10-7

Results DD TENDL 2015 STD ND (%) Δ (STD ND) (%) STD STAT (%) Δ (STD STAT) (%) Foam above IE n-flux 1 0,22 2,1 0,0024 Foam above IE- Reaction rate Indium meta stable 1,1 0,82 4,5 0,0091 411(Air collumen above the cell) 1,1 0,067 0,76 0,0008 411 Indium meta stable 2 0,16 1,9 0,0047 395(Intermediate port) n-flux 1,1 0,05 0,36 0,00036 395 Indium meta stable 1,7 0,086 0,78 0,00073 372(Big area below the IE) flux 1 0,044 0,2 0,00024 372 Indium meta stable 0,8 0,039 0,33 0,00032 TENDL 2012 STD ND (%) Δ (STD ND) (%) STD STAT (%) Δ (STD STAT) (%) (foam above IE)flux 0,99 0,22 2,1 0,0024 Foam above IE- Reaction rate Indium meta stable 0 0 4,5 0,0092 411(Air collumen above the cell) 1,3 0,071 0,77 0,00084 411 Indium meta stable 1,1 0,18 1,9 0,0052 395(Intermediate port) flux 1,2 0,054 0,37 0,00037 395 Indium meta stable 0,81 0,065 0,79 0,0007 372(Big area below the IE) flux 0,89 0,038 0,2 0,00026 372 Indium meta stable 0,31 0,028 0,34 0,00027 18

Conclusion The TMC method has been used to study ND uncertainty in the reaction rates of the activation foils and for n, g-fluxes around the activation foils. Propagated uncertainty in the 115 In (n,n ) 115m reaction DD,TENDL2013: 7 % uncertainty (probably an over estimation) IRDFF 2 % (probably an under estimation). Reaction rate uncertainty due to uncertainty in the nuclear data of the JET machine: DD: 1-2 % DT: 3-4% Flux uncertainties intermediate port Gamma (DT): 3% Neutron (DT): 3% Neutron (DD): 1% 19

TENDL and TMC TENDL with cov-matrix r v a v Nuclear models: nuclear interaction -TALYS Check for covariance between all the libraries Select Best ND library Observables: CS, FY, Angular distribution Nuclear model parameters: many acceptable A large set of acceptable ND libraries Experimental data for calibration Total Monte Carlo: uncertainty propagation Simulations: Transport codes, (MCNP, FLUKA, GEANT) Applications: Shielding, activation, material damages Petter Helgesson et al. TOWARDS TRANSPARENT, REPRODUCIBLE AND JUSTIFIED NUCLEAR DATA UNCERTAINTY PROPAGATION FOR LWR APPLICATIONS 2 2 2 σ = σ + σ obs ND stat Erwin Alhassan et al. REDUCING A PRIORI 239 Pu NUCLEAR DATA UNCERTAINTY IN THE σ keff USING A obs SET OF CRITICALITY BENCHMARKS WITH DIFFERENT NUCLEAR DATA 20 LIBRARIES