PART I: PROBLEMS. Thermodynamics and Statistical Physics

Similar documents
PART I: PROBLEMS. l. Mechanics

Table of Contents [ttc]

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

Suggestions for Further Reading

Statistical Mechanics

List of Comprehensive Exams Topics

01. Equilibrium Thermodynamics I: Introduction

Fundamentals. Statistical. and. thermal physics. McGRAW-HILL BOOK COMPANY. F. REIF Professor of Physics Universüy of California, Berkeley

PHYS3113, 3d year Statistical Mechanics Tutorial problems. Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

Topics for the Qualifying Examination

Contents. 1 Introduction and guide for this text 1. 2 Equilibrium and entropy 6. 3 Energy and how the microscopic world works 21

Thermal and Statistical Physics Department Exam Last updated November 4, L π

Molecular Driving Forces

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions.

INTRODUCTION TO о JLXJLA Из А lv-/xvj_y JrJrl Y üv_>l3 Second Edition

Principles of Equilibrium Statistical Mechanics

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

Quantum Mechanics: Fundamentals

CONTENTS. vii. CHAPTER 2 Operators 15

Practical Quantum Mechanics

Quantum Mechanics: Foundations and Applications

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

Hari Dass, N.D. The principles of thermodynamics digitalisiert durch: IDS Basel Bern

Many-Body Problems and Quantum Field Theory

Ideal Gas Laws Empirical Gas Laws The Mole Equations of State Dalton's Law The Mole Fraction Extensive and Intensive Variables Graham's Law of

THERMODYNAMICS THERMOSTATISTICS AND AN INTRODUCTION TO SECOND EDITION. University of Pennsylvania

METHODS OF THEORETICAL PHYSICS

Thermal & Statistical Physics Study Questions for the Spring 2018 Department Exam December 6, 2017

Students are required to pass a minimum of 15 AU of PAP courses including the following courses:

Part II Statistical Physics

1. Thermodynamics 1.1. A macroscopic view of matter

Advanced Stellar Astrophysics

P. W. Atkins and R. S. Friedman. Molecular Quantum Mechanics THIRD EDITION

The Oxford Solid State Basics

Statistical Mechanics

INTRODUCTION TO THE STRUCTURE OF MATTER

Data Provided: A formula sheet and table of physical constants are attached to this paper.

424 Index. Eigenvalue in quantum mechanics, 174 eigenvector in quantum mechanics, 174 Einstein equation, 334, 342, 393

Department of Physics

Physics Nov Cooling by Expansion

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

LECTURES ON QUANTUM MECHANICS

Physics PhD Qualifying Examination Part I Wednesday, January 21, 2015

STATISTICAL MECHANICS & THERMODYNAMICS

INDEX 481. Joule-Thomson process, 86, 433. Kosterlitz-Thouless transition, 467

Atoms and Molecules Interacting with Light Atomic Physics for the Laser Era

Physics 404: Final Exam Name (print): "I pledge on my honor that I have not given or received any unauthorized assistance on this examination.

Lectures on Quantum Mechanics

Department of Physics, Princeton University. Graduate Preliminary Examination Part I. Thursday, May 7, :00 am - 12:00 noon

INSTRUCTIONS PART I : SPRING 2006 PHYSICS DEPARTMENT EXAM

Advanced Physics in Creation Table of Contents

PH4211 Statistical Mechanics Brian Cowan

Steven W. Van Sciver. Helium Cryogenics. Second Edition. 4) Springer

COX & GIULI'S PRINCIPLES OF STELLAR STRUCTURE

Preface. Preface to the Third Edition. Preface to the Second Edition. Preface to the First Edition. 1 Introduction 1

International Physics Course Entrance Examination Questions

MOLECULAR SPECTROSCOPY

Modern Physics for Scientists and Engineers International Edition, 4th Edition

510 Subject Index. Hamiltonian 33, 86, 88, 89 Hamilton operator 34, 164, 166

Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases

Thermodynamics and Atomic Physics II

Classical Electrodynamics

PHYSICS. Course Syllabus. Section 1: Mathematical Physics. Subject Code: PH. Course Structure. Electromagnetic Theory

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

Preliminary Examination - Day 2 August 16, 2013

DEPARTMENT OF PHYSICS UNIVERSITY OF PUNE PUNE SYLLABUS for the M.Phil. (Physics ) Course

M01M.1 Massive Spring

Solid State Physics. GIUSEPPE GROSSO Professor of Solid State Physics, Department of Physics, University of Pavia, and INFM

is the minimum stopping potential for which the current between the plates reduces to zero.

Elementary Lectures in Statistical Mechanics

Shigeji Fujita and Salvador V Godoy. Mathematical Physics WILEY- VCH. WILEY-VCH Verlag GmbH & Co. KGaA

COURSE CONTENT / SYLLABUS

With Modern Physics For Scientists and Engineers

Fundamentals and New Frontiers of Bose Einstein Condensation

PHYSICS-PH (PH) Courses. Physics-PH (PH) 1

Physics 5D PRACTICE FINAL EXAM Fall 2013

Frank Y. Wang. Physics with MAPLE. The Computer Algebra Resource for Mathematical Methods in Physics. WILEY- VCH WILEY-VCH Verlag GmbH & Co.

UGC ACADEMY LEADING INSTITUE FOR CSIR-JRF/NET, GATE & JAM PH 05 PHYSICAL SCIENCE TEST SERIES # 1. Quantum, Statistical & Thermal Physics

Vegard B. Sørdal. Thermodynamics of 4He-3He mixture and application in dilution refrigeration

Physics For Scientists and Engineers A Strategic Approach 3 rd Edition, AP Edition, 2013 Knight

Physics PhD Qualifying Examination Part I Wednesday, August 26, 2015

Statistical Mechanics Victor Naden Robinson vlnr500 3 rd Year MPhys 17/2/12 Lectured by Rex Godby

UPSC IFS Physics Syllabus Paper - I Section-A 1. Classical Mechanics (a) Particle dynamics: Centre of mass and laboratory coordinates conservation of

(a) Write down the total Hamiltonian of this system, including the spin degree of freedom of the electron, but neglecting spin-orbit interactions.

First Law of Thermodynamics Second Law of Thermodynamics Mechanical Equivalent of Heat Zeroth Law of Thermodynamics Thermal Expansion of Solids

CLASSICAL ELECTRICITY

Physics 607 Exam 2. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

PHYSICS PH.D. COMPREHENSIVE EXAM 2006

DEPARTMENT OF PHYSICS

Quantum Physics in the Nanoworld

1. A measure of a medium s stiffness (it s resistance to compression) is given in terms of the bulk modulus, B, defined by

Potential energy, from Coulomb's law. Potential is spherically symmetric. Therefore, solutions must have form

Unit 7 (B) Solid state Physics

Classical Field Theory

In-class exercises. Day 1

Statistical Mechanics

Graduate Written Examination Fall 2014 Part I

TB [103 marks] The damping of the system is now increased. Which describes the change in ƒ 0 and the change in A 0?

Transcription:

Contents PART I: PROBLEMS 4. Thermodynamics and Statistical Physics Introductory Thermodynamics 4.1. Why Bother? (Moscow 4.2. Space Station Pressure (MIT) 4.3. Baron von Münchausen and Intergalactic Travel (Moscow 4.4. Railway Tanker (Moscow 4.5. Magic Carpet (Moscow 4.6. Teacup Engine (Princeton, Moscow 4.7. Grand Lunar Canals (Moscow 4.8. Frozen Solid (Moscow 4.9. Tea in Thermos (Moscow 4.10. Heat Loss (Moscow 4.11. Liquid Solid Liquid (Moscow 4.12. Hydrogen Rocket (Moscow 4.13. Maxwell Boltzmann Averages (MIT) 4.14. Slowly Leaking Box (Moscow Phys-Tech, Stony Brook (a,b)) 4.15. Surface Contamination (Wisconsin-Madison) 4.16. Bell Jar (Moscow 4.17. Hole in Wall (Princeton) 4.18. Ballast Volume Pressure (Moscow 4.19. Rocket in Drag (Princeton) 4.20. Adiabatic Atmosphere (Boston, Maryland) 3 3 3 4 4 5 5 6 7 7 8 8 9 9 9 9 10 10 11 11 12 13 xiii

xiv Contents 4.21. Atmospheric Energy (Rutgers) 4.22. Puncture (Moscow Heat and Work 4.23. 4.24. 4.25. 4.26. 4.27. 4.28. 4.29. 4.30. 4.31. 4.32. 4.33. 4.34. Cylinder with Massive Piston (Rutgers, Moscow Spring Cylinder (Moscow Isothermal Compression and Adiabatic Expansion of Ideal Gas (Michigan) Isochoric Cooling and Isobaric Expansion (Moscow Venting (Moscow Cylinder and Heat Bath (Stony Brook) Heat Extraction (MIT, Wisconsin-Madison) Heat Capacity Ratio (Moscow Otto Cycle (Stony Brook) Joule Cycle (Stony Brook) Diesel Cycle (Stony Brook) Modified Joule Thomson (Boston) Ideal Gas and Classical Statistics 4.35. Poisson Distribution in Ideal Gas (Colorado) 4.36. Polarization of Ideal Gas (Moscow 4.37. Two-Dipole Interaction (Princeton) 4.38. Entropy of Ideal Gas (Princeton) 4.39. Chemical Potential of Ideal Gas (Stony Brook) 4.40. Gas in Harmonic Well (Boston) 4.41. Ideal Gas in One-Dimensional Potential (Rutgers) 4.42. Equipartition Theorem (Columbia, Boston) 4.43. Diatomic Molecules in Two Dimensions (Columbia) 4.44. Diatomic Molecules in Three Dimensions (Stony Brook, Michigan State) 4.45. Two-Level System (Princeton) 4.46. Zipper (Boston) 4.47. Hanging Chain (Boston) 4.48. Molecular Chain (MIT, Princeton, Colorado) Nonideal Gas 4.49. Heat Capacities (Princeton) 4.50. Return of Heat Capacities (Michigan) 4.51. Nonideal Gas Expansion (Michigan State) 4.52. van der Waals (MIT) 13 14 14 14 15 15 16 16 16 16 17 17 18 18 19 19 19 20 20 20 21 21 21 21 22 23 24 24 24 25 26 26 26 27 27

Contents xv 4.53. Critical Parameters (Stony Brook) Mixtures and Phase Separation 4.54. Entropy of Mixing (Michigan, MIT) 4.55. Leaky Balloon (Moscow 4.56. Osmotic Pressure (MIT) 4.57. Clausius Clapeyron (Stony Brook) 4.58. Phase Transition (MIT) 4.59. Hydrogen Sublimation in Intergalactic Space (Princeton) 4.60. Gas Mixture Condensation (Moscow 4.61. Air Bubble Coalescence (Moscow 4.62. Soap Bubble Coalescence (Moscow 4.63. Soap Bubbles in Equilibrium (Moscow Quantum Statistics 4.64. 4.65. 4.66. 4.67. 4.68. 4.69. 4.70. 4.71. 4.72. 4.73. 4.74. 4.75. 4.76. 4.77. 4.78. 4.79. 4.80. 4.81. 4.82. 4.83. 4.84. 4.85. 4.86. 4.87. 4.88. Fermi Energy of a 1D Electron Gas (Wisconsin-Madison) Two-Dimensional Fermi Gas (MIT, Wisconson-Madison) Nonrelativistic Electron Gas (Stony Brook, Wisconsin-Madison, Michigan State) Ultrarelativistic Electron Gas (Stony Brook) Quantum Corrections to Equation of State (MIT, Princeton, Stony Brook) Speed of Sound in Quantum Gases (MIT) Bose Condensation Critical Parameters (MIT) Bose Condensation (Princeton, Stony Brook) How Hot the Sun? (Stony Brook) Radiation Force (Princeton, Moscow Phys-Tech, MIT) Hot Box and Particle Creation (Boston, MIT) D-Dimensional Blackbody Cavity (MIT) Fermi and Bose Gas Pressure (Boston) Blackbody Radiation and Early Universe (Stony Brook) Photon Gas (Stony Brook) Dark Matter (Rutgers) Einstein Coefficients (Stony Brook) Atomic Paramagnetism (Rutgers, Boston) Paramagnetism at High Temperature (Boston) One-Dimensional Ising Model (Tennessee) Three Ising Spins (Tennessee) N Independent Spins (Tennessee) N Independent Spins, Revisited (Tennessee) Ferromagnetism (Maryland, MIT) Spin Waves in Ferromagnets (Princeton, Colorado) 28 28 28 28 28 29 30 30 30 31 31 31 32 32 32 32 33 33 33 34 34 34 35 35 36 36 37 37 38 39 39 40 40 40 41 41 41 42

xvi Contents Fluctuations 4.89. 4.90. 4.91. 4.92. 4.93. 4.94. 4.95. 4.96. Magnetization Fluctuation (Stony Brook) Gas Fluctuations (Moscow Quivering Mirror (MIT, Rutgers, Stony Brook) Isothermal Compressibility and Mean Square Fluctuation (Stony Brook) Energy Fluctuation in Canonical Ensemble (Colorado, Stony Brook) Number Fluctuations (Colorado (a,b), Moscow Phys-Tech (c)) Wiggling Wire (Princeton) LC Voltage Noise (MIT, Chicago) Applications to Solid State 4.97. Thermal Expansion and Heat Capacity (Princeton) 4.98. Schottky Defects (Michigan State, MIT) 4.99. Frenkel Defects (Colorado, MIT) 4.100. Two-Dimensional Debye Solid (Columbia, Boston) 4.101. Einstein Specific Heat (Maryland, Boston) 4.102. Gas Adsorption (Princeton, MIT, Stanford) 4.103. Thermionic Emission (Boston) 4.104. Electrons and Holes (Boston, Moscow 4.105. Adiabatic Demagnetization (Maryland) 4.106. Critical Field in Superconductor (Stony Brook, Chicago) 42 42 43 43 43 44 44 44 44 45 45 45 45 46 46 47 47 47 48 49 5. Quantum Mechanics One-Dimensional Potentials 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.8. 5.9. 5.10. 5.11. 5.12. Shallow Square Well I (Columbia) Shallow Square Well II (Stony Brook) Attractive Delta Function Potential I (Stony Brook) Attractive Delta Function Potential II (Stony Brook) Two Delta Function Potentials (Rutgers) Transmission Through a Delta Function Potential (Michigan State, MIT, Princeton) Delta Function in a Box (MIT) Particle in Expanding Box (Michigan State, MIT, Stony Brook) One-Dimensional Coulomb Potential (Princeton) Two Electrons in a Box (MIT) Square Well (MIT) Given the Eigenfunction (Boston, MIT) 51 51 51 52 52 53 54 54 54 55 55 55 56 56

Contents xvii 5.13. Combined Potential (Tennessee) 56 Harmonic Oscillator 5.14. 5.15. 5.16. 5.17. 5.18. 5.19. 5.20. 5.21. Angular Momentum and Spin 5.22. 5.23. 5.24. 5.25. Dipolar Interactions (Stony Brook) 5.26. Spin-Dependent Potential (MIT) 5.27. 5.28. 5.29. 5.30. Variational Calculations 5.31. Anharmonic Oscillator (Tennessee) 5.32. Linear Potential I (Tennessee) 5.33. Linear Potential II (MIT, Tennessee) 5.34. Return of Combined Potential (Tennessee) 5.35. Quartic in Three Dimensions (Tennessee) 5.36. Halved Harmonic Oscillator (Stony Brook, Chicago (b), Princeton (b)) 5.37. Helium Atom (Tennessee) Perturbation Theory 5.38. Momentum Perturbation (Princeton) 5.39. Ramp in Square Well (Colorado) 5.40. Circle with Field (Colorado, Michigan State) 5.41. Rotator in Field (Stony Brook) 5.42. Finite Size of Nucleus (Maryland, Michigan State, 5.43. 5.44. Given a Gaussian (MIT) Harmonic Oscillator ABCs (Stony Brook) Number States (Stony Brook) Coupled Oscillators (MIT) Time-Dependent Harmonic Oscillator I (Wisconsin-Madison) Time-Dependent Harmonic Oscillator II (Michigan State) Switched-on Field (MIT) Cut the Spring! (MIT) Given Another Eigenfunction (Stony Brook) Algebra of Angular Momentum (Stony Brook) Triplet Square Well (Stony Brook) Three Spins (Stony Brook) Constant Matrix Perturbation (Stony Brook) Rotating Spin (Maryland, MIT) Nuclear Magnetic Resonance (Princeton, Stony Brook) Princeton, Stony Brook) U and Perturbation (Princeton) Relativistic Oscillator (MIT, Moscow Phys-Tech, Stony Brook (a)) 56 56 57 57 58 58 59 59 60 60 60 60 61 61 61 62 62 63 63 63 63 63 64 64 64 64 65 66 66 66 66 67 67 67 68

xviii Contents 5.45. Spin Interaction (Princeton) 5.46. Spin Orbit Interaction (Princeton) 5.47. Interacting Electrons (MIT) 5.48. Stark Effect in Hydrogen (Tennessee) 5.49. Hydrogen with Electric and Magnetic Fields (MIT) 5.50. Hydrogen in Capacitor (Maryland, Michigan State) 5.51. Harmonic Oscillator in Field (Maryland, Michigan State) 5.52. of Tritium (Michigan State) WKB 5.53. Bouncing Ball (Moscow Phys-Tech, Chicago) 5.54. Truncated Harmonic Oscillator (Tennessee) 5.55. Stretched Harmonic Oscillator (Tennessee) 5.56. Ramp Potential (Tennessee) 5.57. Charge and Plane (Stony Brook) 5.58. Ramp Phase Shift (Tennessee) 5.59. Parabolic Phase Shift (Tennessee) 5.60. Phase Shift for Inverse Quadratic (Tennessee) Scattering Theory 5.61. Step-Down Potential (Michigan State, MIT) 5.62. Step-Up Potential (Wisconsin-Madison) 5.63. Repulsive Square Well (Colorado) 5.64. 3D Delta Function (Princeton) 5.65. Two-Delta-Function Scattering (Princeton) 5.66. Scattering of Two Electrons (Princeton) 5.67. Spin-Dependent Potentials (Princeton) 5.68. Rayleigh Scattering (Tennessee) 5.69. Scattering from Neutral Charge Distribution (Princeton) General 5.70. 5.71. 5.72. 5.73. 5.74. 5.75. 5.76. Spherical Box with Hole (Stony Brook) Attractive Delta Function in 3D (Princeton) Ionizing Deuterium (Wisconsin-Madison) Collapsed Star (Stanford) Electron in Magnetic Field (Stony Brook, Moscow Electric and Magnetic Fields (Princeton) Josephson Junction (Boston) 68 68 69 69 69 70 70 70 71 71 71 71 72 72 73 73 73 73 73 74 75 75 76 76 76 77 77 77 77 78 78 78 79 79 79

Contents xix PART II: SOLUTIONS 4. Thermodynamics and Statistical Physics Introductory Thermodynamics 4.1. 4.2. 4.3. 4.4. 4.5. 4.6. 4.7. 4.8. 4.9. 4.10. 4.11. 4.12. 4.13. 4.14. 4.15. 4.16. 4.17. 4.18. 4.19. 4.20. 4.21. 4.22. Heat and Work 4.23. 4.24. 4.25. 4.26. 4.27. 4.28. 4.29. 4.30. Why Bother? (Moscow Space Station Pressure (MIT) Baron von Münchausen and Intergalactic Travel (Moscow Railway Tanker (Moscow Phys-Tech ) Magic Carpet (Moscow Phys-Tech ) Teacup Engine (Princeton, Moscow Grand Lunar Canals (Moscow Frozen Solid (Moscow Tea in Thermos (Moscow Heat Loss (Moscow Liquid Solid Liquid (Moscow Hydrogen Rocket (Moscow Maxwell Boltzmann Averages (MIT) Slowly Leaking Box (Moscow Phys-Tech, Stony Brook (a,b)) Surface Contamination (Wisconsin-Madison) Bell Jar (Moscow Hole in Wall (Princeton) Ballast Volume Pressure (Moscow Rocket in Drag (Princeton) Adiabatic Atmosphere (Boston, Maryland) Atmospheric Energy (Rutgers) Puncture (Moscow Cylinder with Massive Piston (Rutgers, Moscow Spring Cylinder (Moscow Isothermal Compression and Adiabatic Expansion of Ideal Gas (Michigan) Isochoric Cooling and Isobaric Expansion (Moscow Venting (Moscow Cylinder and Heat Bath (Stony Brook) Heat Extraction (MIT, Wisconsin-Madison) Heat Capacity Ratio (Moscow 83 83 83 84 84 85 87 89 90 92 92 94 95 96 97 99 101 102 103 104 106 107 108 110 112 112 113 115 117 118 119 120 122

xx Contents 4.31. Otto Cycle (Stony Brook) 4.32. Joule Cycle (Stony Brook) 4.33. Diesel Cycle (Stony Brook) 4.34. Modified Joule Thomson (Boston) Ideal Gas and Classical Statistics 4.35. 4.36. 4.37. 4.38. 4.39. 4.40. 4.41. 4.42. 4.43. 4.44. 4.45. 4.46. 4.47. 4.48. Poisson Distribution in Ideal Gas (Colorado) Polarization of Ideal Gas (Moscow Two-Dipole Interaction (Princeton) Entropy of Ideal Gas (Princeton) Chemical Potential of Ideal Gas (Stony Brook) Gas in Harmonic Well (Boston) Ideal Gas in One-Dimensional Potential (Rutgers) Equipartition Theorem (Columbia, Boston) Diatomic Molecules in Two Dimensions (Columbia) Diatomic Molecules in Three Dimensions (Stony Brook, Michigan State) Two-Level System (Princeton) Zipper (Boston) Hanging Chain (Boston) Molecular Chain (MIT, Princeton, Colorado) Nonideal Gas 4.49. Heat Capacities (Princeton) 4.50. Return of Heat Capacities (Michigan) 4.51. Nonideal Gas Expansion (Michigan State) 4.52. van der Waals (MIT) 4.53. Critical Parameters (Stony Brook) Mixtures and Phase Separation 4.54. Entropy of Mixing (Michigan, MIT) 4.55. Leaky Balloon (Moscow 4.56. Osmotic Pressure (MIT) 4.57. Clausius Clapeyron (Stony Brook) 4.58. Phase Transition (MIT) 4.59. Hydrogen Sublimation in Intergalactic Space (Princeton) 4.60. Gas Mixture Condensation (Moscow 4.61. Air Bubble Coalescence (Moscow 4.62. Soap Bubble Coalescence (Moscow 4.63. Soap Bubbles in Equilibrium (Moscow Quantum Statistics 4.64. Fermi Energy of a 1D Electron Gas (Wisconsin-Madison) 4.65. Two-Dimensional Fermi Gas (MIT, Wisconson-Madison) 123 125 126 127 128 128 130 131 133 135 136 137 138 141 142 146 147 148 149 151 151 152 154 155 156 158 158 159 160 162 163 164 165 166 167 168 170 170 171

Contents xxi 4.66. 4.67. 4.68. 4.69. 4.70. 4.71. 4.72. 4.73. 4.74. 4.75. 4.76. 4.77. 4.78. 4.79. 4.80. 4.81. 4.82. 4.83. 4.84. 4.85. 4.86. 4.87. 4.88. Fluctuations 4.89. 4.90. 4.91. 4.92. 4.93. 4.94. 4.95. 4.96. Nonrelativistic Electron Gas (Stony Brook, Wisconsin-Madison, Michigan State) Ultrarelativistic Electron Gas (Stony Brook) Quantum Corrections to Equation of State (MIT, Princeton, Stony Brook) Speed of Sound in Quantum Gases (MIT) Bose Condensation Critical Parameters (MIT) Bose Condensation (Princeton, Stony Brook) How Hot the Sun? (Stony Brook) Radiation Force (Princeton, Moscow Phys-Tech, MIT) Hot Box and Particle Creation (Boston, MIT) D-Dimensional Blackbody Cavity (MIT) Fermi and Bose Gas Pressure (Boston) Blackbody Radiation and Early Universe (Stony Brook) Photon Gas (Stony Brook) Dark Matter (Rutgers) Einstein Coefficients (Stony Brook) Atomic Paramagnetism (Rutgers, Boston) Paramagnetism at High Temperature (Boston) One-Dimensional Ising Model (Tennessee) Three Ising Spins (Tennessee) N Independent Spins (Tennessee) N Independent Spins, Revisited (Tennessee) Ferromagnetism (Maryland, MIT) Spin Waves in Ferromagnets (Princeton, Colorado) Magnetization Fluctuation (Stony Brook) Gas Fluctuations (Moscow Quivering Mirror (MIT, Rutgers, Stony Brook) Isothermal Compressibility and Mean Square Fluctuation (Stony Brook) Energy Fluctuation in Canonical Ensemble (Colorado, Stony Brook) Number Fluctuations (Colorado (a,b), Moscow Phys-Tech (c)) Wiggling Wire (Princeton) LC Voltage Noise (MIT, Chicago) Applications to Solid State 4.97. Thermal Expansion and Heat Capacity (Princeton) 4.98. Schottky Defects (Michigan State, MIT) 4.99. Frenkel Defects (Colorado, MIT) 172 173 174 177 180 181 182 183 185 189 189 191 192 194 196 197 200 203 204 204 205 205 206 207 207 209 210 210 212 216 219 221 223 223 226 226

xxii Contents 5. 4.100. 4.101. 4.102. 4.103. 4.104. 4.105. 4.106. Two-Dimensional Debye Solid (Columbia, Boston) Einstein Specific Heat (Maryland, Boston) Gas Adsorption (Princeton, MIT, Stanford) Thermionic Emission (Boston) Electrons and Holes (Boston, Moscow Adiabatic Demagnetization (Maryland) Critical Field in Superconductor (Stony Brook, Chicago) Quantum Mechanics One-Dimensional Potentials 5.1. 5.2. 5.3. 5.4. 5.5. 5.6. 5.7. 5.8. 5.9. 5.10. 5.11. 5.12. 5.13. Shallow Square Well I (Columbia) Shallow Square Well II (Stony Brook) Attractive Delta Function Potential I (Stony Brook) Attractive Delta Function Potential II (Stony Brook) Two Delta Function Potentials (Rutgers) Transmission Through a Delta Function Potential (Michigan State, MIT, Princeton) Delta Function in a Box (MIT) Particle in Expanding Box (Michigan State, MIT, Stony Br0ook) One-Dimensional Coulomb Potential (Princeton) Two Electrons in a Box (MIT) Square Well (MIT) Given the Eigenfunction (Boston, MIT) Combined Potential (Tennessee) Harmonic Oscillator 5.14. 5.15. 5.16. 5.17. 5.18. 5.19. 5.20. 5.21. Given a Gaussian (MIT) Harmonic Oscillator ABCs (Stony Brook) Number States (Stony Brook) Coupled Oscillators (MIT) Time-Dependent Harmonic Oscillator I (Wisconsin-Madison) Time-Dependent Harmonic Oscillator II (Michigan State) Switched-on Field (MIT) Cut the Spring! (MIT) Angular Momentum and Spin 5.22. 5.23. 5.24. 5.25. 5.26. Given Another Eigenfunction (Stony Brook) Algebra of Angular Momentum (Stony Brook) Triplet Square Well (Stony Brook) Dipolar Interactions (Stony Brook) Spin-Dependent Potential (MIT) 228 230 232 234 236 238 241 243 243 243 244 245 247 248 250 250 251 253 253 255 255 256 257 257 258 260 262 263 263 264 265 266 266 267 269 271 272

Contents xxiii 5.27. Three Spins (Stony Brook) 5.28. Constant Matrix Perturbation (Stony Brook) 5.29. Rotating Spin (Maryland, MIT) 5.30. Nuclear Magnetic Resonance (Princeton, Stony Brook) Variational Calculations 5.31. Anharmonic Oscillator (Tennessee) 5.32. Linear Potential I (Tennessee) 5.33. Linear Potential II (MIT, Tennessee) 5.34. Return of Combined Potential (Tennessee) 5.35. Quartic in Three Dimensions (Tennessee) 5.36. Halved Harmonic Oscillator (Stony Brook, Chicago (b), Princeton (b)) 5.37. Helium Atom (Tennessee) Perturbation Theory 5.38. Momentum Perturbation (Princeton) 5.39. Ramp in Square Well (Colorado) 5.40. Circle with Field (Colorado, Michigan State) 5.41. Rotator in Field (Stony Brook) 5.42. Finite Size of Nucleus (Maryland, Michigan State, Princeton, Stony Brook) 5.43. 5.44. 5.45. 5.46. 5.47. 5.48. 5.49. 5.50. 5.51. 5.52. U and Perturbation (Princeton) Relativistic Oscillator (MIT, Moscow Phys-Tech, Stony Brook (a)) Spin Interaction (Princeton) Spin Orbit Interaction (Princeton) Interacting Electrons (MIT) Stark Effect in Hydrogen (Tennessee) Hydrogen with Electric and Magnetic Fields (MIT) Hydrogen in Capacitor (Maryland, Michigan State) Harmonic Oscillator in Field (Maryland, Michigan State) of Tritium (Michigan State) WKB 5.53. Bouncing Ball (Moscow Phys-Tech, Chicago) 5.54. Truncated Harmonic Oscillator (Tennessee) 5.55. Stretched Harmonic Oscillator (Tennessee) 5.56. Ramp Potential (Tennessee) 5.57. Charge and Plane (Stony Brook) 5.58. Ramp Phase Shift (Tennessee) 5.59. Parabolic Phase Shift (Tennessee) 5.60. Phase Shift for Inverse Quadratic (Tennessee) 272 274 275 276 278 278 279 280 281 282 283 286 287 287 288 289 290 290 292 293 297 297 298 299 300 302 303 305 305 305 306 307 308 309 310 311 311

xxiv Contents Scattering Theory 312 5.61. Step-Down Potential (Michigan State, MIT) 312 5.62. Step-Up Potential (Wisconsin-Madison) 312 5.63. Repulsive Square Well (Colorado) 313 5.64. 3D Delta Function (Princeton) 315 5.65. Two-Delta-Function Scattering (Princeton) 316 5.66. Scattering of Two Electrons (Princeton) 317 5.67. Spin-Dependent Potentials (Princeton) 318 5.68. Rayleigh Scattering (Tennessee) 320 5.69. Scattering from Neutral Charge Distribution (Princeton) 321 General 5.70. 5.71. 5.72. 5.73. 5.74. 5.75. 5.76. Spherical Box with Hole (Stony Brook) Attractive Delta Function in 3D (Princeton) Ionizing Deuterium (Wisconsin-Madison) Collapsed Star (Stanford) Electron in Magnetic Field (Stony Brook, Moscow Electric and Magnetic Fields (Princeton) Josephson Junction (Boston) 322 322 323 324 324 328 329 330 PART III: APPENDIXES Approximate Values of Physical Constants Some Astronomical Data Other Commonly Used Units Conversion Table from Rationalized MKSA to Gaussian Units Vector Identities Vector Formulas in Spherical and Cylindrical Coordinates Legendre Polynomials Rodrigues Formula Spherical Harmonics Harmonic Oscillator Angular Momentum and Spin Variational Calculations Normalized Eigenstates of Hydrogen Atom Conversion Table for Pressure Units Useful Constants Bibliography 335 336 336 337 337 338 341 342 342 342 343 344 344 345 345 347