Experimental reconstruction of the Berry curvature in a topological Bloch band

Similar documents
Experimental Reconstruction of the Berry Curvature in a Floquet Bloch Band

Quantum Quenches in Chern Insulators

Loop current order in optical lattices

Spontaneous Loop Currents and Emergent Gauge Fields in Optical Lattices

Magnetic fields and lattice systems

Exploring Topological Phases With Quantum Walks

Topology and many-body physics in synthetic lattices

Laboratoire Kastler Brossel Collège de France, ENS, UPMC, CNRS. Artificial gauge potentials for neutral atoms

Takuya Kitagawa, Dima Abanin, Immanuel Bloch, Erez Berg, Mark Rudner, Liang Fu, Takashi Oka, Eugene Demler

Measuring many-body topological invariants using polarons

Aditi Mitra New York University

LECTURE 3 - Artificial Gauge Fields

Engineering Synthetic Gauge Fields, Weyl Semimetals, and Anyons

Synthetic topology and manybody physics in synthetic lattices

Mapping the Berry Curvature of Optical Lattices

synthetic condensed matter systems

Floquet theory of photo-induced topological phase transitions: Application to graphene

team Hans Peter Büchler Nicolai Lang Mikhail Lukin Norman Yao Sebastian Huber

Quantum simulation with SU(N) fermions: orbital magnetism and synthetic dimensions. Leonardo Fallani

Phases of strongly-interacting bosons on a two-leg ladder

Learning about order from noise

Spin-injection Spectroscopy of a Spin-orbit coupled Fermi Gas

Exploring topological states with cold atoms and photons

Ytterbium quantum gases in Florence

Synthetic Creutz-Hubbard model: interacting topological insulators with ultracold atoms

3.15. Some symmetry properties of the Berry curvature and the Chern number.

Vortex States in a Non-Abelian Magnetic Field

Topological Phases of Matter Out of Equilibrium

Topological pumps and topological quasicrystals

Quantum noise studies of ultracold atoms

The Center for Ultracold Atoms at MIT and Harvard Theoretical work at CUA. NSF Visiting Committee, April 28-29, 2014

arxiv: v1 [cond-mat.quant-gas] 5 Dec 2018

Fully symmetric and non-fractionalized Mott insulators at fractional site-filling

Dirac fermions in condensed matters

Topological Phenomena in Periodically Driven Systems: Disorder, Interactions, and Quasi-Steady States Erez Berg

Topological Photonics with Heavy-Photon Bands

Topological Bandstructures for Ultracold Atoms

Curriculum Vitae Dr. Christof Weitenberg

arxiv: v2 [cond-mat.quant-gas] 14 Jul 2014

Berry Phase Effects on Electronic Properties

Interplay of micromotion and interactions

Les états de bord d un. isolant de Hall atomique

TOPOLOGICAL BANDS IN GRAPHENE SUPERLATTICES

Matrix product states for the fractional quantum Hall effect

Interferometric probes of quantum many-body systems of ultracold atoms

Engineering and Probing Topological Bloch Bands in Optical Lattices

Shuichi Murakami Department of Physics, Tokyo Institute of Technology

Learning about order from noise

Artificial magnetism and optical flux lattices for ultra cold atoms

Quantum simulation of an extra dimension

Topological Phases in One Dimension

From graphene to Z2 topological insulator

Protection of the surface states of a topological insulator: Berry phase perspective

Tutorial: Berry phase and Berry curvature in solids

Konstantin Y. Bliokh, Daria Smirnova, Franco Nori. Center for Emergent Matter Science, RIKEN, Japan. Science 348, 1448 (2015)

Kouki Nakata. University of Basel. KN, S. K. Kim (UCLA), J. Klinovaja, D. Loss (2017) arxiv:

Weyl fermions and the Anomalous Hall Effect

Synthetic gauge fields in Bose-Einstein Condensates 1. Alexander Fetter Stanford University. University of Hannover, May 2015

Introduction to topological insulators. Jennifer Cano

Berry Phase Effects on Charge and Spin Transport

Simulation of Quantum Many-Body Systems

Universal phase transitions in Topological lattice models

Strongly Correlated Systems of Cold Atoms Detection of many-body quantum phases by measuring correlation functions

Mesoscopic physics: From low-energy nuclear [1] to relativistic [2] high-energy analogies

TOPOLOGICAL SUPERFLUIDS IN OPTICAL LATTICES

Topological Properties of Quantum States of Condensed Matter: some recent surprises.

Part 1. March 5, 2014 Quantum Hadron Physics Laboratory, RIKEN, Wako, Japan 2

Is the composite fermion a Dirac particle?

Correlated Phases of Bosons in the Flat Lowest Band of the Dice Lattice

Disordered topological insulators with time-reversal symmetry: Z 2 invariants

Introductory lecture on topological insulators. Reza Asgari

Topological insulators. Pavel Buividovich (Regensburg)

Topological Insulators

Optical Flux Lattices for Cold Atom Gases

Philipp T. Ernst, Sören Götze, Jannes Heinze, Jasper Krauser, Christoph Becker & Klaus Sengstock. Project within FerMix collaboration

Supplementary Figure 3: Interaction effects in the proposed state preparation with Bloch oscillations. The numerical results are obtained by

POEM: Physics of Emergent Materials

Interband effects and orbital suceptibility of multiband tight-binding models

Topological Insulators

3.14. The model of Haldane on a honeycomb lattice

Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

Classification of Symmetry Protected Topological Phases in Interacting Systems

Topological Defects inside a Topological Band Insulator

Inti Sodemann (MIT) Séptima Escuela de Física Matemática, Universidad de Los Andes, Bogotá, Mayo 25, 2015

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Aditi Mitra New York University

Nanostructured Carbon Allotropes as Weyl-Like Semimetals

Weyl semimetals from chiral anomaly to fractional chiral metal

Design and realization of exotic quantum phases in atomic gases

Cooperative Phenomena

Organizing Principles for Understanding Matter

Effective Field Theories of Topological Insulators

Topology driven quantum phase transitions

lattice that you cannot do with graphene! or... Antonio H. Castro Neto

Identifying Quantum Phase Transitions using Artificial Neural Networks on Experimental Data

Topological Insulators and Superconductors

Floquet Topological Insulator:

Topological phases of matter give rise to quantized physical quantities

Symmetry Protected Topological Insulators and Semimetals

Transcription:

Experimental reconstruction of the Berry curvature in a topological Bloch band Christof Weitenberg Workshop Geometry and Quantum Dynamics Natal 29.10.2015 arxiv:1509.05763 (2015)

Topological Insulators Topology of the bulk leads to chiral edge states Experimental access is mostly limited to the edge states Solid State Model systems Quantum Hall effect, Von Klitzing, PRL (1980). Helical waveguides Rechtsman, Nature 496, 196 (2013). Silicon photonics Hafezi,Nat. Photon. 7, 1001 (2013). Unidirectional backscattering in Polariton system Wang, Nature 461, 772 (2009). Topological RF circuit Ningyuan, PRX 5, 021031 (2015). Mechanical topological insulator Süsstrunk, Science 349, 47 (2015).

Wavefunction microscope To see the bulk topology, we need a wavefunction microscope! Experiments with cold atoms might provide new insight Our wavefunction microscope See also work with superconducting qubits Roushan, Nature (2014)

Topological bands are a hot topic in cold atom research! Theory Experiments/Lattice Engineering of topological bands: Jaksch, Zoller, New J. Phys. 5, 56 (2003). Kitagawa et al. PRB 82, 235114 (2010). Dalibard et al. Rev. Mod. Phys. 83, 1523 (2011). Cooper, PRL 106, 175301 (2011). Rudner et al. PRX 3, 031005 (2013). Goldman, Dalibard, PRX 4, 031027 (2014). Baur et al. PRA 89, 051605(R) (2014). Bukov et al. Adv. Phys. 64, 139 (2015). Detection of topology: Alba et al. PRL 107, 235301 (2011). Price, Cooper, PRA 85, 033620 (2012). Goldman et al. PRL 108, 255303 (2012). Dauphin, Goldman, PRL 110, 135302 (2013). Wang et al. PRL 110, 166802 (2013). Goldman et al. PNAS 110, 6736 (2013). Price, Cooper, PRL 111, 220407 (2013). Hauke et al. PRL 113, 045303 (2014). Non-Abelian Gauge fields: Osterloh et al. PRL 95, 010403 (2005). Nayak et al. Rev. Mod. Phys. 80, 1083 (2008). Goldman et al. PRL 103, 035301 (2009). Hauke et al. PRL 109, 145301 (2012). Topology and Interactions: Raghu et al. PRL 100, 156401 (2008). Rachel, Le Hur, PRB 82, 075106 (2010). Neupert et al. PRL 106, 236804 (2011). Cooper, Dalibard, PRL 110, 185301 (2013). Bergholtz et al. Intern. J. Mod. Phys. B 27, 1330017 (2013). Grushin et al. PRL 112, 156801 (2014). Soltan-Panahi et al., Nat. Phys (2011). Soltan-Panahi et al., Nat. Phys (2012). Jo et al., PRL 108, 045305 (2012). Struck et al. PRL 108, 225304 (2012). Cheuk et al. PRL 109, 095302 (2012). Struck et al. Nature Phys. 9, 738 (2013). Parker et al. Nature Phys. 9, 769 (2013). Atala et al. Nature Phys. 9, 795 (2013). Aidelsburger et al. PRL 111, 185301 (2013). Miyake et al. PRL 111, 185302 (2013). Jotzu et al. Nature 515, 237 (2014). Atala et al. Nature Phys. 10, 588 (2014). Aidelsburger et al. Nature Phys. 11, 162 (2015). Kennedy et al. Nature Phys. (2015). Stuhl et al., Science (2015). Mancini et al., Science (2015). Jotzu et al. PRL 115, 073002 (2015). Duca et al. Science 347, 288 (2015). Li et al. arxiv:1509.02185 (2015). Taie et al. arxiv:1506.00587 (2015). Nakajima et al. arxiv:1507.02223 (2015). Lohse et al. arxiv:1507.02225 (2015). Lu et al. arxiv:1508.04480 (2015).

Experiments with topological bands (I) Hofstadter model Haldane model Cyclotron orbits in Hofstadter Model Aidelsburger, PRL (2013) Bloch group Chern number of Hofstadter bands Aidelsburger, Nature Phys. (2015) Bloch group Condensation in Hofstadter Model Kennedy, Nature Phys. (2015) Ketterle group Chern number in Haldane Model Jotzu, Nature (2014) Esslinger group Chiral edge states Chiral edge states Stuhl, Science (2015) Spielman group Chiral edge states Mancini, Science (2015) Inguscio group Meissner effect Atala, Nature Phys. (2014) Bloch group

Experiments with topological bands (II) Magnetism via lattice driving 1D Gauge potentials Ising XY spin-models Struck, Nature Phys. (2013) Sengstock group Ferromagnetic domains Parker, Nature Phys. (2013) Chin group 1D Gauge potential Struck, PRL (2012) Sengstock group Spin-dependent driving Jotzu, PRL (2015) Esslinger group Spin-orbit coupled lattice Zak and Berry phase Spin-orbit coupled lattice Cheuk, PRL (2012) Zwierlein group Zak phase Atala, Nature Phys. (2013) Bloch group Aharonov-Bohm interferometer Duca, Science (2015) Bloch group Wilson lines Li, arxiv (2015) Bloch group

,Berry-ology * But how are all the different properties related to one-another? Berry connection: NOT gauge invariant Berry curvature: Berry phase Chern Number Would be nice to see this Berry curvature * Fuchs et al., EPJB 77, 351 (2010)

Calculated Berry Curvature for different systems Boron nitride (tight-binding model) Fuchs et al., Euro Phys. J B 77, 351 (2010) Ferromagnetic bcc Fe Yao et al., Phys. Rev. Lett. 92, 037204 (2004) Strained graphene Guinea et al., Nature Phys. 6, 30 (2009) Monolayer MoS 2 Feng et al., Phys. Rev. B 86, 165108 (2012)

Map of the full Berry curvature Fläschner et al., arxiv:1509.05763 (2015) related work: Li et al. arxiv:1509.02185 (2015)

How do we do it? Tunable hexagonal lattice for fermionic 40 K See: Soltan-Panahi et al.,nat.phys 7, 434 (2011) Baur et al., PRA 89, 051605(R) (2014). Offset between A and B Boron-nitride Massive Dirac points A B Well separated flat s-bands Tomography Berry curvature flattens out

Floquet engineering of dressed bands Quasi-energy Circular shaking Breaks time-reversal symmetry k-dependent coupling Berry curvature engineering Dirac point at K annihilated Dirac point at Γ created Three-fold symmetry

Eigenstates in Bloch sphere representation Two-band Hamiltonian allows for a Bloch sphere representation States of flat bands lie at the north- and south-pole For each k, the ground state is given by: k is given by:

Eigenstate reconstruction We follow the proposal by P. Hauke, M. Lewenstein, A.Eckardt, PRL 113, 045303 (2014): Related proposal Alba et al., PRL 107, 235301 (2011)

Reconstruction of full Hamiltonian The oscillations become visible in k-space after time-of-flight Momentum space density Fitting the oscillations gives and for each momentum (pixel)

Berry curvature Now we can reconstruct the Berry curvature using:

Amplitude + Phase = Berry curvature N. Fläschner, B. Rem, M. Tarnowski, D. Vogel, D. Lühmann, K. Sengstock., C. Weitenberg, arxiv:1509.05763 (2015)

Engineering of Berry Curvature Berry curvature (1/ b ²) Increasing amplitude 200 nm 100 nm

Conclusion Full state tomography Full measurement of Berry curvature Allows us to determine Chern number Engineering of Berry curvature Annihilation and creation of Dirac points Localization

Outlook What next? A B We want to further explore topological bands Study interacting Fermions, Bosons, or mixtures in these bands How can we prepare a Floquet topological Insulator? What can we learn from quenches into the nontrivial regime? We still have the spin degree of freedom: study high-spin systems or engineer additional spin-orbit-coupling Explore other interesting geometries using the tunable lattice

The BFM-team Barcelona Dresden Hamburg In collaboration with Ludwig Mathey Klaus Sengstock Christof Weitenberg Benno Rem Dirk-Sören Lühmann Matthias Tarnowski Nick Fläschner Dominik Vogel André Eckardt Maciej Lewenstein