The physics programme of the ALICE experiment at the LHC

Similar documents
The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions

The Quark-Gluon Plasma and the ALICE Experiment

First results with heavy-ion collisions at the LHC with ALICE

Perspectives for the measurement of beauty production via semileptonic decays in ALICE

Heavy Ion Physics Program of CERN: Alice Setup at LHC.

Preparations for the ATLAS Heavy Ion Physics Program at the LHC. Deepak Kar IKTP, TU Dresden On behalf of the ATLAS Collaboration

Photon and neutral meson production in pp and PbPb collisions at ALICE

Jet Physics with ALICE

Quarkonium results in pp collisions from ALICE

In-Medium Energy Loss and Correlations in Pb-Pb Collisions at 2.76 TeV with ALICE

Open-charm and J/ψ production at the ALICE experiment

Prospective of gamma hadron correlation. study in CMS experiment

The physics programme of the ALICE experiment at the LHC

Sub-hadronic degrees of freedom in ultrarelativistic nuclear collisions at RHIC and beyond

arxiv: v1 [nucl-ex] 11 Jul 2011

Charged particle multiplicity in proton-proton collisions with ALICE

Open heavy-flavour production in pp, p Pb and Pb Pb collisions in ALICE

Heavy Ion Results from the ALICE Experiment

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Measurement of Quenched Energy Flow for Dijets in PbPb collisions with CMS

+ High p T with ATLAS and CMS in Heavy-Ion 2.76TeV

Heavy flavour measurements with ALICE. heavy ion collisions & QGP heavy flavours & QGP ALICE detector overview selected physics channels

Heavy-flavour meson production at RHIC

Open heavy flavors in ALICE. Francesco Prino INFN Sezione di Torino

Year- 1 (Heavy- Ion) Physics with CMS at the LHC

Prospects with Heavy Ions at the LHC

ALICE A Large Ion Collider Experiment

Jet Results in pp and Pb-Pb Collisions at ALICE

First Run-2 results from ALICE

Heavy flavour production at RHIC and LHC

IKF. H-QM Quark Matter Studies. Quarkonia Measurements with ALICE. Frederick Kramer. WWND, Ocho Rios, Jan 8, IKF, Goethe-Universität Frankfurt

Overview* of experimental results in heavy ion collisions

Heavy-flavor production in pp and Pb Pb collisions at LHC with ALICE

Vector meson photoproduction in ultra-peripheral p-pb collisions measured using the ALICE detector

Phenomenology of prompt photon production. in p A and A A collisions

Lepton and Charm Measurements in the First Two Years of RHIC: An Experimental Overview

ALICE results on ultraperipheral Pb+Pb and p+pb collisions

Quarkonium production measurement in Pb-Pb collisions at forward and mid rapidity with the ALICE experiment

ALICE at LHC Overview & Jet Physics LHC

using photons in p A and A A collisions

Susanna Costanza. (Università degli Studi di Pavia & INFN Pavia) on behalf of the ALICE Collaboration

Photon Physics in ALICE from conversion electrons

D + analysis in pp collisions

Heavy Flavours in ALICE

Neutral meson and direct photon measurement in pp and Pb Pb collisions at midrapidity with the ALICE experiment at the LHC

EVENT BY EVENT PHYSICS IN ALICE

Roberta Arnaldi INFN, Torino for the ALICE Collaboration. Quarkonia in deconfined matter Acitrezza, September 28 th -30 th

arxiv: v1 [nucl-ex] 2 Jul 2018

Overview of recent ALICE results

arxiv: v1 [hep-ex] 9 Jan 2019

Light flavour hadron production in the ALICE experiment at LHC

Quarkonia and Open Heavy Flavor Results from CMS

ALICE LHC. ALICE LHC

Review of photon physics results at Quark Matter 2012

arxiv: v1 [hep-ex] 14 Jan 2016

Progress of the ALICE experiment

The physics programme of the ALICE experiment at the LHC

Recent results from relativistic heavy ion collisions

Jet fragmentation study in vacuum and in medium in the ALICE experiment at the LHC

Overview of heavy ion CMS results

Recent results in proton-lead collisions with ALICE at the LHC from RUN 2012 and 2013

Charged particle production in Pb-Pb and p-pb collisions at ALICE

(di-)leptons & heavy flavors in heavy ion collisions at the LHC

Measurement of muon tagged open heavy flavor production in Pb+Pb collisions at 2.76 TeV with ATLAS

ALICE results in p Pb collisions at the LHC

STAR Open Heavy Flavor Measurements

Measurement of W-boson production in p-pb collisions at the LHC with ALICE

QCD Studies with CMS at LHC. Gunther Roland for the Collaboration

Outline: Introduction

Measurement of Inclusive Charged Jet Production in pp and Pb-Pb collisions at snn = 5.02 TeV with ALICE

arxiv: v1 [nucl-ex] 29 Feb 2012

Space-time Evolution of A+A collision

Upgrade of the Inner Tracking System Conceptual Design Report

Quarkonia and heavy-quark production in proton and nuclear collisions at the LHC

PoS(DIS2017)208. Nuclear PDF studies with proton-lead measurements with the ALICE detector

Q a u r a k k m a m t a t t e t r e p r p ob o e b d e d b y b y di d l i e l p e t p o t n o s

Jet Physics at ALICE. Oliver Busch. University of Tsukuba Heidelberg University

Measurements of the dilepton continuum in ALICE. Christoph Baumann Resonance Workshop, Austin

ATLAS Results on Pb+Pb Collisions

Transverse momentum and pseudorapidity distributions with minimum bias events in CMS at the LHC

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Central Meson Production in ALICE

MFT: Motivations and Expectations

Physics perspectives of the ALICE experiment at the large hadron collider

Measurement of D 0 cross section from Kπππ decay channel in pp collisions at s = 7 TeV with ALICE experiment

Heavy Ions at the LHC: First Results

Heavy-flavour measurements at LHC-ALICE. Shingo Sakai

Some studies for ALICE

Strangeness production and nuclear modification at LHC energies

High-p T Neutral Pion Production in Heavy Ion Collisions at SPS and RHIC

Francesco Barile for the ALICE Collaboration. Università degli Studi di Bari & INFN

Prospects for First Measurements with ALICE in Pb+Pb Collisions at the LHC LHC. Alice. Dedicated general purpose Heavy Ion experiment at LHC

Two-particle Correlations in pp and Pb-Pb Collisions with ALICE

Overview of experimental results in Pb-Pb collisions at s NN = 2.76 TeV by the CMS Collaboration

Quarkonium production in CMS

Exploring dense matter at FAIR: The CBM Experiment

The Alice Experiment Felix Freiherr von Lüdinghausen

Charm production at RHIC

Measurement of inclusive charged jet production in pp and Pb-Pb

Jet quenching in heavy-ion collisions at the LHC. Marta Verweij CERN

Transcription:

The physics programme of the ALICE experiment at the LHC Marco Monteno INFN Torino, Italy Fifth Conference on Perspectives in Hadron Physics Trieste, 22-26 May 2006

Contents Nucleus-nucleus collisions (and p-p) ) at the LHC The ALICE experiment Highlights on some physics topics * Soft physics Heavy Flavours and quarkonia Jets Conclusions * Results of studies published on Physics Performance Report Vol.II, CERN/LHCC 2005-030 Photon physics covered by Y.Kharlov s talk: Prompt photon physics in the ALICE experiment

Nucleus-nucleus (and pp) collisions at the LHC

The beams at the LHC machine Running parameters: Collision system s NN (TeV) L 0 (cm -2 s -1 ) <L>/L 0 (%) Run time (s/year) σ geom (b) pp 14.0 10 34 * 10 7 0.07 PbPb 5.5 10 27 70-50 10 6 ** 7.7 *L max max (ALICE) = 10 31 ** L int (ALICE) ~ 0.7 nb -1 /year int Then, other collision systems: pa, lighter ions (Sn, Kr, Ar, O) and lower energies (pp @ 5.5 TeV)

New conditions created at the LHC Central collisions SPS RHIC LHC s 1/2 (GeV) 17 200 5500 dn ch /dy 500 850 1500-3000 ε (GeV/fm 3 ) 2.5 4 5 15 40 V f (fm 3 ) 10 3 7x10 3 2x10 4 τ QGP (fm/c) <1 1.5 4.0 4 10 τ 0 (fm/c) ~1 ~0.5 <0.2 Formation time τ 0 Lifetime of QGP τ QGP Initial energy density ε 0 3 times shorter than RHIC factor 3 longer than RHIC 3-10 higher than RHIC

A new kinematic regime Probe initial partonic state in a new Bjorken-x range (10-3 -10-5 ): nuclear shadowing, high-density saturated gluon distribution. Larger saturation scale (Q S =0.2A 1/6 s δ = 2.7 GeV): particle production dominated by the saturation region. The QGP at LHC might evolve from a Color Glass Condensate in the initial state of the collision. Q 2 (GeV 2 ) 10 8 10 6 10 4 10 2 10 0 10-6 10-4 10-2 10 0 x

... and more hard processes LHC: σ hard /σ total = 98% (50% at RHIC) At LHC hard processes contribute significantly to the total AA cross-section. Bulk properties are dominated by hard processes Very hard probes are abundantly produced. Hard processes are extremely useful tools: Probe matter at very early times. Hard processes can be calculated by pqcd Heavy quarks and weakly interacting probes become accessible SPS (h + +h - )/2 π 0 RHIC LO p+p y=0 s = 5500 GeV LHC 200 GeV 17 GeV

The ALICE experiment

Solenoid magnet 0.5 T ALICE: the dedicated HI experiment Specialized detectors: HMPID PHOS Central tracking system: ITS TPC TRD TOF MUON Spectrometer ZDC ~110 m on both sides of collision point

Proposed ALICE EMCAL EM Sampling Calorimeter (STAR Design) Pb-scintillator linear response -0.7 < η < 0.7 60 < Φ < 180 Energy resolution ~15%/ E

The ALICE features With its system of detectors ALICE will meet the challenge to measure event-by-event the flavour content and the phase-space distribution of highly populated events produced by heavy ion collisions: Most (2π * 1.8 units of η) of the hadrons (de/dx + TOF), leptons (de/dx, transition radiation, magnetic analysis) and photons (high resolution EM calorimetry). Track and identify from very low p t (~ 100 MeV/c; soft processes) up to very high p t (>100 GeV/c; hard processes). Identify short lived particles (hyperons, D/B meson) through secondary vertex detection. Identify jets.

ALICE Particle Identification Alice uses ~ all known techniques! TPC + ITS (de/dx) π/k K/p e /π TOF e /π π/k K/p HMPID (RICH) 0 1 2 3 4 5 p (GeV/c) π/k K/p TRD e /π PHOS EMCAL γ /π 0 1 10 100 p (GeV/c)

ALICE pseudorapidity coverage for multiplicity measurements Different multiplicity measurement techniques CLUSTERS on innermost ITS layers (Silicon Pixels) TRACKLETS with 2 innemost layers of ITS (Silicon Pixels) FULL TRACKING (ITS+TPC) ENERGY DEPOSITION in the pads of Forward Multiplicity Detector (FMD)

ZDC and centrality determination E ZDC correlated with number of spectators BUT two branches in the correlation Break-up of correlation due to production of fragments (mainly in peripheral collisions) ZP ZN % of σ inelastic ZEM needed to solve the ambiguity Signal with relatively low resolution, but whose amplitude increases monotonically with centrality

ALICE Physics Goals Event characterization in the new energy domain (for PbPb but also for pp) multiplicity, η distributions, centrality Bulk properties of the hot and dense medium, dynamics of hadronization chemical composition, hadron ratios and spectra, dilepton continuum, direct photons Expansion dynamics, space-time structure radial and anisotropic flow, momentum (HBT) correlations Deconfinement: charmonium and bottomonium spectroscopy Energy loss of partons in quark gluon plasma: jet quenching, high p t spectra open charm and open beauty Chiral symmetry restoration: neutral to charged ratios resonance decays Fluctuation phenomena, critical behavior: event-by-event particle composition and spectra

Highlights on physics topics - 1 Soft Physics

Global event properties in Pb-Pb 4 Multiplicity distribution (dn ch /dη) in Pb-Pb Energy density Generated Tracklets Silicon Pixel Detector (SPD) : -1.6 < η < +1.6 + Forward Multiplicity Detector (FMD): η -5, +3.5 (dn/dη) η <0.5 dn/dη vs centrality (N part ) Fraction of particles produced in hard processes (dn/dη) η <0.5 Generated Tracklets 1 central Hijing event N part

Identified particle spectra Equilibrium vs non-equilibrium Statistical models Interplay between hard and soft processes at intermediate p T : parton recombination+fragmentation? Chemical composition, particle ratios R cp : central over peripheral yields/<n bin > Baryon/meson ratio Elliptic flow v 2 p T range (PID or stat. limits) for 1 year: 10 7 central Pb-Pb and 10 9 min. bias pp π, K, p: 0.1-0.15 up to 50 GeV Weak or strong decaying particles: up to 10-15 GeV Mid-rapidity Pb-Pb π K p PID in the relativistic rise Pb-Pb p T (GeV/c)

Topological identification of strange particles Statistical limit : p T ~ 11-13 GeV for K +, K -, K 0 s, Λ; 7-10 GeV for Ξ, Ω Secondary vertex and cascade finding Pb-Pb central 300 Hijing events Λ p T dependent cuts -> optimize efficiency over the whole p T range 11-12 GeV Reconst. Rates: Λ: 13 /event Ξ: 0.1 /event Ω: 0.01 /event Identification of K +, K - via their kink topology K µν pp collisions Limit of combined PID

Resonances (ρ, φ, K*, ) Time difference between chemical and kinetic freeze-out In medium modifications of mass, width, comparison between hadronic and leptonic channels partial chiral symmetry restoration Invariant mass reconstruction, background subtracted (like-sign method) mass resolutions ~ 1.5-3 MeV and p T stat. limits from 8 (ρ) to 15 GeV (φ,k*) ρ 0 (770) π + π 10 6 central Pb-Pb Counts 400 300 3 10 K*(892) 0 K π 15000 central Pb-Pb Mass resolution ~ 2-3 MeV 200 100 0 Invariant mass (GeV/c 2 ) 0.75 0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2 2 Invariant mass (GeV/c ) φ (1020) K + K - ~ 1.2 MeV Mass resolution

Anisotropic Flow At LHC: v 2 values of 5-10% are predicted => measurements easy But non-flow contributions from (mini-) jets expected to obscure the flow signal => important to compare different methods, use multi-particle correlations Relation between v 2 and higher harmonics (v 4, v 6, ) to test perfect liquid vs viscous fluid Performance of event plane method v n = <cos[n(φ-φ R )]> / ev.plane resolution Various independent estimates of reaction plane and v n from different regions of phase space Measurements with: TPC/ITS, SPD (pixels) and forward detectors (FMD, PMD) Track multiplicity = 1000, v 2 = 0.06 φ REC - φ MC Event plane resolution ~ 10 o TPC Generated vs reconstructed v 2 100 Pb-Pb events 2000 tracks/event

Highlights on physics topics - 2 Heavy flavours and quarkonia

Heavy Flavour physics in ALICE: motivations Energy loss of Heavy Quarks (HQ) in hot and high density medium formed in AA central collisions. Brownian motion and coalescence of low p T HQ in the quark gluon plasma (QGP). Dissociation (and regeneration) of quarkonia in hot QGP. Heavy flavour physics in pp collisions: small x physics, pqcd, HQ fragmentation functions, gluon shadowing, quarkonia production mechanism.

Heavy-flavours in ALICE ALICE can study several channels: hadronic ( η <0.9) electronic ( η <0.9) muonic (-4 < η <-2.5) ALICE coverage: low-p T region (down to p t ~ 0 for charm) central and forward rapidity regions High precision vertexing in the central region to identify D (cτ ~ 100-300 mm) and B (cτ ~ 500 mm) decays p T of Q-hadron [GeV] 100 10 1 1 year pp 14 TeV @ nominal lumin. ATLAS/CMS LHCb (b) (b) ALICE ALICE (b) (c/b) (c) -2 0 2 4 6 η of Q-hadron

Hadronic decays of D mesons No dedicated trigger in the central barrel extract the signal from Minimum Bias events Large combinatorial background (benchmark study with dn ch /dy = 6000 in central Pb-Pb!) SELECTION STRATEGY: invariant-mass analysis of fully-reconstructed topologies originating from displaced vertices build pairs/triplets/quadruplets of tracks with correct combination of charge signs and large impact parameters particle identification to tag the decay products calculate the vertex (DCA point) of the tracks requested a good pointing of reconstructed D momentum to the primary vertex D 0 K - π +

D 0 K - π + : results (I) S/B initial (M±3σ) S/B final (M±1σ) Significance S/ S+B (M±1σ) central Pb-Pb Pb-Pb Central 5 10-6 10% ~35 (for 10 7 evts, (dn ch /dy = 6000) ~1 month) ppb min. bias 2 10-3 5% ~30 (for 10 8 evts, ~1 month) ~40 pp 2 10-3 10% (for 10 9 evts, ~7 months) With dn ch /dy = 3000 in Pb-Pb, S/B larger by 4 and significance larger by 2

D 0 K - π + : results (II) inner bars: stat. errors outer bars: stat. p t -dep. syst. not shown: 9% (Pb-Pb), 5% (pp, p-pb) normalization errors 1 year at nominal luminosity (10 7 central Pb-Pb events, 10 9 pp events) + 1 year with 1month of p-pb running (10 8 p-pb events) Down to p t ~ 0 in pp and p-pb (1 GeV/c in Pb-Pb) important to go to low p T for charm cross-section measurement

s = 14 TeV Open charm in pp (D 0 Kπ) Sensitivity to NLO pqcd params m µ µ µ F R c,,, 0 µ 0 PDFs m µ µ F R c,,, µ 0 µ 0 PDFs down to p t ~ 0!

Open Beauty from single electrons B e +X Primary Vertex d 0 rec. track B e X STRATEGY Electron Identification (TRD+TPC): reject most of the hadrons Impact parameter cut: high precision vertexing in ITS: reduce charm and bkg electrons Subtraction of the residual background

Charm and Beauty Energy Loss : R AA R D AA ( p ) = t 1 N coll dn dn D AA D pp / / dp dp t t R e AA ( p ) = t 1 N coll dn dn e AA e pp / / dp dp t t D 0 Kπ B e + X m b = 4.8 GeV Low p t (< 6 7 GeV/c) Also nuclear shadowing (here EKS98) 1 year at nominal luminosity (10 7 central Pb-Pb events, 10 9 pp events) High p t (> 6 7 GeV/c) Only parton energy loss

Heavy-to-light ratios in ALICE For charm: R ( p ) = R ( p ) R ( p D h D / h t AA t AA t ) 1 year at nominal luminosity (10 7 central Pb-Pb events, 10 9 pp events)

Quarkonia e+e-

Quarkonia µ + µ (in PbPb) Entries/50 MeV/10^6 s Entries/50 MeV/10^6 s 6 10 5 10 4 10 3 10 2 10 5 10 4 10 3 10 2 10 6 < b < 9 fm 0 1 2 3 4 5 6 7 8 6 < b < 9 fm all (bb)uncorr (bb)corr (cc)uncorr (cc)corr π/k resonances 0 1 2 3 4 5 6 7 8 all (bb)corr (cc)corr resonances 2 10 10 1 8 8.5 9 9.5 10 10.5 11 11.5 2 10 10 1 8 8.5 9 9.5 10 10.5 11 11.5 State J/Ψ Ψ ϒ(1S) ϒ(2S) ϒ(3S) PbPb cent, 0 fm<b<3 fm S[10 3 ] 130 3.7 1.3 0.35 0.20 B[10 3 ] 680 300 0.8 0.54 0.42 S/B 0.20 0.01 1.7 0.65 0.48 S/(S+B) 1/2 150 6.7 29 12 8.1 Yields for baseline ϒ(1S) & ϒ(2S) : 0-8 GeV/c J/Ψ high statistics: 0-20 GeV/c Ψ poor significance ϒ ok, but 2-3 run will be needed.

Quarkonia µ + µ (in pp at 14 TeV)

Highlights on physics topics -3 Jet physics

Jet studies with Heavy Ions at RHIC STAR Au+Au s NN = 200 GeV Standard jet reconstruction algorithms in nucleus-nucleus collisions at RHIC fail due to: large energy from the underlying event (125 GeV in R <0.7) limited reach up to relatively low jet energies (< 30 GeV) multi-jet production restricted to mini-jet region (< 2 GeV) RHIC experiments use leading particles as a probe. trigger particle jet parton 1/N trigger dn/d( φ φ) PRL91, 072304 (2003) Evidence of parton energy loss at RHIC from the observed suppression of back-to-back correlations in Au-Au central collisions (and not in d-au or p-p minbias)

Leading particle versus jet reconstruction Leading Particle Leading particle is a fragile probe Eskola et al., hep-ph/0406319 Reconstructed Jet Surface emission bias Small sensitivity of R AA to medium properties (at RHIC, but also at LHC) For increasing in medium path length L, the momentum of the leading particle is less and less correlated with the original parton 4-momentum. z = p E So, ideally only the full jet reconstruction allows to measure the original parton 4-momentum and the jet structure. T jet T Study the properties of the QCD dense medium through modifications of the jet structure due to the parton energy losses (jet quenching): Decrease of particles with high z, increase of particles with low z Broadening of the momentum distribution perpendicular to jet axis

Jet rates at the LHC Copious production!! Several jets per central PbPb collisions for E T > 20 GeV Huge jet statistics for E T ~100 GeV Multi-jet production per event extends to ~ 20 GeV 100

Jet energy domain 2 GeV 20 GeV 100 GeV 200 GeV Mini-Jets 100/event 1/event 100k/month No jet reconstruction, but only correlation studies (as at RHIC) Limit is given by underlying event Full reconstruction of hadronic jets, even with the huge background energy from the underlying event, starts to be possible for jets with E> 50 GeV Reconstructed Jets event-by-event well distinguishable objects Example : 100 GeV jet + underlying event

ALICE detectors for jet identification Measurement of Jet Energy In the present configuration ALICE measures only charged particles with its Central Tracking Detectors (and electromagnetic energy in the PHOS) The proposed Large EM Calorimeter (EMCal) would provide a significant performance improvement E T measured with reduced bias and improved resolution Better definition of the fragmentation function: p t /E T Larger p t reach for the study of the fragmentation of the jet recoiling from a photon and photon-photon correlations Excellent high p t electrons identification for the study of heavy quark jets Improved high E T jet trigger Measurement of Jet Structure is very important Requires good momentum analysis from ~ 1 GeV/c to ~ 100 GeV/c ALICE excels in this domain pp and pa measurements essential as reference!

Jet reconstruction in ALICE In pp-collisions jets: excess of transverse energy within a typical cone of R = 1 R = 2 2 η + ϕ Main limitations in heavy-ion collisions: Background energy (up to 2 TeV in a cone-size R=1 ) Background energy fluctuations Background energy in a cone of size R is ~R 2 (and background fluctuations ~R). They can be reduced by: reducing the cone size (R = 0.3-0.4) and with transverse momentum cut (p T = 1-2 GeV/c) E(R) [GeV] background no p T cut p T >1 GeV/c p T >2 GeV/c E T jet 150 GeV 100 GeV 50 GeV 30 GeV R

Background for jet structure observables: the hump-back plateau S/B > 0.1 for ξ< 4 leading particle remnants p t >1.8 GeV S/B ~ 10-2 for 4 < ξ< 5 particles from medium-induced gluon radiation

Intrinsic jet reconstruction performance Out-of-cone fluctuations E T =100 GeV R=0.4 Detector effects The limited cone-size and p t cuts (introduced to reduce background energy) lead to a low-energy tail in the spectra of reconstructed energy. This tail is enhanced if detector effects (incomplete or no calorimetry) are included Assuming an ideal detector and applying a p t -cut of 2 GeV/c we expect, for a jet with E T =100 GeV a reconstructed cone energy of 88 GeV with gaussian fluctuations of 10%

Energy resolution (for ideal calorimetry) p T > 0 GeV 1 GeV 2 GeV E T =100 GeV Background fluctuations added to signal fluctuations for the case p t >1 GeV/c Cone-size 0.3 < R< 0.5 : optimal limiting resolution E T /E T ~22 %

Photon-tagged jets Dominant processes: g + q γ+ q (Compton) q + q γ+ g (Annihilation) p T > 10 GeV/c γ-jet correlation E γ = E jet Opposite directions γ γ energy provides independent measurement of jet energy Drawback: low rate!! But... especially interesting in the intermediate range (tens of GeV) where jets are not identified Direct photons are not perturbed by the medium Parton in-medium-modification through the fragmentation function and study of the nuclear modification factor R FF quenched jet non-quenched

Summary ALICE is well suited to Summary measure global event properties and identified hadron spectra on a wide momentum range (with very low p T cut-off) in Pb-Pb and pp collisions. Robust and efficient tracking for particles with momentum in the range 0.1 100 GeV/c Unique particle identification capabilities, for stable particles up to 50 GeV/c, for unstable up to 20 GeV/c The nature of the bulk and the influence of hard processes on its properties will be studied via chemical composition, collective expansion, momentum correlations and event-by-event fluctuations Charm and beauty production will be studied in the p T range 0-20 GeV/c and in the pseudo-rapidity ranges η <0.9 and 2.5< η <4.0 High statistics of J/Ψ is expected in the muon and electronic channel Upsilon family will be studied for the first time in AA collisions ALICE will reconstruct jets in heavy ion collisions study the properties of the dense created medium ALICE will identify prompt and thermal photons characterize initial stages of collision region (Y. Kharlov s talk)

BACKUP SLIDES

Expected multiplicities at the LHC in pp collisions LHC C. Jorgensen

Expected multiplicities at the LHC in PbPb collisions Detectors planned for dn/dη > 5000 Saturation model Armesto, Salgado, Wiedemann hep-ph/0407018 dn/dη ~ 1800 Models prior to RHIC dn/dη ~ 1100 Log extrapolation

Comparison to pqcd predictions pp, s = 14 TeV charm (D 0 Kπ) beauty (B e+x) 1 year at nominal luminosity (10 9 pp events)