DM Signatures generated by anomalies in hidden sectors

Similar documents
Natural explanation for 130 GeV photon line within vector boson dark matter model

Chern-Simons portal Dark Matter

WIMPs and superwimps. Jonathan Feng UC Irvine. MIT Particle Theory Seminar 17 March 2003

The inert doublet model in light of LHC and XENON

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

Dark-matter bound states

DARK MATTER. Martti Raidal NICPB & University of Helsinki Tvärminne summer school 1

M. Lattanzi. 12 th Marcel Grossmann Meeting Paris, 17 July 2009

November 24, Scalar Dark Matter from Grand Unified Theories. T. Daniel Brennan. Standard Model. Dark Matter. GUTs. Babu- Mohapatra Model

Detecting or Limiting Dark Matter through Gamma-Ray Telescopes

Phenomenology of low-energy flavour models: rare processes and dark matter

The Flavour Portal to Dark Matter

Supersymmetry Breaking

MSSM4G: MOTIVATIONS AND ALLOWED REGIONS

Dark Matter II. Marco Cirelli. (CNRS IPhT Saclay) December th TRR Winter School - Passo del Tonale. Reviews on Dark Matter: NewDark

Constraining minimal U(1) B L model from dark matter observations

Dark Matter Decay and Cosmic Rays

Exotic Charges, Multicomponent Dark Matter and Light Sterile Neutrinos

PoS(idm2008)089. Minimal Dark Matter (15 +5 )

Models of New Physics for Dark Matter

Invisible Sterile Neutrinos

Effective theory of DM decay into gamma-ray lines

Kaluza-Klein Dark Matter

Non-SUSY WIMP Candidates

New Physics beyond the Standard Model: from the Earth to the Sky

The Stueckelberg Extension and Extra Weak Dark Matter

Beyond Simplified Models

Indirect detection of decaying dark matter

Dark Matter WIMP and SuperWIMP

Dark Matter searches with astrophysics

A model of the basic interactions between elementary particles is defined by the following three ingredients:

BSM physics and Dark Matter

FERMION PORTAL DARK MATTER

Non-Minimal Kaluza Klein Dark Matter

Inert Doublet Model and DAMA:

Dark matter in split extended supersymmetry

Sho IWAMOTO. 15 Sep Osaka University. Based on [ ] in collaboration with M. Abdullah, J. L. Feng, and B. Lillard (UC Irvine)

The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation

Introduction Motivation WIMP models. WIMP models. Sebastian Belkner. University of Bonn - University of Cologne. June 24, 2016

The Physics of Heavy Z-prime Gauge Bosons

Dark Matter in the Universe

Sho IWAMOTO. 7 Nov HEP phenomenology joint Cavendish DAMTP U. Cambridge

How high could SUSY go?

Gamma-rays constraint on Higgs Production from Dark Matter Annihilation

Matter, antimatter, colour and flavour in particle physics

Electroweak physics and the LHC an introduction to the Standard Model

Split Supersymmetry A Model Building Approach

Wino dark matter breaks the siege

The WIMPless Miracle and the DAMA Puzzle

Effective Theory for Electroweak Doublet Dark Matter

Conservative Constraints on Dark Matter Self Annihilation Rate

Cosmic Positron Signature from Dark Matter in the Littlest Higgs Model with T-parity

TeV Scale Seesaw with Loop Induced

kev sterile Neutrino Dark Matter in Extensions of the Standard Model

Gauge-Higgs Unification and the LHC

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

Hidden two-higgs doublet model

Koji TSUMURA (NTU à Nagoya U.)

Crosschecks for Unification

U(1) Gauge Extensions of the Standard Model

Preliminary lecture programme:

Astroparticle Physics and the LC

THE STATUS OF NEUTRALINO DARK MATTER

Mixed Wino-Axion DM in String Theory and the 130 GeV γ-line signal

Koji TSUMURA (NTU Nagoya U.) KEK 16-18/2/2012

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

The Four Basic Ways of Creating Dark Matter Through a Portal

Finite Gluon Fusion Amplitude in the Gauge-Higgs Unification. Nobuhito Maru. (Chuo University) Based on N.M., MPL A (2008)

Dark Matter Annihilation, Cosmic Rays and Big-Bang Nucleosynthesis

Overview of Dark Matter models. Kai Schmidt-Hoberg

GALACTIC CENTER GEV GAMMA- RAY EXCESS FROM DARK MATTER WITH GAUGED LEPTON NUMBERS. Jongkuk Kim (SKKU) Based on Physics Letters B.

Tentative observation of a gamma-ray line at the Fermi Large Area Telescope

Non-Abelian SU(2) H and Two-Higgs Doublets

Introduction to Supersymmetry

IMPLICATIONS OF PARTICLE PHYSICS FOR COSMOLOGY

DarkSUSY. Joakim Edsjö With Torsten Bringmann, Paolo Gondolo, Lars Bergström, Piero Ullio and Gintaras Duda. APS Meeting

Astroparticle Physics at Colliders

LHC searches for dark matter.! Uli Haisch

Dark matter and collider signatures from extra dimensions

The first year of the LHC and Theory. G.G.Ross, Krakow, December 09

SUSY GUTs, DM and the LHC

Nobuhito Maru (Kobe)

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Strings and Particle Physics

Versatility of the Abelian Higgs Model

The Story of Wino Dark matter

SUSY Phenomenology & Experimental searches

The Super-little Higgs

Axion-Like Particles from Strings. Andreas Ringwald (DESY)

The Higgs discovery - a portal to new physics

The Yang and Yin of Neutrinos

Leaving Plato s Cave: Beyond The Simplest Models of Dark Matter

Lecture 14. Dark Matter. Part IV Indirect Detection Methods

Strings, Exotics, and the 750 GeV Diphoton Excess

Supersymmetry, Dark Matter, and Neutrinos

arxiv: v2 [hep-ph] 19 Nov 2013

A realistic model for DM interactions in the neutrino portal paradigm

Right-Handed Neutrinos as the Origin of the Electroweak Scale

The Standard Model and Beyond

Cosmic Antiproton and Gamma-Ray Constraints on Effective Interaction of the Dark matter

Transcription:

DM Signatures generated by anomalies in hidden sectors ann Mambrini Laboratoire de Physique Théorique Orsay, Université Paris I E. Dudas, S. Pokorski,, A. Romagnoni GGI, Florence,, May 20 th 2010

Where is Orsay? Jussieu + (Benakli) APC ENS + (Binetruy) + (Fayet, Illiopoulos) IAP + (Bertone, Iocco) PARIS Polytechnique Saclay (Antoniadis,) (Cirelli Cirelli, Zaharijas) + + + Orsay

Overview I) The DM puzzle II) Gamma ray lines signals III) Importance of Anomalies in Particle Physics IV) Anomalies cancelation mechanisms V) Gamma-ray lines generated by anomalies VI) FERMI analysis VII) Conclusions

Dark Matter Evidences CMB (WMAP) Galactic Scale SUS : neutralino, gravitino.. (N. Fornengo,, P. Ullio,, L. Covi) KK modes (Extra Dim.) (Servant, Tait) Extra U(1) boson (Arkani-Ahmed, Ahmed, T. Hambye) Sterile right handed neutrino (Shaposhnikov) Weak scale scalar (Gustafsson,, Tytgat)

ray lines (annihilation) SUS/KK [ ] Z, = 10-2 ( f ) f Inert Higgs Doublet [Gustafsson, Lundstrom, Bergstrom, Edsjo 07] Visible [Baek & Ko,, 08] [Bergstrom, Bringmann, Edsjo 08] Chiral Square [Bertone et al. 09] If m H0 < M W 3 visible lines f f Η 0 Η 0 B B h Z, No visible line 2 lines or line Z, B

ray lines (Decaying) Z T. Hambye 09 H G ~ ν K.. Choi,, C. Munoz 08 G. Bertone,, W. Buchmuller, L. Covi,, A. Ibarra 07

Anomalies in particle physics L Sym + δl quant quant Anomalies : quantum corrections destroy the symmetries of the classical theory If the symmetry is local, the gauge anomaly causes the loss of unitarity,, which is to say the consistency of the theory A mechanism of anomaly cancellation should be imposed to the model Example : leptophylic DM µ µ+ µ- µ µ L µ L δ ( ) 0 INDEPENDENT OF THE MASSES OF THE FERMIONS RUNNING IN THE LOOPS (decoupling theorem) µ L ν ρ

Solving the problem.. W W ~ s σ > 1 W W Lost of unitarity µ e e ν e q α(q e 3 Q q ) ρ + µ q q ν ρ Miracle!!

Explicit construction µ Heavy Fermions (Ψh) ν ρ U (1) µ Γ µνρ ν ρ Ψ ΨSM U(1) U (1) SM 0 L U (1) L + λ ε µνρσ F F µν ρσ + L + L3 Ψi i i Ψh 0 h D U (1) D SM Intersecting Branes µ µ +M d a µ + d λ µ µ a a - M λ µ (Stuckelberg Langrangian) +M d a µ

Anomalie cancellation : Green-Schwarz mechanism Anastopoulos,, Bianchi, Dudas, Kiritsis 06 Anastopoulos, Fucito, Lionetto, Pradisi, Racioppi, Stanev 08 L inv = F µν µν F µν L var = B a ε µνρσ µν (d µ a M µ ) 2 i Ψ h µ D µ Ψ h µνρσ F µν F ρσ ρσ + C ε µνρσ µ ν F ρσ ρσ Peccei-Quinn terms Chern-Simons terms ( ) δ L var = - δ µ Heavy Fermions (Ψh) ν ρ

Effective couplings : L eff = L loops + L var Z ν k 1 Z ν ν µ µ µ k 3 ρ k 2 Ζ ρ ρ + B 1 k 2ν 2ν ε µρστ k 2σ k 1τ Γ α µνρ µνρ = t α { A 1 ε µνρσ 1τ + B 2 k 1ν + C k 3µ /k 32 ε νρστ 3µ µνρσ k 2σ 1ν ε µρστ k 2σ k 1τ νρστ k 2σ k 1τ Peccei-Quinn µνρσ k 1σ 2ρ ε µνστ k 2σ k 1τ µνρσ (k 2σ k 1σ )} 2σ - A 2 ε µνρσ 1τ + B 3 k 2ρ 1τ + D εµνρσ Chern-Simons 1τ + B 4 ε µνστ µνστ k 2σ k 1τ δ L eff = 0 3 Ward identities + (k 1 ;k 2 ) symmetries -> the vertex can be express as function of B 2 B 1 = 1/Λ 2 With B 1, B 2 = computable loops integrals Cc : only 3 parameters : Λ [<S>] ; M [g ] ; M [ heavy ] [Kumar, Rajaraman, Wells 08] [M 09]

Interpretation as higher dimensional operators Antoniadis, Boyarski, Ruchavki,, Wells 09 Dudas, M, Pokorski, Romagnoni 09 L 1 = 1/M 2 *{b Tr[F F F ] + c ε µνρσ with µνρσ (D µ a) (D ν H) + F ρσ ρσ H }, ρσ D µ a = d µ a g A µ ; D ν = d ν ig ν i g A ν Masses suppression coming from the fermions which decouple after U (1) breaking Equivalent to the D Hoker-Farhi term {1/(H + H) ε µνρσ µνρσ (D a) (D µ ν H)+ F ρσ ρσ H} for SM Remark :if two Z are present, we can build an unsupressed operator, ε µνρσ µνρσ (D a µ 1 ) (D ν a 2 ) F ρσ ρσ

Dark matter: Annihilation channels Z Z Ζ Z M > M (natural) M < M (unatural) Z Ζ

LHC production W W W-W W fusion at LHC Z Z l l l l Kumar,Wells 08 Antoniadis Boyarski Ruchavski,, Wells 09

The relic density Λ (GeV) M 09 2000 1000 Mdm=500 GeV 500 Mdm=200 GeV 100 Mdm=100 GeV 100 500 Mx (GeV) 1000 1/Λ 2 = B 2 -B 1 = g h *g2 /(8π 2 )* Tr[ 2 /M 2 heavy ]*Integral

Indirect detection: examples of spectrum 2 E *dn/de 10 20 Mdm = 257 GeV Mz =558 GeV Ω = 0.088 Z 22 10 24 10 10 100 200 300 Ebin (GeV) Z Ζ E = M [1 (M Z /2M ) 2 ]

Indirect detection astro-parameters 35 + GC 20 Signal to noise ratio 12 time greater than GC Galactic Centered Annulus (Stoehr et al 2003, GLAST col. 2008) Independant of the Galactic profile J Ω ~ 10 Galprop conventional model for the background 5 years of data, signals at 5σ and 95% CL [FERMI estimates, Morselli et al. 08]

Observability 2 E *dn/de Flux (/sr/cm2/s) 10 8 10 10 10 12 Λ = 1.2TeV Independant of Λ MSSM FERMI 5σ FERMI 95% 10 20 22 10 Mdm = 257 GeV Mz =558 GeV Ω = 0.088 24 10 10 100 200 300 Ebin (GeV) Z 100 200 Mdm (GeV) 300 No excess with courent constraints (EGRET, HESS.. [Jacques, Bell 08] )

Consequences on Mx and Mchi Mx (GeV) 600 400 95% FERMI 5σ FERMI Λ x (TeV) 3 2.5 2 1.5 Mdm=200 GeV Mdm=100 GeV Mdm=300 GeV 95% FERMI 5 σ FERMI 200 Λ = 1.2 TeV 1 HESS/COMPTON Excluded 0.5 100 200 300 Mdm (GeV) 200 400 600 800 1000 Mx (GeV) Z LHC (Wells 08, Antoniadis 09 ) FERMI 10

An extension : Higgs in Space Jackson, Servant, Shaughnessz, Tait, Taoso 09 Top quark H

Direct detection Z q q

Mini-conclusions An (In)visible( Z can be quite visible Indirect detection could be THE ONL WA to observe it 1 ray line is a smoking gun signal distinguishing it clearly from other constructions Possibility to test up to 5TeV BSM scale at FERMI telescope