Warm superdeformed nuclei:

Similar documents
Montecarlo simulation of the decay of warm superdeformed nuclei

Study of shell structure and order-to-chaos transition in warm rotating nuclei with the radioactive beams of SPES

Rotational motion in thermally excited nuclei. S. Leoni and A. Bracco

4. Rotational motion in thermally excited nuclei *

GDR FEEDING OF THE HIGHLY-DEFORMED BAND IN 42 Ca

Structure of hot nuclear states

The rotational γ -continuum in the mass region A 110

Damping mechanisms and order-to-chaos transition in the warm rotating 163 Er nucleus

Nuclear Structure at Extreme conditions through γ spectroscopy measurements

COLLECTIVITY IN LIGHT NUCLEI AND THE GDR

Recent Results from Ridge Analysis- Evidence for Hyperdeformation?

Isospin Character of Low-Lying Pygmy Dipole States via Inelastic Scattering of 17 O ions

Silvia M. Lenzi University of Padova and INFN. Silvia Lenzi, 10th Int. Spring Seminar on Nuclear Physics, Vietri sul Mare, May 21-25, 2010

p(p,e + ν)d reaction determines the lifetime of the sun

Investigation of Pygmy Dipole Resonance in neutron rich exotic nuclei

Gamma-ray spectroscopy I

Order-to-Chaos Transition in Rotational Nuclei

Radiative Capture Reaction

Heavy-ion sub-barrier fusion reactions: a sensitive tool to probe nuclear structure

Evidence for the wobbling mode in nuclei

Coexisting normal and triaxial superdeformed structures in 165 Lu

Collective Excitations in Exotic Nuclei

Coherent and incoherent nuclear pion photoproduction

High-spin studies and nuclear structure in three semi-magic regions of the nuclide chart High-seniority states in Sn isotopes

Medium polarization effects and pairing interaction in finite nuclei

The two-step (and multiple-step) γ cascade method as a tool for studying γ-ray strength functions. Milan Krtička

arxiv:nucl-ex/ v1 27 May 2002

One- and two-phonon wobbling excitations in triaxial 165 Lu

Evolution Of Shell Structure, Shapes & Collective Modes. Dario Vretenar

Photopion photoproduction and neutron radii

arxiv:nucl-ex/ v1 9 Apr 2001

The Nuclear Many-Body Problem

Low-spin structure of 210 Bi

Probing neutron-rich isotopes around doubly closed-shell 132 Sn and doubly mid-shell 170 Dy by combined β-γ and isomer spectroscopy.

Fitting Function for Experimental Energy Ordered Spectra in Nuclear Continuum Studies

Giant Resonances Wavelets, Scales and Level Densities

DIPOLE-STRENGTH IN N=50 NUCLEI STUDIED IN PHOTON-SCATTERING EXPERIMENTS AT ELBE

The project was supported by: Czech Scientific Foundation under Grant No S IAEA Coordinated Research Project F41032

Shell model description of dipole strength at low energy

Structure of neutron-rich Mg isotopes explored by beta-decay of spin-polarized Na isotopes

Spectroscopic Quadrupole Moment in 96,98 Sr : Shape coexistence at N=60. E.Clément-GANIL IS451 Collaboration

Fusion of light halo nuclei

Heavy-ion fusion reactions for superheavy elements Kouichi Hagino

Shape Coexistence and Band Termination in Doubly Magic Nucleus 40 Ca

Submitted to Acta Physica Polonica, Proceedings of the XXXI Zakopane School of Physics

Shape coexistence in light Krypton isotopes

Monte Carlo Simulation for Statistical Decay of Compound Nucleus

First results with PARIS array

Testing the validity of the Spin-orbit interaction Nuclear forces at the drip-line O. Sorlin (GANIL, Caen, France)

Statistical-Model and Direct-Semidirect-Model Calculations of Neutron Radiative Capture Process

Angular-Momentum Projected Potential Energy Surfaces Based on a Combined Method. Jianzhong Gu. (China Institute of Atomic Energy, Beijing, China)

arxiv:nucl-th/ v1 28 Sep 1995

Microscopic Fusion Dynamics Based on TDHF

Microscopic description of fission in the neutron-deficient Pb region

Cranked-RPA description of wobbling motion in triaxially deformed nuclei

Band Structure of nuclei in Deformed HartreeFock and Angular Momentum Projection theory. C. R. Praharaj Institute of Physics Bhubaneswar.

Observation and Quadrupole Moment Measurement of the First Superdeformed Band in the A~60 Mass Region

New Trends in the Nuclear Shell Structure O. Sorlin GANIL Caen

Linking nuclear reactions and nuclear structure to on the way to the drip lines

Oblate nuclear shapes and shape coexistence in neutron-deficient rare earth isotopes

Nuclear Isomerism. Phil Walker. University of Surrey. on the occasion of the 70th birthday of Geirr Sletten

Particle excitations and rotational modes in nuclei with A 70-90

Beyond mean-field study on collective vibrations and beta-decay

Giant Dipole Resonance - New Experimental Perspectives

Fine structure of nuclear spin-dipole excitations in covariant density functional theory

The many facets of breakup reactions with exotic beams

arxiv:nucl-ex/ v1 29 Apr 1999

The shell model Monte Carlo approach to level densities: recent developments and perspectives

Role of Hexadecupole Deformation in the Shape Evolution of Neutron-rich Nd Isotopes

First results from the AGATA Demonstrator. Francesco Recchia Università di Padova

Microscopic description of shape coexistence and shape transition

TEST OF CLOSED-FORM GAMMA-STRENGTH FUNCTIONS. Vladimir Plujko. Taras Shevchenko National University; Institute for Nuclear Research, Kyiv, Ukraine

Enhanced low-energy γ-decay probability implications for r-process (n,γ) reaction rates

Chapter 6. Summary and Conclusions

Testing the validity of the Spin-orbit force Nuclear forces at the drip-line O. Sorlin (GANIL, Caen, France) PART 1:

Collective excitations of Λ hypernuclei

Structure of halo nuclei and transfer reactions

Status of the magnetic spectrometer PRISMA

Shape Isomerism in 66Ni

K-isomer decay rates. Phil Walker. - introduction - exploring the different degrees of freedom - exotic nuclei

Fission fragment mass distributions via prompt γ -ray spectroscopy

Measuring Neutron Capture Cross Sections on s-process Radioactive Nuclei

Nuclear structure aspects of Schiff Moments. N.Auerbach Tel Aviv University and MSU

Photon strength functions in Mo region. Milan Krtička

Probing shell evolution with large scale shell model calculations

Self-consistent study of spin-isospin resonances and its application in astrophysics

The Pygmy resonance in 68 Ni and the neutron skin

Gamma-ray spectroscopy II

Dipole Response of Exotic Nuclei and Symmetry Energy Experiments at the LAND R 3 B Setup

Sunday Monday Thursday. Friday

Instantaneous Shape Sampling for Calculating the Electromagnetic Dipole Strength in Transitional Nuclei S. Frauendorf

Fast-Timing with LaBr 3 :Ce Detectors and the Half-life of the I π = 4 Intruder State in 34 P

Statistical Theory for the Beta-Delayed Neutron and Gamma-Ray Emission

Conversion Electron Spectroscopy in the Second Minimum of Actinides

Dipole resonances in 4 He

Evidence for the inuence of reaction dynamics on the population of compound nuclei

Statistical properties of nuclei by the shell model Monte Carlo method

Towards 78 Ni: In-beam γ-ray spectroscopy of the exotic nuclei close to N=50

Study of multi-nucleon transfer reactions with light nuclei

Subbarrier fusion of carbon isotopes ~ from resonance structure to fusion oscillations ~

Transcription:

S. Leoni University of Milano and INFN Warm superdeformed nuclei: Probes of Nuclear Structure and Tunneling Processes At the Onset of Chaos Oslo WS May 29

Outline: 1- INTRO: Warm Superdeformed Nuclei 2- Experimental Analysis 151 Tb & 196 Pb EUROBALL IV data 3- Theoretical Modelling Microscopic Monte Carlo simulation 4- OUTLOOK: Probes of Nuclear Structure & Potential Barriers

Compound Nucleus Chaos SD Warm Rotation strongly interacting bands I I-2 I+2 T= Regular bands Order Superdeformation at Finite Temperature Challenging topic experiment: focus on ~1% γ-decay theory: cranking at T coupled to tunneling to ND well L m ND ND SD tunneling SD to ND minima present status experiment: partial infos on 143 Eu, 152 Dy, 194 Hg theory: schematic OR many parameters

Aim of this work: Step forward in Experiment & Theory EXPERIMENT: Extensive Study of warm rotation in A=15 and 19: 151 Tb and 196 Pb Evaluation of several independent experimental oservables stringent test of γ-decay flow THEORY: Development of new Monte Carlo model Based on microscopic calculations Towards a parameter free model

1- The 151 Tb and 196 Pb experiments

Two High Statistics EUROBALL-IV Experiments 151 Tb and 196 Pb HECTOR BGO INNER BALL 21 detectors 8 Large BaF 2 for GDR analysis 3 Si + 17 Er 196 Pb + 4n Thin target, E beam = 148 MeV, L max 53 h Statistics: 8 days 2 1 8 <F Ge > = 3 <F γ > = 1 Goals: warm rotation in SD well (S. Leoni et al., in print in PRL) GDR in A = 19 (D. Montanari et al., in preparation) 27 Al + 13 Te 151 Tb + 6n Thin target, E beam = 155 MeV, L max 8 h Statistics: 17 days 9 1 9 <F Ge > = 5 <F γ > = 22 Goals: discrete spectroscopy in SD well (J. Robin et al., PRC77, 1438(28) search for linking transitions SD ND (J. Robin et al., PRC78(28)34319)

Discrete Spectroscopy Info s 151 Tb 196 Pb Intensity (%) 14 12 1 8 6 4 2 % 8,x1 6 6,x1 6 4,x1 6 2,x1 6, Yrast 8 1 12 14 16.8-1.6 MeV Intensity (%) 14 12 1 8 6 4 1.3 % 6 4 2 E γ Yrast 1 2 3 4 5 6 7 8.2-.8 MeV 2 2 2 4 6 8 1 12 14 Number of SD band 2 4 6 8 1 12 14 Number of SD band 151 Tb tentative assignment SD SD 196 Pb firm assignment 3698 462 ND ND J. Robin et al., Pys. Rev. C78(28)34319 A.N. Wilson et al., Phys. Rev. Lett. 95 (25)

Quasi-Continuum Spectroscopy: Warm Rotation E* 168 Yb RIDGES Discrete Unresolved Bands γ γ spectra & rotational planes x+y = 2z±δ I+1 I+1 I-2 I-2 I I I+2 I+2 I T= E2 Bump T I+8 I+6 I+4 I+2 I I+8 I+6 I+4 I+2 I γ spectra Total E2 Quasi-Continuum X Y Z

151 Tb Analysis SD gated γ spectrum E2 Bump SD gated γ γ 1 st Ridge Rot-Plane 2 nd Ridge Total γ γ 1 st Ridge counts counts [x1 3 ] counts [x1 3 ] counts [x1 3 ] 3 25 2 15 1 5 75 125 175 15 1 5 2 15 1 E γ 2 E γ = 1 kev 25 4 E γ = 2 kev 7 5 3 2 E γ = 1 kev -1 1 E γ1 -E γ2 [kev] Intensity [%] Intensity [%] Intensity [%] Intensity [%] Number Intensity Discrete Bands Analysis Techniques Counts 1 3 E2 SD gated Fluctuations 1 2 1 1 1 (2) Neve 1. Spectrum Intensity: N = µ 2 1 1 3 SD gated Ridge 1 2 1 1 1 1 3 2. Ridge 1 2 1 1 1 1 3 1 2 1 1 1 8 independent observables Yrast Spin N path 75 5 number of 25 bands 14 ± 2 N path 1 75 5 25 1 path µ 1 Spin P SD gated Ridge 2. Ridge Properties 1. Ridge of γ-decay flow I yrast = 2 % 1. Ridge 75 1 observed of SD nucleus 5 27 ± 8 25 3 4 5 6 7 Spin population 2. Spectrum Fluctuations: N path 12 ± 5 2 3 4 5 6 7

196 Pb Analysis SD gated γ spectrum E2 Bump SD gated γ γ 1 st Ridge Rot-Plane 2 nd Ridge Total γ γ 1 st Ridge counts [x1 3 ] counts [x1 3 ] counts [x1 3 ] Counts [x1 3 ] 8 6 4 2 8 6 4 6 5 4 15 1 5 5 75 1 125 E γ 2 E γ = 8 kev 4 E γ =16 kev 2 E γ = 8 kev -8 8 E γ1 -E γ2 [kev] Intensity [%] Intensity [%] Intensity [%] Intensity [%] 1 3 1 2 1 1 1 1 3 1 2 1 1 1 1 3 1 2 1 1 1 1 3 1 2 1 1 1 8 independent observables Intensity E2 SD gated E2 + M1 SD gated Ridge Yrast 2. Ridge 1. Ridge I yrast = 1.3 % 1 2 3 4 5 Spin N path N path N path 2 75 Number Discrete Bands Counts Fluctuations N N (2) eve path = µ 2 1 µ 1 P 4 SD gated Ridge 5 25 75 5 25 2. Ridge 1. Ridge 1 2 3 4 5 Spin 8 ± 3 12 ± 4 3 observed 2 ± 9

2- The Interpretation of the DATA a Monte Carlo simulation of the γ-decay based on microscopic calculations: Towards a parameter free model

2 E2 ND E1 E2 SD E1 extrapolated ρ SD, B(E2), barriers E* [MeV] ND tunneling SD Γ rot microscopic levels, B(E2), barriers 15 γ-decay in ND well: Γ rot I-2 I I+2 SD parametrized ρ ND, B(E2) ρ [MeV -1 ] 1 7 1 6 1 5 1 4 1 3 1 2 1 1 1 196 Pb 1 ND Hartree-Fock-BCS S. Goriely ADNDT 77, 311(21) 1-1 2 4 6 8 U [kev] γ-decay in SD well: microscopic + extrapolated 1 2 3 4 5 6 Spin

Microscopic calculations entering the Monte Carlo: 1. Interacting cranked shell model K. Yoshida, M. Matsuo, NPA612(1997)126 2. Microscopic Barriers & Tunneling Actions K. Yoshida, M. Matsuo and Y. Shimizu, NPA696, 85(21)

at T H = H def - ωj x + V res Configuration mixing

151 Tb microscopic calculations Cranked shell model at T E2 fragmentation U [MeV] 3 2 1 H = H def ωj x + V res yrast (,+) π = - 1 2 3 4 5 6 7 8 3 π = + n b 1 1 35 3 4.5 + n b = 2 onset of damping U onset 1 2 3 4 5 U [MeV] I-2 I U [MeV] 2 1 Width [kev] 25 2 15 1 5 Γ rot I-2 I Γ rot Γ µ 1 2 3 4 5 6 7 8 Spin 3 4 5 6 7 Spin K. Yoshida, M. Matsuo, NPA612(1997)126

196 Pb microscopic calculations Cranked shell model at T U [MeV] 1,,5, H = H def ωj x + V res Pb: CSM calculations yrast (+,) π = - (-,) (-,1) EXP U onset 4 3 2 1 151 Tb versus 196 Pb b) 151 Tb 196 Pb U [MeV] 1,,5 π = + (+,) (+,1) N band 3 2 1 a) 196 Pb 151 Tb, yrast (+,) 1 2 3 4 5 Spin [h] K. Yoshida, M. Matsuo, NPA612(1997)126 1 2 3 4 5 6 7 Spin [h]

microscopic calculations for decay-out at T K. Yoshida, M. Matsuo and Y. Shimizu, NPA696, 85(21) ND SD Γ t M hωsd = 2π 1 2 DSD hω SD (1+ e 2 S 1 ) action integral S ( E ) = ds 2M ( V ( q( s)) E ) path along tunneling path driven by pairing S S 2 15 1 5 12 1 8 6 4 2 151 Tb (,+) U =. MeV.4.6 U =. MeV.4.8 1. 1.2 1.4 1.6 196 Pb.2 (,+) 1.8 1 2 3 4 5 6 Spin.8 1.6 2.4 2.8 3.6 4.4 5.2 extension of model used for SD yrast 152 Dy

Microscopic Calculations in SD well Energy levels, E2 strengths, actions S Microscopic Monte Carlo Simulation: 1. Drastic reduction of Number of parameters: - entry distribution - E1 strength in SD & ND well - level density in ND well 2. Quantitative analysis of Spectrum Intensity and Fluctuations

The simulation parameters 27 Al + 14 Te @ E lab =152 MeV 1. The Entry Distribution: it is NOT a real parameter (it can be measured or calculated) dσ/di [arb. un.] 1 8 6 4 CN fusion (Grazing code) 151 Tb (Cascade) n 2 n 2 4 6 8 1 Spin Entry 151 Tb E * [MeV] 4 3 2 1 ND SD E2 E1 E2 E1 tunneling γ SD yrast counts [arb.un.] 6 4 2 <I> = 58 h ± 8 h <U> = 8.3 ± 2.5 MeV 2 I=3 I=4 15 1 5 ND yrast 5 1 15 2 U [MeV] 5 1 15 2 U [MeV] 1 2 3 4 5 6 7 8 Spin A. Winther, Nucl. Phys. A594, 23(1995) F. Pulhofer, Nucl. Phys. A28, 267 (1977)

The simulation parameters 2. The E1 decay strength: the tail of the GDR E2 ND E1 E2 SD E1 T f GDR = Sum of 3 Lorentzian 3 ( E1) = H1 n K E1 B( E1) Eγ T(E1) [s -1-1 ] 4x1 19 19 3x1 19 19 f GDR 2x1 19 19 1x1 19 19 tunneling ND SD Hindrance factor ~ 1-2 (tuned to reproduce the intensity of the yrast band) K.E.G. Lobner, Phys. Lett. 26B, 369(1968) G. Leander, PRC38, 728(1988) 5 1 15 2 25 3 3 E γ [MeV]

151 Tb: simulated γ-spectra Counts [arb. un.] counts [x1 3 ] 6 4 2 7 5 3 Total γ γ matrix 2 E γ = 1 kev 2 E γ = 1 kev SIMUL DATA -1 1 E γ1 -E γ2 [kev] Counts [arb. un.] counts [x1 3 ] 15 1 5 15 1 5 SD gated matrix 2 E γ = 1 kev 2 E γ = 1 kev -1 1 E γ1 -E γ2 [kev] counts counts 15 1 5 375 125 175 25 2 15 1 5 E2 SD gated 75 125 175 E γ SIMUL DATA Analysis of Simulated Spectra: Spectrum Intensity (population) Fluctuations (number of bands)

Exp. versus Theory 151 Tb 196 Pb Analysis of Intensities exclusive quantities SD gated decay-flow E2+M1 SD gated γ spectrum E2 Bump SD gated γ γ 1 st Ridge inclusive quantities average decay-flow Rot-Plane 2 nd Ridge Total γ γ 1 st Ridge

SD gated quantities are sensitive to E1/E2 balance Enhanced octupole vibrations have been observed in A= 15 and A = 19 196 Pb, 19 Hg 194 Hg T(E1) [s -1 ] f GDR 4x1 19 3x1 19 2x1 19 1x1 19 SD E1 E1 5 1 15 2 25 3 enhanced GDR E γ [MeV] 151 Tb D. Rosbach et al. PLB513(21)9 T. Lauritsen et al., PRL89(22)28251 B(E1) ~ 1-4 -1-3 W.u. 1 to 1 times stronger Theory: Nilson + QRPA J. Kvasil, N. LoIudice et al., PRC75 (27)3436 T. Nakatsukasa et al., PLB343(1995)19 Standard GDR

Exp. versus Theory: Intensities 151 Tb 196 Pb exclusive quantities SD gated decay-flow E2+M1 enhanced GDR 151 Tb Standard GDR inclusive quantities average decay-flow other types of enhancement my be possible M1 s Good agreement with data in both A=15 and 19 region S. Leoni et al. PRL11(28)14252

Exp. versus Theory: Intensities 151 Tb 196 Pb exclusive quantities SD gated decay-flow E2+M1 inclusive quantities average decay-flow Good agreement with data in both A=15 and 19 region S. Leoni et al. PRL11(28)14252

Exp. versus Theory: Number of Discrete Bands I-2 I Cranking Onset of Damping (Chaos) n branch < 2 + decay-out (tunnel through potential barrier) 1 1-2 x1-4 + Population decay-flow (N path = 1/Σw i 2 ) W i I = 5,51 h 1 2 3 4 U [MeV] N path 1 75 5 25 151 Tb Yrast 1. Ridge 2 3 4 5 6 7 Spin - the flow bias strongly the population probability N Excited bands - TEST of nuclear structure & tunneling model over wide range of I and U N (2) eve path = µ 2 1 µ 1 P

N = N (2) eve path µ 2 1 µ 1 P N path N path N path 5 SD-gated 1. Ridge 25 e) 8 2. Ridge 6 4 2 1 5 151 Tb No decay-out c) 1. Ridge No decay-out a) 2 3 4 5 6 7 Spin [h] f) SD-gated 1. Ridge 196 Pb 2. Ridge No decay-out d) 1. Ridge No decay-out b) 1 2 3 4 5 Spin [h] 5 25 12 8 4 15 1 5 Good agreement with data in both A=15 and 19 region S. Leoni et al. PRL11(28)14252

OUTLOOK: Probes of Nuclear Structure and Tunneling 1. Strength of two-body interaction 2. Mass parameter in action S 3. ND level density Sensitivity mostly in A = 19 region

Probes of Nuclear Structures 1. Sensitivity to two-body interaction Strength Cranked shell model at T H = H def ωj x + V res V res (1,2) = v T δ(x 1 -x 2 ) 1 2 3 4 5 Spin [h] 1 196 196 Pb1 st Ridge 194 75 Pb.5 v Hg T N N (2) eve path = µ 2 1 µ 1 b) P Number of discrete SD bands S. Leoni et al. Submitted to PRC 5 25 v T 1.5 v T 3 h 4 h 5 h 1 Regular bands of chaotic nature v T A. Lopez-Martens, PRL1(28)1251

Probes of Nuclear Structures 2. Sensitivity to Mass Parameter in Action S ND SD Γ t = hωsd 2π DSD hω SD (1+ e 2 S 1 ) 196 Pb action integral along tunneling path S E ) = ds 2M ( V ( q( s)) E ) path ( M 1 2 driven by pairing M C m M S. Leoni et al. Submitted to PRC

Probes of Nuclear Structures 3. Sensitivity to level density in ND well ND level density S. Goriely et al. RIPL-2 (28) RIPL-2 RIPL-2 (21) Yrast Region of interest U 7 MeV RIPL-2

CONCLUSIONS: Warm Rotation in Superdeformed nuclei is a test bench for 1. cranked shell model at finite temperature 2. tunneling through potential barrier Experimental analysis 151 Tb & 196 Pb: Intensities and Fluctuations of Quasi-continuum spectra Data interpretation: Microscopic Monte Carlo simulation, almost parameter free Evidence for nuclear structure effects: enhanced E1 strength @ E γ = 1-2 MeV Sensitivity to V res, Inertial Mass and ND level density Ideal physics case for intense Stable/Radioactive beams & new generation detector arrays (AGATA & GRETA) Collaborators

Participants to the Experiments Milano University & INFN: A. Bracco, G. Benzoni, N. Blasi, S. Brambilla, F. Camera, F. Crespi, A. DeConto, S. Leoni, P.Mason, D. Montanari, B. Million, M. Pignanelli, O. Wieland IRES, Strasbourg: G.Duchene, J.Robin, D. Curien, Th.Bysrki, F.A.Beck et al., Krackow, Poland: A.Maj, M. Kmiecik, P.Bednarczyk, W. Meczynski, J. Styczen, et al. NBI, Copenhagen: B. Herskind, G. Hagemann, G. Sletten et al. Oliver Lodge Laboratory, University of Liverpool: P.J.Twin KTH, Stockholm: A.Odahara, K.Lagergren + EUROBALL collaborations Theory: E.Vigezzi (Milano University & INFN) M.Matsuo (Niigata University), Y.R.Shimizu (Kyushu University) et al.

194 Hg

Outlook: detailed analysis of other cases 1. The SD NUCLEUS 152 Dy So far investigated in details via a parameter dependent model T.Lautitsen et al., PRC75(27)6439 2. The PECULIAR case of 194 Hg 1 Regular bands of chaotic nature A. Lopez-Martens, PRL1(28)1251 chaotic intrinsic-motion regular rotational decay chaotic rotational decay Can theory reproduce this? ergodic bands rotational damping

n mix 14 12 1 8 6 151 Tb I π = 5 + -48 + -46 + 4 2 14 15 16 17 18 19 E [MeV] 4 151 Tb 196 Pb 194 Hg 194 Hg % 2 <2 2-4 n mix 4-6 >6

E2 strength α> Yb (Z=7) I=4h,U=2MeV highly aligned orbits 16 176 Yb Γ rot 98 168 Yb ω I no highly aligned orbits Γ µ Γ µ I-2 I-2 neutron Γ rot = 2(2 ω ) for U 2 MeV ω = ( ω N ) 2 + ( ω P ) 2

N path 1 5 No decay-out a) 1. Ridge 2 3 4 5 6 7 Spin [h] Ν path = 1/ΣW i 2 the flow bias strongly the population probability U SD [MeV] 1 2 1 8 6 4 2 1-1 1-2 1 1-2 1x1-4 d σ /d I ( 1 5 1 T b ) 1 5 1 T b e) 2 3 4 5 6 7 S p in [h ] N path 22 I = 5,51 h 1 2 3 4 U [MeV] ΣW i 2 W i

Exp. versus Theory I-2 I Cranking Onset of Damping (Chaos) n branch < 2 + decay-out (barriers and pairing) N path N path 75 5 25 1 75 5 25 Number of Discrete Bands 151 Tb 196 Pb SD gated Ridge SD gated Ridge 2. Ridge 2. Ridge 75 5 25 125 1 75 5 25 + Population decay-flow (N path = 1/Σw i^2 ) N path 1 75 5 25 Yrast 1. Ridge Excited bands 1. Ridge 125 1 75 5 25 2 3 4 5 6 7 1 2 3 4 5 Spin Spin Monte Carlo simulation: TEST of theory over wide spin range!