ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS

Similar documents
ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS

QUANTUM WELLS, WIRES AND DOTS

Electronic and Optoelectronic Properties of Semiconductor Structures

Minimal Update of Solid State Physics

PHYSICS OF SEMICONDUCTORS AND THEIR HETEROSTRUCTURES

Sheng S. Li. Semiconductor Physical Electronics. Second Edition. With 230 Figures. 4) Springer

Basic Semiconductor Physics

Physics of Low-Dimensional Semiconductor Structures

wave mechanics applied to semiconductor heterostructures

Semiconductor Physical Electronics

Luminescence basics. Slide # 1

CONTENTS. vii. CHAPTER 2 Operators 15

NUMERICAL CALCULATION OF THE ELECTRON MOBILITY IN GaAs SEMICONDUCTOR UNDER WEAK ELECTRIC FIELD APPLICATION

The Physics of Semiconductors

Chapter 3 Properties of Nanostructures

Optical Characterization of Solids

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

Semiconductor Physical Electronics

interband transitions in semiconductors M. Fox, Optical Properties of Solids, Oxford Master Series in Condensed Matter Physics

Spin Transport in III-V Semiconductor Structures

Lecture contents. Burstein shift Excitons Interband transitions in quantum wells Quantum confined Stark effect. NNSE 618 Lecture #15

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Laser Diodes. Revised: 3/14/14 14: , Henry Zmuda Set 6a Laser Diodes 1

Semiconductor Lasers II

Ultrafast Spectroscopy of Semiconductors and Semiconductor Nanostructures

Non-equilibrium Green s functions: Rough interfaces in THz quantum cascade lasers

Quantum Theory of the Optical and Electronic Properties of Semiconductors Downloaded from

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p.

Physics of Semiconductors

Solid Surfaces, Interfaces and Thin Films

Infrared Reflectivity Spectroscopy of Optical Phonons in Short-period AlGaN/GaN Superlattices

Spin Lifetime Enhancement by Shear Strain in Thin Silicon-on-Insulator Films. Dmitry Osintsev, Viktor Sverdlov, and Siegfried Selberherr

Contents Part I Concepts 1 The History of Heterostructure Lasers 2 Stress-Engineered Quantum Dots: Nature s Way

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

NANO/MICROSCALE HEAT TRANSFER

Diode Lasers and Photonic Integrated Circuits

LECTURES ON QUANTUM MECHANICS

Carrier Dynamics in Quantum Cascade Lasers

Terahertz Lasers Based on Intersubband Transitions

Electrical Transport. Ref. Ihn Ch. 10 YC, Ch 5; BW, Chs 4 & 8

Quantum Confinement in Graphene

Quantum Physics in the Nanoworld

Ballistic Electron Spectroscopy of Quantum Mechanical Anti-reflection Coatings for GaAs/AlGaAs Superlattices

Lasers and Electro-optics

A. F. J. Levi 1 EE539: Engineering Quantum Mechanics. Fall 2017.

GeSi Quantum Dot Superlattices

Doctor of Philosophy

Lecture 22: Ionized Impurity Scattering

Intervalence-band THz laser in selectively-doped semiconductor structure

Conserved Spin Quantity in Strained Hole Systems with Rashba and Dresselhaus Spin-Orbit Coupling

Physics of Semiconductors (Problems for report)

Harald Ibach Hans Lüth SOLID-STATE PHYSICS. An Introduction to Theory and Experiment

Semiconductor Physics and Devices Chapter 3.

Supplementary Figure 2 Photoluminescence in 1L- (black line) and 7L-MoS 2 (red line) of the Figure 1B with illuminated wavelength of 543 nm.

Lecture #2 Nanoultrasonic imaging

Luminescence Process

arxiv: v2 [cond-mat.mes-hall] 6 Apr 2011

6.730 Physics for Solid State Applications

Energy Band Calculations for Dynamic Gain Models in Semiconductor Quantum Well Lasers

R. MacKenzie, J.J. Lim, S. Bull, S. Sujecki and E.C. Larkins

Laser Physics OXFORD UNIVERSITY PRESS SIMON HOOKER COLIN WEBB. and. Department of Physics, University of Oxford

3.23 Electrical, Optical, and Magnetic Properties of Materials

Optical Properties of Lattice Vibrations

Index. buried oxide 35, 44 51, 89, 238 buried channel 56

Lok С. Lew Yan Voon Morten Willatzen. The k-p Method. Electronic Properties of Semiconductors. Springer

Concepts in Surface Physics

Optics, Optoelectronics and Photonics

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

Semiconductor Physics

3-1-2 GaSb Quantum Cascade Laser

Review of Semiconductor Physics

Summary lecture VI. with the reduced mass and the dielectric background constant

Spin scattering by dislocations in III-V semiconductors

SUPPLEMENTARY INFORMATION

Surfaces, Interfaces, and Layered Devices

Olivier Bourgeois Institut Néel

QUANTUM MECHANICS. Franz Schwabl. Translated by Ronald Kates. ff Springer

Coherent THz Noise Sources. T.M.Loftus Dr R.Donnan Dr T.Kreouzis Dr R.Dubrovka

Organic Molecular Solids

Spin relaxation of conduction electrons Jaroslav Fabian (Institute for Theoretical Physics, Uni. Regensburg)

Spin Dynamics in Semiconductors, Chapter 4 of Semiconductor Spintronics and Quantum Computation edited by D. D. Awschalom, D. Loss, and N. Samarth.

Study on Quantum Dot Lasers and their advantages

Transport-to-Quantum Lifetime Ratios in AlGaN/GaN Heterostructures. L. Hsu. General College, University of Minnesota, Minneapolis, MN USA

Raman spectroscopy of self-assembled InAs quantum dots in wide-bandgap matrices of AlAs and aluminium oxide

Journal of Atoms and Molecules

Fundamental concepts of spintronics

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA

ELECTRON MOBILITY CALCULATIONS OF n-inas

MODERN PHYSICS Frank J. Blatt Professor of Physics, University of Vermont

Quantum and Non-local Transport Models in Crosslight Device Simulators. Copyright 2008 Crosslight Software Inc.

Temperature Dependence of the Transport Properties of InN

Introduction to Optoelectronic Device Simulation by Joachim Piprek

Local and regular plasma oscillations in bulk donor type semiconductors

Preface Introduction to the electron liquid

Quantum Condensed Matter Physics Lecture 9

Effect of non-uniform distribution of electric field on diffusedquantum well lasers

COPYRIGHTED MATERIAL. Index

Decay of spin polarized hot carrier current in a quasi. one-dimensional spin valve structure arxiv:cond-mat/ v1 [cond-mat.mes-hall] 10 Oct 2003

List of Comprehensive Exams Topics

FYS Vår 2017 (Kondenserte fasers fysikk)

Transcription:

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS Second Edition B.K. RIDLEY University of Essex CAMBRIDGE UNIVERSITY PRESS

Contents Preface Introduction 1 Simple Models of the Electron-Phonon Interaction 1.1 General Remarks 1.2 Early Models of Optical-Phonon Confinement 1.2.1 The Dielectric-Continuum (DC) Model 1.2.2 The Hydrodynamic (HD) Model 1.2.3 The Reformulated-Mode (RM) Model 1.2.4 Hybrid Modes 1.3 The Interaction of Electrons with Bulk Phonons 1.3.1 The Scattering Rate 1.3.2 The Coupling Coefficients 1.3.3 The Overlap Integral in 2D 1.3.4 The 2D Rates 1.3.5 The ID Rates 1.4 The Interaction with Model Confined Phonons 2 Quantum Confinement of Carriers 2.1 The Effective-Mass Equation 2.1.1 Introduction 2.1.2 The Envelope-Function Equation 2.1.3 The Local Approximation 2.1.4 The Effective-Mass Approximation 2.2 The Confinement of Electrons 2.3 The Confinement of Holes 2.4 Angular Dependence of Matrix Elements 2.5 Non-Parabolicity 2.6 Band-Mixing v

Contents Quasi-Continuum Theory of Lattice Vibrations 3.1 Introduction 3.2 Linear-Chain Models 3.2.1 Bulk Solutions 3.2.2 Interface between Nearly Matched Media 3.2.3 Interface between Mismatched Media 3.2.4 Free Surface 3.2.5 Summary 3.3 The Envelope Function 3.4 Non-Local Operators 3.5 Acoustic and Optical Modes 3.6 Boundary Conditions 3.7 Interface Model 3.8 Summary Appendix: The Local Approximation Bulk Vibrational Modes in an Isotropic Continuum 4.1 Elasticity Theory 4.2 Polar Material 4.3 Polar Optical Waves 4.4 Energy Density 4.5 Two-Mode Alloys Optical Modes in a Quantum Well 5.1 Non-Polar Material 5.2 Polar Material 5.3 Barrier Modes: Optical-Phonon Tunnelling 5.4 The Effect of Dispersion 5.5 Quantization of Hybrid Modes Superlattice Modes 6.1 Superlattice Hybrids 6.2 Superlattice Dispersion 6.3 General Features 6.4 Interface Polaritons in a Superlattice 6.5 The Role of LO and TO Dispersion 6.6 Acoustic Phonons Optical Modes in Various Structures 7.1 Introduction 7.2 Monolayers 7.2.1 Single Monolayer 7.2.2 Double Monolayer 7.3 Metal-Semiconductor Structures vi 67 67 69 69 71 75 75 76 76 78 80 83 85 91 94 97 97 104 105 107 114 119 119 122 127 137 137 141 141 144 148 154 155 157 160 160 160 162 166 170

Vll Contents 7.4 Slab Modes 173 7.5 Quantum Wires 176 7.6 Quantum Dots 181 Electron-Optical Phonon Interaction in a Quantum Well 182 8.1 Introduction 182 8.2 Scattering Rate 183 8.3 Scattering Potentials for Hybrids 184 8.4 Matrix Elements for an Indefinitely Deep Well 185 8.5 Scattering Rates for Hybrids 187 8.6 Threshold Rates 189 8.7 Scattering by Barrier LO Modes 192 8.8 Scattering by Interface Polaritons 194 8.9 Summary of Threshold Rates in an Indefinitely Deep Well 197 8.9.1 Intrasubband Rates 197 8.9.2 Intersubband Rates 198 8.10 Comparison with Simple Models 199 8.11 The Interaction in a Superlattice 202 8.12 The Interaction in an Alloy 205 8.13 Phonon Resonances 206 8.14 Quantum Wire 208 8.15 The Sum-Rule 209 Appendix: Scalar and Vector Potentials 212 Other Scattering Mechanisms 217 9.1 Charged-Impurity Scattering 217 9.1.1 Introduction 217 9.1.2 The Coulomb Scattering Rate 220 9.1.3 Scattering by Single Charges 221 9.1.4 Scattering by Fluctuations in a Donor Array 223 9.1.5 An Example 225 9.2 Interface-Roughness Scattering 227 9.3 Alloy Scattering 230 9.4 Electron-Electron Scattering 231 9.4.1 Basic Formulae for the 2D Case 231 9.4.2 Discussion 234 9.4.3 Electron-Hole Scattering 236 9.5 Phonon Scattering 236 9.5.1 Phonon-Phonon Processes 236 9.5.2 Charged-Impurity Scattering 239 9.5.3 Alloy Fluctuations and Neutral Impurities 240 9.5.4 Interface-Roughness Scattering 241

10 11 12 Contents Quantum Screening 10.1 Introduction 10.2 The Density Matrix 10.3 The Dielectric Function 10.4 The 3D Dielectric Function 10.5 The Quasi-2D Dielectric Function- 10.6 The Quasi-ID Dielectric Function 10.7 Lattice Screening 10.8 Image Charges 10.9 The Electron-Plasma/Coupled-Mode Interaction 10.10 Discussion The Electron Distribution Function 11.1 11.2 11.3 11.4 11.5 11.6 11.7 Spin 12.1 12.2 12.3 12.4 12.5 The Boltzmann Equation Net Scattering Rate by Bulk Polar-Optical Phonons Optical Excitation Transport 11.4.1 The 3D Case 11.4.2 The 2D Case 11.4.3 The ID Case 11.4.4 Discussion Acoustic-Phonon Scattering 11.5.1 The 3D Case 11.5.2 The 2D Case 11.5.3 The ID Case 11.5.4 Piezoelectric Scattering Discussion Acoustic-Phonon Scattering in a Degenerate Gas 11.7.1 Introduction 11.7.2 Energy- and Momentum-Relaxation Rates 11.7.3 Low-Temperature Approximation 11.7.4 The Electron Temperature 11.7.5 The High-Temperature Approximation Relaxation Introduction The Elliot-Yafet process The D'yakonov-Perel Process 12.3.1 The DP Mechanism in a Quantum Well 12.3.2 Quantum Wires The Rashba Mechanism The Bir-Aranov-Pikus Mechanism viii 244 244 245 248 250 252 259 265 266 268 272 275 275 276 278 281 284 286 288 289 290 291 293 294 296 296 300 300 300 304 306 306 311 311 313 317 322 324 326 326

IX Contents 12.6 Hyperfine Coupling 329 Appendix 1 332 Appendix 2 333 Appendix 3 335 13 Electrons and Phonons in the Wurtzite Lattice 336 13.1 The Wurtzite Lattice 336 13.2 Energy Band Structure 338 13.3 Eigenfunctions 340 13.4 Optical Phonons 343 13.5 Spontaneous Polarization 346 Appendix 1 Symmetry 347 14 Nitride Heterostructures 349 14.1 Single Heterostructures 349 14.2 Piezoelectric Polarization 351 14.3 Polarization Model of Passivated HFET with Field Plate 354 14.4 The Polarization Superlattice 358 14.4.1 Strain 358 14.4.2 Deformation Potentials 359 14.4.3 Fields 359 14.5 The AlN/GaN Superlattice 360 14.6 The Quantum-Cascade Laser 366 Appendix Airy Functions 368 15 Terahertz Sources 369 15.1 Introduction 369 15.2 Bloch Oscillations 370 15.3 Negative-Mass NDR 373 15.3.1 The Esaki-Tsu Approach 375 15.3.2 Lucky Drift 376 15.3.3 The Hydrodynamic Model 377 15.4 Ballistic Transport 378 15.4.1 Optical-Phonon-Determined Transit-Time Oscillations 379 15.4.2 Transit-Time Oscillations in a Short Diode 379 15.4.3 Negative-Mass NDR 380 15.4.4 Bloch Oscillations 383 15.5 Femtosecond Generators 387 15.5.1 Optical Non-Linear Rectification. 387 15.5.2 Surge Current 388 15.5.3 Dember Diffusion 388 15.5.4 Coherent Phonons 389 15.5.5 Photoconductive Switch 389

Contents 15.6 CW Generators 389 15.6.1 Photomixing 389 15.6.2 Quantum-Cascade Lasers 390 Appendix 392 Appendix 1 The Polar-Optical Momentum-Relaxation Time in a 2D Degenerate Gas 393 Appendix 2 Electron/Polar Optical Phonon Scattering Rates in a Spherical Cosine Band 395 References 397 Index x