Lecture 12: FET AC Properties

Similar documents
Lecture 8: Ballistic FET I-V

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

Lecture contents. Metal-semiconductor contact

ECE 342 Electronic Circuits. 3. MOS Transistors

Check course home page periodically for announcements. Homework 2 is due TODAY by 5pm In 240 Cory

Lecture 3: Transistor as an thermonic switch

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

ECE 546 Lecture 10 MOS Transistors

EE 330 Lecture 14. Devices in Semiconductor Processes. Diodes Capacitors MOSFETs

Metal-oxide-semiconductor field effect transistors (2 lectures)

FIELD-EFFECT TRANSISTORS

Lecture 6: 2D FET Electrostatics

EE 330 Lecture 15. Devices in Semiconductor Processes. Diodes Capacitors MOSFETs

Lecture 23: Negative Resistance Osc, Differential Osc, and VCOs

Lecture 37: Frequency response. Context

EE 560 MOS TRANSISTOR THEORY

MOS Transistor Theory

EE 330 Lecture 12. Devices in Semiconductor Processes. Diodes

ECE315 / ECE515 Lecture-2 Date:

Lecture 23 Frequency Response of Amplifiers (I) Common Source Amplifier. December 1, 2005

EE 330. Lecture 35. Parasitic Capacitances in MOS Devices

V DD. M 1 M 2 V i2. V o2 R 1 R 2 C C

Lecture 25 ANNOUNCEMENTS. Reminder: Prof. Liu s office hour is cancelled on Tuesday 12/4 OUTLINE. General considerations Benefits of negative feedback

MOS Transistor I-V Characteristics and Parasitics

CMPEN 411 VLSI Digital Circuits. Lecture 03: MOS Transistor

EE105 - Fall 2006 Microelectronic Devices and Circuits

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

ECE 497 JS Lecture - 12 Device Technologies

Lecture 17 Field-Effect Transistors 2

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7

Lecture 3: CMOS Transistor Theory

MOSFET. Id-Vd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th

FIRST ORDER QUASI STATIC MOSFET CHANNEL CAPACITANCE MODEL SAMEER SHARMA

Long Channel MOS Transistors

EECE488: Analog CMOS Integrated Circuit Design. Introduction and Background

Microelectronic Devices and Circuits Lecture 13 - Linear Equivalent Circuits - Outline Announcements Exam Two -

nmosfet Schematic Four structural masks: Field, Gate, Contact, Metal. Reverse doping polarities for pmosfet in N-well.

B.Supmonchai June 26, q Introduction of device basic equations. q Introduction of models for manual analysis.

Transistor Noise Lecture 14, High Speed Devices

Week 5, Lectures 12-14, February 12-16, 2001

EECE488: Analog CMOS Integrated Circuit Design. Set 2: Background

Analysis of Halo Implanted MOSFETs

Class 05: Device Physics II

Transistor Noise Lecture 10 High Speed Devices

Lecture 2 - First order linear PDEs and PDEs from physics

EE105 - Fall 2005 Microelectronic Devices and Circuits

Lecture 2 Thin Film Transistors

Device Models (PN Diode, MOSFET )

Lecture 4: CMOS Transistor Theory

Course Administration. CPE/EE 427, CPE 527 VLSI Design I L04: MOS Transistors. Review: CMOS Process at a Glance

ECE-305: Fall 2017 MOS Capacitors and Transistors

Integrated Circuits & Systems

P. R. Nelson 1 ECE418 - VLSI. Midterm Exam. Solutions

Chapter 13 Small-Signal Modeling and Linear Amplification

MOS Transistor Theory

Application II: The Ballistic Field-E ect Transistor

Monolithic Microwave Integrated Circuits

Lecture 11: MOSFET Modeling

VLSI Design I; A. Milenkovic 1

EE 330 Lecture 13. Devices in Semiconductor Processes. Diodes Capacitors Transistors

Analysis and Design of Analog Integrated Circuits Lecture 7. Differential Amplifiers

Lecture 23 - Frequency Resp onse of Amplifiers (I) Common-Source Amplifier. May 6, 2003

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

FET Inrush Protection

Student Number: CARLETON UNIVERSITY SELECTED FINAL EXAMINATION QUESTIONS

ELEC 3908, Physical Electronics, Lecture 23. The MOSFET Square Law Model

Lecture 16 The pn Junction Diode (III)

Lecture 5: CMOS Transistor Theory

Device Models (PN Diode, MOSFET )

Mathematics 116 HWK 25a Solutions 8.6 p610

EECS130 Integrated Circuit Devices

EE 330 Lecture 16. Devices in Semiconductor Processes. MOS Transistors

Frequency Response Prof. Ali M. Niknejad Prof. Rikky Muller

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact

LECTURE 380 TWO-STAGE OPEN-LOOP COMPARATORS - II (READING: AH ) Trip Point of an Inverter

TMA 4195 Matematisk modellering Exam Tuesday December 16, :00 13:00 Problems and solution with additional comments

Modeling of High Voltage AlGaN/GaN HEMT. Copyright 2008 Crosslight Software Inc.

Product Summary: BVDSS RDSON (MAX.) D 60V 60mΩ 12A I D. UIS, Rg 100% Tested Pb Free Lead Plating & Halogen Free EMB60N06CS

Goal of this chapter is to learn what is Capacitance, its role in electronic circuit, and the role of dielectrics.

Design of Analog Integrated Circuits

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

Metal-Oxide-Semiconductor Field Effect Transistor (MOSFET)

Lecture 04: Single Transistor Ampliers

Outline. Vehicle Propulsion Systems Lecture 6. Hybrid Electrical Vehicles Serial. Hybrid Electrical Vehicles Parallel

LECTURE 3 MOSFETS II. MOS SCALING What is Scaling?

EKV MOS Transistor Modelling & RF Application

Final Examination EE 130 December 16, 1997 Time allotted: 180 minutes

EE 330 Lecture 16. MOSFET Modeling CMOS Process Flow

Lecture 1 Nanoscale MOSFETs. Course Structure Basic Concepts (1-38)

ECE606: Solid State Devices Lecture 23 MOSFET I-V Characteristics MOSFET non-idealities

Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.)

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Lecture 29 - The Long Metal-Oxide-Semiconductor Field-Effect Transistor (cont.) April 20, 2007

Mixed-Signal IC Design Notes set 1: Quick Summary of Device Models

EE C245 - ME C218 Introduction to MEMS Design Fall Today s Lecture

θ x = f ( x,t) could be written as

Lecture 04 Review of MOSFET

Transcription:

Lecture 1: FET AC Properties 016-0- Lecture 11, Hih Spee evices 016 1

Lecture 1: FET AC Properties Quasi-static operation iffusive an Ballistic FETs y-parameters Hybri p-moel Non-quasi Static effects Reain uie for chapter 6: 371-386, 394-41,. Omit any specific MESFET relate topics. Non-quasi static effects briefly. Note that Liu only covers the iffusive FETs. 016-0- Lecture 11, Hih Spee evices 016

Time varyin voltaes i (t) The transistor is chare neutral: Q G (t)+q CH (t)=0 I +i (t) The channel chare is ivie into two parts: Source an rain chare: Q CH =Q S +Q + When V s chanes (reasonable slowly): I (conuction current) chanes The amount of channel chare chanes -> chares has to be supplie throuh i an i s! i supplies the ate chare! i (t)=q / nee to etermine Q (v,v,v s ). 016-0- Lecture 11, Hih Spee evices 016 3

Quasi-Static Approximation Quasi-static approximation: the chare istribution in the channel reacts instantiounsly to any chanes in v S, v GS. tr, Q I ch L v sat, L v x, L v t Vali for time scales loner than Given by the time it takes for the electrons to propaate from source to rain f = 1 πτ tr 5 THz for a ballistic fet with L =60 nm. Ex let v GS chane from below V T to abiove V S >V S,sat n(x) t=t 3 v s (t) I t=t 3 t=t V T t=t 1 t=t t=t 1 x=l x 016-0- Lecture 11, Hih Spee evices 016 4

Chares an currents Gate Current rain Current Source Current i = Q G(t) i (t) = I t + Q t i S = I t + Q S t i : total instantaneous rain current I : Quasi-static rain current (From previous lectures!) /: capacitive/charin current from chane in channel/ate chare storae. Flows only when the voltae chanes! The evice is chare neutral: Q G = Q S + Q 016-0- Lecture 11, Hih Spee evices 016 5

Charin Currents V S i Q G V G V Charin currents: Q t + J x = 0 i s Q S Q i i G = Q G t Q S t = V Q S + V G Q S + V S Q S = i t V t V G t V s S Q t = V Q + V G Q + V S Q = i t V t V G t V S Q G t = V Q G + V G Q G + V S Q G = i t V t V G t V S Q S t + Q t + Q G t = 0 Quasi-static: Chare neutral evice KCL also hols i S = Q s t i = Q t efinition of transcapacitances C ii = Q i V i C jk = Q j V k This makes most capacitances positive 016-0- Lecture 11, Hih Spee evices 016 6

Charin Currents - capacitances V S V G V Q t + J x = 0 i s i i = C SS C S C SG C S C C G C GS C G C GG v s v v Ex: Voltae is applie to the ate terminal only i = C GG v i = C G v i s = C SG v V GS i C GG If all voltaes are equal: i s = i = i = 0 If one voltae is applie: i s + i + i = 0 Rows/ columns sum to zero 016-0- Lecture 11, Hih Spee evices 016 7 i s C SG i V GS C G i

Charin Current / total Current i s i i = C SS C S C SG C S C C G C GS C G C GG v s v v i Common Source C G C i = C GG C G v GS t v S t We nee to calculate Q G (V GS,V S ) an Q (V GS,V S ) Lare Sinal, Quasi-static FET moel v GS i = I v GS, v S + C v GS, v S t C v S G v GS, v S t i G = C GG v GS, v S v GS t C v S G v GS, v S t 016-0- Lecture 11, Hih Spee evices 016 8

iffusive FET Gate Chare: Q G Neative channel chares ivies onto rain an source chares Positive chare on ate terminal to make evice neutral Q S + + + + + + + + + + + - - -- - - - - - - - Q G Q More positive ate bias more positive chare on the ate Chare neutral evice: More neative chare in the channel V S,sat = (V GS V T ) u ch x, t = u ch 0, t 1 x L 1 α α = 1 v S V S,sat, V S < V S,sat 0 n x, t = WC G v GS t V T 1 x L 1 α Q Total Gate chare: G ( t) L L ' x ' 1 WCox uch x, t x uch (0, t) 1 1v s, v, v WLCox vs VT L 3 1 0 0 016-0- Lecture 11, Hih Spee evices 016 9

Ballistic FET Gate Chare: Q G E FS Simplest possible assumption: n x = n 0 = C G (v GS V T ) C G = 1 C ox + C q + 1 C c 1 L G L G Q G = n x x 0 Q G = WL C G (v GS V T ) A real ballistic FET has a complicate ban profile Crue approximation : constant potential until rain reservior 016-0- Lecture 11, Hih Spee evices 016 10

Ballistic FET Gate Chare: Q G E FS I W = C G 8ħ v GS V T 3m πq C G v GS V T I = qn 0 v(0) W E ΔE kin qv S x L G L G L G x A real ballistic FET has a complicate ban profile Simple approximation : quaratic rop between top-of-the-barrier an the rain Carriers ain extra kinetic enery Since J(x) = constant : n(x) ecreases mv x 016-0- Lecture 11, Hih Spee evices 016 11 = E 0 + ΔE kin

Ballistic FET Gate Chare: Q G I W = qn 0 v(0) ΔE kin = qv S x L G v x = v 0 + qv S m x L G x=0 x=l G Q G = L G n x x 0 Total Gate Chare n x = n 0 v 0 v 0 + qv S m x L G Q G = WL GC G V GS V T v 0 m qv S sinh 1 qv S m v 0 v 0 = 8ħ 3m qπ C G v GS V T n 0 = C G v GS V T 016-0- Lecture 11, Hih Spee evices 016 1

Total channel / ate chare in saturation Ballistic - flat t ox = 5nm t w = 7 nm m * =0.03 m 0 e r =e ox =14 L =50 nm V S =0.5V V S =0.6V Ballistic - quaratic Q G ecreases with increasin V S for the ballistic FET in saturation 016-0- Lecture 11, Hih Spee evices 016 13

Q G for a ballistic FET in saturation V S =0.5V V S =0.6V Ballistic - quaratic Q G ecrease with increasin V S since: A) Less back injecte rain chare B) More back injecte rain chare C) Larer carrier velocity towars the rain ) Smaller carrier velocity towars the rain E)??? nano.participoll.com A B C E 016-0- Lecture 11, Hih Spee evices 016 14 0

Transcapacitances: C G an C GG How much oes the total channel chare chane as V G an V is varie iffusive FET: C C Q V G G Q V WLC G ' ox WLC 3 ' ox 1 4 3 1 1 Ballistic FET constant potential (Saturation) Ballistic FET quaratic potential (Saturation) C = WL G C G C = 0 C = Q G V G = δ xy : = 1 if x=y = -1 if x y C xy = δ xy Q x V y C = Q G V > 0 016-0- Lecture 11, Hih Spee evices 016 15

Transcapacitances in saturation: C GG iffusive V S =0.5V V S =0.6V Ballistic - quaratic 016-0- Lecture 11, Hih Spee evices 016 16

Transcapacitances C G C GG V C S =0.5V Ballistic - G quaratic V S =0.6V iffusive 016-0- Lecture 11, Hih Spee evices 016 17

rain Chares Ballistic FET Neative channel chares ivies onto rain an source chares Q G + Q S + Q = 0 Q S + + + + + + + + + + + - - -- - - - - - - - Q G Q Q : When Q G chanes how much of that chare is supplie from the rain? Q S chare irectly supplie from the source Q chare irectly supplie from the rain Q S J Q J n x = J v + (0) + qv S m x L G n x J v 0 + qv S m x L G 0 016-0- Lecture 11, Hih Spee evices 016 18

rain Chares iffusive FET Neative channel chares ivies onto rain an source chares Q G = Q S + Q Q S + + + + + + + + + + + - - -- - - - - - - - Q G Q Q : When Q G chanes how much of that chare is supplie from the rain? efinition of rain chare: Q L ' WCox ( t) xuch ox s T L Q x 1.5 1 0.5 0 0 i t I Q t ' xx WLC v V V s =0.5V Q G V s =.0V Q 3 6 1 8 4 Q x 1.5 1 0.5 0 15 1 V =0.7V Q Q G V =0.3V V T =-0.5V In saturation: =0 Q /Q S =40/60-0.5 Q S -1-1 -0.5 0 0.5 1 V GS (V) -0.5-1 0 0.5 1 1.5 V S (V) 016-0- Lecture 11, Hih Spee evices 016 19 Q S

Transcapacitances iffusive FET C C Q V G G Q V WLC G ' ox WLC 3 ' ox 1 4 3 1 1 C Q V G WLC ' ox 15 14 11 1 3 3 3 C xy = δ xy Q x V y C Q V WLC ' ox 15 8 9 1 3 3 3 δ xy : = 1 if x=y = -1 if x y Note that C C 016-0- Lecture 11, Hih Spee evices 016 0

Transcapacitances Ballistic FET in saturation C GG Q G = WL GC G V GS V T v 0 m qv S sinh 1 qv S m v 0 Q S + Q G = 0 Q 0 C G C GG = Q G V G = WL G C G C,C G C G = Q G V = WL G C G C G = Q V G 0 C = Q V 0 Short channel effects can lea to neative C G! 016-0- Lecture 11, Hih Spee evices 016 1

minutes excercise C Q V I G WLC ' ox 3 1 =0 C Q V WLC 1 3 A B C E 016-0- Lecture 11, Hih Spee evices 016 G ' ox 15 14 11 V What is the physical reason that in saturation C =0 an C > 0 for an ieal, iffusive FET? A) The rain voltae oes not influence the total channel chare after pinch-off B) The ate voltae oes not influence the total channel chare after pinch-off C) Q S +Q +Q G =0 oes not hol in saturation. ) This is ue to approximations. C ij must always be C ji. E)??? nano.participoll.com 3 3 0

Lare Sinal Moel common source i i t Q v ( t), v ( t), v t I v ( t), v ( t) I C s s v s ( t) Q C s v v s, vs C v s, vs v v s v v s, vs Cv s, vs ( t), v ( t), v s s ( t) s Common source: vs v 0 v s v v s Gate Source v G C C v S C C v GS rain I (V GS, V S ) 016-0- Lecture 11, Hih Spee evices 016 3

Small sinal C Moel Common Source 0 Gate rain i i 0 I V GS v s, V S v s v GS m V GS I I V V GS, VS vs vs GS V S I V S V GS Source m m m WCGn L WC v ' ox sat V V 1 GS T ' WCoxn L f ( V, V s s V ) GS V T Lon channel Velocity Saturation m = 3 C G W 8ħ 3m qπ C G (V GS V T ) > 0 Ballistic 016-0- Lecture 11, Hih Spee evices 016 4

Quasi-static Common Source Small Sinal y-parameters i i t t C m v v s s C v s v C s v s C v s v i s v~ e ~ i e jt jt v i s v~ ~ i e s e jt jt ~ i ~ i y y,, y y,, v~ v~ s s y y y y,,,, jc m jc jc jc 016-0- Lecture 11, Hih Spee evices 016 5

Small Sinal Hybri-p moel ~ i ~ i + - y y,, y y,, v~ v~ -y 1 i i 1 y 11 +y 1 (y 1-y 1)v s s v + - + y y y y C -C =C s -C +C =C s,,,, jc m jc jc jc y +y 1 Gate C m v s rain C s C s jc m v s Source C m =C -C 016-0- Lecture 11, Hih Spee evices 016 6

Small Sinal Hybri-p moel Gate C C s C s m v s jc m v s rain General FET Moel C m =C -C Source C Gate C s C s m jωc v s Ballistic FET in saturation Gate C s m + jωc v s iffusive FET in saturation 016-0- Lecture 11, Hih Spee evices 016 7

Non-Quasi-Static For very short timescales: Chares has to be supplie from the source transient involves a charefront more complex math! tr, n(x) Q I ch u x L v sat, u x L v x L, ( V V n GS t x, t u x t n ch ch ch, iffusive Transistor: Continuity an rift equation T ) =0 t 1 t t 3 t 4 v s (t) I t = s V T t t 3 t 4 t=t 0 t 0 t 1 x=l x 016-0- Lecture 11, Hih Spee evices 016 8

Small sinal non-quasi static u x U u x t x, t u x t n ch ch ch, ~ i ch CH j, I WC n I ' ox U CH ~ i ch Assume small sinal sinusoial perturbation: u i ch ch x, t UCH x u~ chxe ~ jt x, t I x i xe CH ch jt ~ i ch 3 3 U C U Iˆ ju 3/ C U Iˆ ju 3/ CH 1 CH 1/3 Î is the moifie Bessel function CH Express Î as a series expansion, an solve for u ch (x) from bounary conitions (very teious alebra, see pp. 481-489) CH 1/3 CH 016-0- Lecture 11, Hih Spee evices 016 9

Non : Channel Resistance y y, N, N jc jc jc jc j j / 0 3 1 1 j / 0 1 / 0 3 1 1 j / 0 1 Essentially all corrections are zero/small if << 0... After plenty of alebra, one obtains the N y-parameters VGS V 0 n L 4 1 3 3 15 (1 ) T C 1 0 s Source r ch Gate C s r ch important when m is small, i.e. Not fully linear reion / small V s Or at very hih frequencies! r Gate ch Re y m C s r ch 1 1 3 3 15 10 1 101 1 s, N m m 1 + jω ω 0 τ 1 r rain m 1 j( / 0) 1 016-0- Lecture 11, Hih Spee evices 016 30 Source

Summary hybri p C Quasi-Static AC Gate rain Gate C rain v GS m V GS C s C s m ( 1 jcm) Source Source Gate C s r ch r + v 1 - rain m v 1 Non Quasi-Static AC Source Inorin C m 016-0- Lecture 11, Hih Spee evices 016 31