The Renormalization of Self Intersection Local Times of Fractional Brownian Motion

Similar documents
Self-intersection local time for Gaussian processes

A new proof of the sharpness of the phase transition for Bernoulli percolation on Z d

PDE Notes, Lecture #11

CLARK-OCONE FORMULA BY THE S-TRANSFORM ON THE POISSON WHITE NOISE SPACE

Survival exponents for fractional Brownian motion with multivariate time

CHAPTER 1 : DIFFERENTIABLE MANIFOLDS. 1.1 The definition of a differentiable manifold

The derivative of a function f(x) is another function, defined in terms of a limiting expression: f(x + δx) f(x)

Tensors, Fields Pt. 1 and the Lie Bracket Pt. 1

1. Aufgabenblatt zur Vorlesung Probability Theory

12.11 Laplace s Equation in Cylindrical and

1 Math 285 Homework Problem List for S2016

Convergence of Random Walks

NOTES ON EULER-BOOLE SUMMATION (1) f (l 1) (n) f (l 1) (m) + ( 1)k 1 k! B k (y) f (k) (y) dy,

Some Examples. Uniform motion. Poisson processes on the real line

Lecture Introduction. 2 Examples of Measure Concentration. 3 The Johnson-Lindenstrauss Lemma. CS-621 Theory Gems November 28, 2012

Lecture 6: Calculus. In Song Kim. September 7, 2011

Properties of delta functions of a class of observables on white noise functionals

Generalized Tractability for Multivariate Problems

A LIMIT THEOREM FOR RANDOM FIELDS WITH A SINGULARITY IN THE SPECTRUM

LECTURE NOTES ON DVORETZKY S THEOREM

Introduction to the Vlasov-Poisson system

Discrete Operators in Canonical Domains

Function Spaces. 1 Hilbert Spaces

WHITE NOISE APPROACH TO FEYNMAN INTEGRALS. Takeyuki Hida

Math 115 Section 018 Course Note

Quantum Mechanics in Three Dimensions

6 General properties of an autonomous system of two first order ODE

Self-normalized Martingale Tail Inequality

Euler equations for multiple integrals

Robust Forward Algorithms via PAC-Bayes and Laplace Distributions. ω Q. Pr (y(ω x) < 0) = Pr A k

Lectures - Week 10 Introduction to Ordinary Differential Equations (ODES) First Order Linear ODEs

DECOMPOSITION OF POLYNOMIALS AND APPROXIMATE ROOTS

Markov Chains in Continuous Time

Lecture XII. where Φ is called the potential function. Let us introduce spherical coordinates defined through the relations

Lecture 2 Lagrangian formulation of classical mechanics Mechanics

International Journal of Pure and Applied Mathematics Volume 35 No , ON PYTHAGOREAN QUADRUPLES Edray Goins 1, Alain Togbé 2

Table of Common Derivatives By David Abraham

QF101: Quantitative Finance September 5, Week 3: Derivatives. Facilitator: Christopher Ting AY 2017/2018. f ( x + ) f(x) f(x) = lim

The Principle of Least Action

On the Inclined Curves in Galilean 4-Space

Monotonicity for excited random walk in high dimensions

Survey Sampling. 1 Design-based Inference. Kosuke Imai Department of Politics, Princeton University. February 19, 2013

Agmon Kolmogorov Inequalities on l 2 (Z d )

Tractability results for weighted Banach spaces of smooth functions

Time-of-Arrival Estimation in Non-Line-Of-Sight Environments

FLUCTUATIONS IN THE NUMBER OF POINTS ON SMOOTH PLANE CURVES OVER FINITE FIELDS. 1. Introduction

Witten s Proof of Morse Inequalities

CHARACTERIZATION THEOREMS FOR DIFFERENTIAL OPERATORS ON WHITE NOISE SPACES

A note on asymptotic formulae for one-dimensional network flow problems Carlos F. Daganzo and Karen R. Smilowitz

Final Exam Study Guide and Practice Problems Solutions

Independence of some multiple Poisson stochastic integrals with variable-sign kernels

WUCHEN LI AND STANLEY OSHER

Some functions and their derivatives

Calculus of Variations

Computing Exact Confidence Coefficients of Simultaneous Confidence Intervals for Multinomial Proportions and their Functions

Sturm-Liouville Theory

Math 342 Partial Differential Equations «Viktor Grigoryan

Separation of Variables

Lower Bounds for the Smoothed Number of Pareto optimal Solutions

Least-Squares Regression on Sparse Spaces

A Spectral Method for the Biharmonic Equation

Existence and Uniqueness of Solution for Caginalp Hyperbolic Phase Field System with Polynomial Growth Potential

v r 1 E β ; v r v r 2 , t t 2 , t t 1 , t 1 1 v 2 v (3) 2 ; v χ αβγδ r 3 dt 3 , t t 3 ) βγδ [ R 3 ] exp +i ω 3 [ ] τ 1 exp i k v [ ] χ αβγ , τ 1 dτ 3

1 Heisenberg Representation

WELL-POSEDNESS OF A POROUS MEDIUM FLOW WITH FRACTIONAL PRESSURE IN SOBOLEV SPACES

A Unified Theorem on SDP Rank Reduction

On the number of isolated eigenvalues of a pair of particles in a quantum wire

Quantum mechanical approaches to the virial

Levy Process and Infinitely Divisible Law

Implicit Differentiation

Math Notes on differentials, the Chain Rule, gradients, directional derivative, and normal vectors

Exam 2 Review Solutions

Permanent vs. Determinant

arxiv: v1 [math.pr] 4 Feb 2016

Calculus in the AP Physics C Course The Derivative

arxiv: v1 [math.ac] 3 Jan 2019

Darboux s theorem and symplectic geometry

FURTHER BOUNDS FOR THE ESTIMATION ERROR VARIANCE OF A CONTINUOUS STREAM WITH STATIONARY VARIOGRAM

Discrete approximation of stochastic integrals with respect to fractional Brownian motion of Hurst index H > 1 2

Solution to the exam in TFY4230 STATISTICAL PHYSICS Wednesday december 1, 2010

A Note on Exact Solutions to Linear Differential Equations by the Matrix Exponential

SINGULAR PERTURBATION AND STATIONARY SOLUTIONS OF PARABOLIC EQUATIONS IN GAUSS-SOBOLEV SPACES

Iterated Point-Line Configurations Grow Doubly-Exponentially

SOME RESULTS ON THE GEOMETRY OF MINKOWSKI PLANE. Bing Ye Wu

Integration Review. May 11, 2013

arxiv: v1 [math.dg] 1 Nov 2015

Analysis IV, Assignment 4

Parameter estimation: A new approach to weighting a priori information

DIFFERENTIAL GEOMETRY, LECTURE 15, JULY 10

Lecture 12. F o s, (1.1) F t := s>t

Qubit channels that achieve capacity with two states

A connection between the stochastic heat equation and fractional Brownian motion, and a simple proof of a result of Talagrand

SELBERG S ORTHOGONALITY CONJECTURE FOR AUTOMORPHIC L-FUNCTIONS

The Subtree Size Profile of Plane-oriented Recursive Trees

arxiv: v2 [math.dg] 16 Dec 2014

Logarithmic spurious regressions

Linear Algebra- Review And Beyond. Lecture 3

Differentiation ( , 9.5)

Notes on Lie Groups, Lie algebras, and the Exponentiation Map Mitchell Faulk

d dx [xn ] = nx n 1. (1) dy dx = 4x4 1 = 4x 3. Theorem 1.3 (Derivative of a constant function). If f(x) = k and k is a constant, then f (x) = 0.

Transcription:

International Mathematical Forum, 2, 27, no. 44, 26-278 The Renormalization of Self Intersection Local Times of Fractional Brownian Motion Anis Rezgui Mathematics epartement INSAT centre urbain nor B.P. 676 8 Tunis Tunisia anis.rezgui@fsb.rnu.tn Abstract We present a new approach to treat the problem of self intersection local time of a -imensional Fractional Brownian motion base on the property of chaotic representation an the white noise analysis. This approach coul be generalize to general Gaussian processes. Mathematics Subject Classification: 6H4, 6J65 Introuction Let Ω, F,IP ) be an abstract probability space which coul be specifie later an {B t : t } a -imensional fractional Brownian Motion fbm) with Hurst parameter H =H,,H ) ], [. It is known that t B t = K H t, s)w s where {w t : t } is a stanar Brownian motion an K H =K H,,K H ) is a kernel, see for instance [6] for the proof). We are intereste, in this paper, in computing, when it exists, the selfintersection local time of the fbm. More precisely we stuy the existence of the limit when ɛ goes to zero, of the following sequence of processes where L ɛ T = T t P ɛ B t B s ) sts P ɛ x) = x 2 e 2ɛ, x IR. 2πɛ

262 Anis Rezgui Many questions arise here ) Fin out a relation between N the number of chaos to be subtracte from L ɛ T, an H such that N L ɛ T n= L ɛ T,n amits a limit in an appropriate space when ɛ. 2) Uner which conition on an H there is a blow up of the expectation IEL ɛ T ) when ɛ? 3) Suppose we are in the blow up case, fin out a renormalization factor r,h ɛ) such that ) r,h ɛ) L ɛ T IEL ɛ T ) is boune in L 2 Ω) when ɛ. 4) Fin out the limit in L 2 Ω) or in law, when it exists, of ) r,h ɛ) L ɛt IELɛT ) when ɛ. In view of what has been one in the case of the classical Brownian motion, see for instance [3][8] [9] [][7] an [8] we shoul compute explicitly the chaos of the fbm, for this we nee some tools from the white noise analysis.. Tools from White Noise Analysis We quote some white noise analysis concepts as introuce in [3], referring to [] for a systematic presentation. Consier a white noise space S IR), B,μ), where B is the weak Borel σ-algebra of S IR), an μ is the centere Gaussian measure whose covariance is given by the inner prouct of L 2 IR), in the sense that the vector value white noise has the characteristic function Cf) =IEe i ω,f )= μ[ω]e i ω,f = e 2 f,f, ) S IR) where ω, f = j= ω j,f j an f j SIR, IR). Then a realization of a vector of inepenent fractional Brownian motions B j,j=,,, is given by B j t) = ω j,k Hj = t K Hj s, t)ω j s)s. 2) We recall the explicit formula of the kernel of a one imensional fbm with Hurst parameter h ], [, see for instance [] h</2 K h t, u) =C h { t 2 )h /2 t u) h /2 3)

Fractional Brownian motion 263 h /2)u /2 h t u } r u) h /2 r h 3/2 r [,t] u), where C h is some constant. h>/2 t K h t, u) =C h u /2 h r u) h 3/2 r h /2 r [,t] u) 4) u where C h is some constant. Hence we consier inepenent -tuples of Gaussian white noise ω = w,,ω ) an corresponingly, -tuples of test functions f =f,,f ) SIR, IR ), an use the following multi-inex notation: F n, f n = n! = f, f = n i! 5) i= n tf n t,,t n ) tfi 2 t) 6) i= f n i i t,,t n ) 7) an similarly for : ω n :,F n where for -tuples of white noise the Wick prouct : : see []) generalizes to : ω n := i= : ω n i i :. 8) The Hilbert space L 2 )=L 2 μ) 9) is canonically isomorphic to the -fol tensor prouct of Fock spaces of symmetric square integrable functions: L 2 ) SymL 2 IR k,k! t)) k = F. ) k= For a general element ϕ of L 2 ) this implies the chaos expansion the norm of ϕ is given by ϕω) = : ω n :,F n, ) n= ϕ 2 L 2 ) = n! F n 2 2,n 2) n

264 Anis Rezgui with kernel functions F in F an where 2,n is the norm in L 2 IR n,t). Given ξ SIR), let us consier the Wick exponential : exp ω, ξ : exp ω, ξ 2 ) ξ,ξ) 3) = n n! : ω n :,ξ n, ω S IR). 4) The S-transform plays an important role in the stuy of stochastic processes in particular the computation of their chaos expansion, see for example [?][]; we efine the S-transform of ϕ in L 2 )as Sϕξ) ϕ, : exp., ξ : = n ϕ n,ξ n ) 2,n. 5) In particular, for Hermitian operators A in L 2 IR), we can efine the secon quantization of A as an operator ΓA) inl 2 ) given by SΓA)Φ ) =SΦA ) 6) for Φ L 2 ). Generalize functions are obtaine via a Gel fan triple S) L 2 ) S) with S) the projective limit Hilbert spaces S) k S) projlim k S) k an S) k DΓA k )) where A is operating on L 2 IR, u) Afu) = 2 /u 2 + u 2 +)fu). 2 The kernels of the self-intersection local time of the fbm so L ɛ T = T t P ɛ B t B s )st P ɛ x) = x 2 e 2ɛ = 2πɛ 2π) L ɛ T = T t ts IR e ix ξ ɛξ 2 2 ξ e ibt Bs) ξ ɛξ 2 2π) 2 ξ IR

Fractional Brownian motion 265 in view of 2), for j =,,, B j t Bs j = ΔK j,ω j with ΔK j = K Hj u, t) K Hj u, s) ) ) S e ibt Bs) ξ f) = S e i ΔK j,ω j ξ j f j ) S e i ΔK j,ω j ξ j )f j ) = e f j 2 2 2 2 2 = e f j 2 j= S IR) S IR) = e ξ 2 j ΔK j 2 2 2 e iξ j Δk j,f j The last equality was by efinition of γ an so ) ξe ɛξ 2 2π) 2 S e ibt Bs) ξ f) = 2π) IR using this elementary equality e αx2 2π 2 +iβx = we obtain SP ɛ B t B s )f) = Finally we obtain = = = n= 2π 2π 2π 2π IR j= j= γ j ω j )e i ΔK j,ω j ξ j + f j,ω j γ j ω j )e i ξ jδk j if j IR j= β 2 α e 2α ΔKj 2 2 + ɛ exp{ f j, ΔK j 2 2 ΔK j 2 2 + ɛ)} e ξ 2 j 2 ΔK j 2 2 +ɛ) e iξ j Δk j,f j ξ j t s 2h j + ɛ exp{ f j, ΔK j 2 2 t s 2H j + ɛ) } j= n j = n= n j! 2 )n j t s 2H j + ɛ) n j+/2 f j, ΔK j 2n j n! 2 )n n= j= t s 2H j + ɛ) n j+/2 Proposition Let n IN an, L ɛ T = L ɛ T,2 n = 2π n! 2 )n : ω 2 n :,lt,2 n ɛ then l ɛ T,2 n = T t t s j= t s 2H j + ɛ) n j +/2 ) ΔK 2 n ) f 2 n, ΔK 2 n.

266 Anis Rezgui 2. The expectation of the self-intersection local time of the fbm Let us now compute the expectation of the self-intersection local time of the fbm, IEL ɛ T ), it is just the first chaos, so in view of the last proposition ) IEL ɛ T ) = = T t t s 2π T 2π j= T s s j= s2h j + ɛ) /2 t s 2H j + ɛ) /2 we use the change of variables s = ɛ 2H z = αɛ)z with H = j= H j IEL ɛ T )=αɛ)ɛ 2 2π T αɛ) T αɛ)z j= ɛ H j H z 2H j +) /2 we ivie the integral in two parts { IEL ɛ 2 T αɛ)z T )=αɛ)ɛ z 2π j= ɛ H j H z 2H j +) /2 + T αɛ) T αɛ)z } z j= ɛ H j H z 2H j +) /2 the first integral in braces is boune. Set π the secon integral in braces, so T { αɛ) z T H ɛ 2 π T = 2H H z H log T log ɛ H = 2H Proposition 2 Let T>an. If H lim IEL ɛ T )=. ɛ Moreover if H = IEL ɛ T ) const. log ɛ, an if H > IEL ɛ T ) const. ɛ 2 2H where the constants epen on T, H an. If H < there is no blow up lim ɛ IELɛ T )= 2π T s T s s H. z

Fractional Brownian motion 267 Proposition 3 Suppose all H j = H. LetT>an. If H = H = IEL ɛ T )= ) 2H log ɛ +o). If H > ) IEL ɛ T )=C Hɛ 2H 2 +o), where C H = s s 2H +) /2. Remark If all H j = 2 an = 2 we are in the case H = an we obtain the Varahan renormalization term [23]. 3 The self-intersection local time of the fbm as a generalize function First of all let us recall Theorem. [9] Let Ω, F,m) be a measure space, an Φ λ a mapping efine on Ω with values in S). We assume that the S-transform of Φ λ ) is an m-measurable function of λ for any test function f SIR) 2) obeys to the following estimate SΦ λ f) C λ)exp{c 2 λ) A p f 2 2 } for some fixe p an for C L m), C 2 L m). Then Φ λ is Bochner-integrable in the Hilbert space S) q for q large enough, mλ)φ λ S) Ω an S mλ)φ λ )f) = mλ)sφ λ f). Ω Ω Using the last theorem an the following formula δ = e iξ x ξ 2π) IR

268 Anis Rezgui we coul efine δb t B s ) as a Bochner integral in S) an SδB t B s ))f) = exp{ f j, ΔK j 2 2π t s H t s } 2H j An so, again by the last theorem, if H < L T = T t j= st δb t B s ) is well efine in S). Suppose now that H. The iea is that if we subtract some of the first terms in the expansion of the exponential function in the expression of the S-transform of δb t B s ), we coul obtain an integrable function in factor of the remaining part, then the secon conition of Theorem will be satisfie. An so we coul efine a renormalization of the self-intersection local time in S). Let N IN an efine δ 2N) B t B s ) by its S-transform so Sδ 2N) B t B s )f) = 2π t s H n, n N Sδ 2N) B t B s )f) 2π t s H n, n N 2 )n we nee to estimate the L -norm of ΔK j, ΔK j for fixe j. ) We treat first the case when all H j > /2. Let h>/2, in view of 4) ΔK h = K h t, u) K h s, u) =C h u /2 h { [,s] u) + [s,t] u) t u 2 n t s j= j= } r u) h 3/2 r h /2 r f j, ΔK j 2n j 2 t s 2H jn j f j 2n j ΔK j 2n j t s 2H jn j r u) h 3/2 r h /2 r we obtain ΔK h C h {c T h /2 t s + c 2 t s h+/2 } suppose that t s is small enough, we get Sδ 2N) B t B s )f) t s 2n 2π t s H 2n t s 2H jn j n, n N 2π t s H +2N H ) exp{ 2 j= f j 2 } j= j= f j 2n j

Fractional Brownian motion 269 where H = max j H j. then Theorem 2. Let T> an N IN, suppose that L 2N) T 2N > H H T t is well efine as an element of S) an st δ 2N) B t B s ) lim ɛ L2N) ɛ = L 2N) in S) 2) When all H j < /2 we obtain a ba estimation of ΔK j an so we on t have a result. Remark When all H j =/2, the conition uner which L 2N) is well efine in S) is that 2N > 2, this correspon to a result obtaine in [9]. 4 Estimation of the L 2 -norms of the chaos of the fbm Suppose, in this section that we are in the blow up case i.e H an that H<. Now we state our main result 2 Theorem 3. Let T>, n an 2. Then, if H = log ɛ L ɛ T,2 n 2 has a finite non trivial limit when ɛ goes to zero an If H ], 3/2[, lim L ɛ T,2 n 2 2T 2 n)! ɛ bh,, n) /2. log ɛ 2π n!) lim ɛ L ɛ 2 n 2 2 n)! 2π n!) ch,, n) /2 3 2H)2 H) T 2 H.

27 Anis Rezgui If H =3/2 L ɛ T,2 n 2 has a finite non trivial limit when ɛ goes to zero an log ɛ If H > 3/2 lim L ɛ ɛ T,2 n 2 T 2 n)! ch,, n) /2. log ɛ 2π H n!) lim ɛ 2 3 4H L ɛ 2 n 2 = ɛ 2π 2T 2 n! /2, fh,, n)+gh,, n)) n!2 n where the constants b, c, f an g are given in 2), 23), 9) an 22) Remark )The results of the last theorem generalizes the case of the classical Brownian motion i.e H =/2, in fact it was shown in [3] that the renormalization factor was log ɛ /2 when = 3 an ɛ 3 2 when 4. 2)It was shown in [2] that when = 2 an / < H < 3 there is no nee 2 to renormalize by multiplication, the result in our theorem coul be seen as a generalization for H</2an 2. 3)The case H>/2is more complicate because we obtain a specific singularity in ɛ for each chaos. Which is not so surprising because when H>/2 the fbm is smoother an, intuitively, its self intersection local time is worse. Proof of Theorem 3 For n IN the 2 nth chaos is given by see proposition ) L ɛ T,2 n = 2π n! 2 )n : ω 2 n :,lt,2 n ɛ l ɛ T,2 n = T t t s j= t s 2H j + ɛ) n j +/2 ) ΔK 2 n so IE{L ɛ T,2 n )2 } = 2π) n!) 2 2 )2n 2 n)! lt,2 n ɛ 2 L 2 IR 2n ) 7) In view of 7), we nee to estimate lt,2 n ɛ 2 IR = 2n lɛ T,2 n 2 2,2n, IR 2n 2n u T t T t tst s l ɛ T,2 n 2 2,2n = j= ΔK j t, s) 2n j t, s)δk j t, s) 2n j t,s ) t s 2H j + ɛ) t s 2H j + ɛ) ) nj +/2

Fractional Brownian motion 27 by using Fubini theorem we first get 2n u ΔK j t, s) 2n j t, s)δk j t, s) 2n j t,s )= IR 2n j= = = = = j= IR 2n j 2n j j= i= 2n j j= i= j= IR 2n j uδk j t, s) 2n j t, s)δk j t, s) 2n j t,s ) u j i ΔK jt, s)t, s)δk j t, s)t,s ) ) IE ΔB j t, s)δb j t,s ) t t 2H j + s s 2H j t s 2H j s t 2H j ) 2nj so l ɛ T,2 n 2 2,2n = T t T t tst s ) 2nj t t 2H j + s s 2H j t s 2H j s t 2H j ) nj 8) t s 2H j + ɛ) t s 2H +/2 j + ɛ) j= in view of the symmetry of the omain an the integran function it suffices to integrate only on T T2 where T = { <s <t <s<t<t} an T 2 = { <s <s<t <t<t}. Let us first integrate over T, we make the following change of variables x = t s y = t s z = s t where t is consiere as a parameter. Set l ɛ, T,2 n 2 2,2n resp. lɛ,2 T,2 n 2 2,2n ) the integral over T resp. T 2 ), we obtain j= l ɛ, T,2 n 2 2,2n = T t x+y+z t xyz x + z) 2H j +y + z) 2H j x + y + z) 2H j z 2H j ) 2nj) x 2H j + ɛ)y 2H j + ɛ) ) nj +/2

272 Anis Rezgui it is almost impossible to compute this integral at least for us) when all H j are ifferent, so let us suppose that all H j are equal to some H. Denote by θ t ɛ) = t, an make the following change of variables, x, y, z) = ɛ 2H ɛ 2H x,y,z ), we get T l ɛ, T,2 n 2 2,2n = ɛ 3 2H xyz x+y+z θ tɛ) x + z) 2H +y + z) 2H x + y + z) 2H z 2H ) 2n, x 2H + )y 2H +) by a symmetry argument in x, y) l ɛ, T,2 n 2 2,2n =2ɛ 3 2H T x+y+z θ t ɛ) x y θ tɛ) xyz x + z) 2H +y + z) 2H x + y + z) 2H z 2H ) 2n, x 2H + )y 2H +) enote by f H x, y, z) =x + z) 2H +y + z) 2H x + y + z) 2H z 2H an by ft, H,, n, ɛ) = x+y+z θ t ɛ) x y θ tɛ) xyz ) 2n f H x, y, z). x 2H + )y 2H +) First, note that f H x, y, z) x 2H an for H > x 4Hn xy <, x y x 2H + )y 2H +) this implies that for every z IR + x y f H x, y, z) 2n xy x 2H + )y 2H +)

Fractional Brownian motion 273 exists. On the other han for α ], 2 2H[, z α f H x, y, z) 2n ecreases to zero when z tens to infinity, then f H x, y, z) 2n fh,, n) = z xy < IR + x y x 2H + )y 2H +) an so that lim ft, H,, n, ɛ) =fh,, n). 9) ɛ Therefore we obtain, if H ], 3/2[ an, if H 3/2 Suppose now H = an then where an lim ɛ lɛ, 2 n 2 2,2n = lim 3 ɛ ɛ 2H l ɛ, 2 n 2 2,2n =2TfH,, n). l ɛ, T,2 n 2 2,2n =2ɛ 2H T ft, H,, n, ɛ) θ t ɛ) xy x y θ tɛ) ft, H,, n, ɛ) log ɛ ah,, n) = bh,, n) = sup sup t T ɛ> So we obtain Let us now treat l ɛ,2 2 n 2 2,2n, x y x t ft, H,, n, ɛ) x 4Hn x 2H + )y 2H +) ah,, n) θ t ɛ){ + bh,, n)}, log ɛ xy xy log ɛ x y θ tɛ) x 4Hn 2) x 2H + )y 2H +) x 4Hn x 2H + )y 2H +) log ɛ lɛ, T,2 n 2 2,2n T 2 ah,, n) { + bh,, n)}. log ɛ T l ɛ,2 2 n 2 2,2n =2ɛ 3 2H t gt, H,, n, ɛ). 2)

274 Anis Rezgui where gt, H,, n, ɛ) = x+y z θ t ɛ) z x y θ tɛ) xyz ) 2n g H x, y, z) x 2H + )y 2H +) an g H x, y, z) =x z) 2H +y z) 2H x + y z) 2H z 2H we have g H x, y, z) 2x 2H an so z z 4Hn+2 z x y x y ) 2n g H x, y, z) xy = x 2H + )y 2H +) xy g H x, y, ) ) 2n z 2H x 2H + )z 2H y 2H +) is well efine on IR + an for H > 3/2, one can choose α ], 2H 2[ such that when z + ) 2n g H x, y, z) z α xy z x y x 2H + )y 2H +) an then IR + z z x y xy ) 2n g H x, y, z) x 2H + )y 2H +) = gh,, n) < 22) so that lim gt, H,, n, ɛ) =gh,, n). ɛ Suppose H =, the same computation as in the case of l ɛ, 2 n 2 2,2n leas to an finally log ɛ lɛ,2 T,2 n 2 2,2n 22n T 2 ah,, n) { + bh,, n)} log ɛ log ɛ lɛ T,2 n 2 2,2n 222n T 2 ah,, n) { + bh,, n)}. log ɛ

Fractional Brownian motion 275 Suppose now <H<3/2, we have θtɛ) gt, H,, n, ɛ) zz 4Hn+2 θtɛ) zz 2 2H = 2 2n ch,, n). x y θ t ɛ) z x y xy g H x, y, ) xy zx) 2H + )zy) 2H +) 2 2n x 4Hn x 2H y 2H So that then gt, H,, n, ɛ) 2 2n ch,, n). 23) l ɛ,2 2 n 2 2,2n 2 2n ch,, n) 3 2H)2 H) T 4 2H we know that lim l ɛ, ɛ T,2 n 2 2,2n =, then lim l ɛ ɛ 2 n 2,2n exists. Finally let us suppose that H =3/2 gt, H,, n, ɛ) + θtɛ) l ɛ,2 2 n 2 2,2n =2 z z T z x y θ tɛ) z x y θ tɛ) xy t gt, H,, n, ɛ) ) 2n g H x, y, z) xy x 2H + )y 2H +) ) 2n g H x, y, z). x 2H + )y 2H +) The first term is boune by 2 2n xy x 4Hn =2 2n eh,, n), x y x 2H + )y 2H +) the secon term is boune by θtɛ) z 2 2n x 4Hn ) z n+/2 =2 x 2n ch,, n) log θ t ɛ), 2H y 2H so log ɛ lɛ,2 2 n 2 2,2n 2 x y log ɛ 22n eh,, n)t + 22n H T 222n ch,, n)t + log tt. log ɛ

276 Anis Rezgui Therefore has a finite non trivial limit an References log ɛ lɛ 2 n 2 2,2n lim ɛ log ɛ lɛ 2 n 2 2,2n 22n ch,, n)t. H [] Als E. an Nualart N.: Stochastic integration with respect to the fractional Brownian motion. Stochastics an Stochastics Reports 75, 29-52, 23. [2] Bolthausen E.: On the construction of the three imensional polymer measure. Prob. Theory Rel. Fiels 97 993) 8-. [3] Drumon C., e Faria D. an Streit L.: The renormalization of self intersection local times I: The chaos expansion. IDAQP 3 2) 223-236. [4] Drumon C., e Faria D. an Streit L.: The square of self intersection local time of Brownian motion. CMS Conf. Proc. 28 2) 5-22. [5] Dynkin E.B.: Polynomials of the occupation fiel an relate ranom fiels. J. Func. Anal. 58 984) 2-52. [6] Dynkin E.B.: Regularize self-intersection local times of planar Brownian motion. Ann. Prob. 6 988) 58-74. [7] Ewars S.: The statistical mechanics of polymers with exclue volume. Proc. Phys. Sci. 85 965) 63-624. [8] Eahbi M., Lacayo R., Solé J.L., Vives J. an Tuor C.A.: Regularity an asymtotic behaviour of the local time for the -imensional fractional Brownian motion with N-parameters. Preprint. [9] e Faria M., Hia T., Streit L. an Watanabe H.: Intersection local times as generalize white noise functionals. Acta Appl. Math. 46 997) 35-362. [] Hia T., Kuo H-H., Potthoff J. an Streit L.: White Noise. An Infinite-Dimentional Calculus. Mathematics an its Applications 253. Kluwer-Acaemic, Dorrecht 993).

Fractional Brownian motion 277 [] Imkeller P., Perez-Abreu V. an Vives J.: Chaos expansions of ouble intersection local time of brownian motion in IR an renormalization. Stoch. Proc. App. 56 995) -34. [2] Imkeller P. an Yan J-A.: Multiple intersection local time of planar Brownian motion as a particular Hia istribution. J. Func. Anal. 4 996) 256-273. [3] Kuo H-H.: Donker s elta function as a generalize Brownian functional an its application. Lecture Notes in Control an Information Sciences, 49 983) 67-78. [4] Le Gall J.F.: Sur le temps local intersection u mouvement Brownian plan et la méthoe e renormalization e Varahan. L.N.M 23 34-33. Springer, Berlin 985). [5] Lévy P.: Le mouvement brownien plan. Amer. J. Math. 62 94) 44-487. [6] Nualart D.: Stochastic integration with respect to the fractional Brownian motion an applications. Preprint. [7] Nualart D. an Vives J.: Chaos expansion an local times. Publ. Math. 362) 992) 827-836. [8] Rezgui A. an Streit L.: The renormalization of self intersection local times of Brownian motion. Preprint. [9] Rosen J.: A local time approach to the self-intersections of Brownian paths in space. Comm. Math. Phys. 88 983) 327-338. [2] Rosen J.: Tanaka s formula an renormalization for intersections of planar Brownian motion. Ann. Prob. 4 986) 245-25. [2] Rosen J.: The intersection local time of fractional Brownian motion in the plane. J. Multi. Analy. 23 987) 37-46. [22] Symanzik K.: Eucliean Quantum Fiel Theory, in R. Jost e., Local Quantum Theory. Acaemic, New York. 969). [23] Varahan S.R.S.: Appenix to Eucliean Quantum Fiel theory by Szymanzik K., in: R. Jost e., local Quantum Theory. Acaemic, New York 969).

278 Anis Rezgui [24] Watanabe H.: The local time of self-intersections of Brownian motions as a generalize Brownian functionals. Lett. Math. Phy. 23 99) -9. [25] Westwater M. J.: On Ewars moel for long polymer chains. Commun. Math. Phys. 72 98) 3-74. [26] Wolpert R.: Weiner path intersections an local time. J. Func. Anal. 3 978) 329-34. [27] Wolpert R.: Local time an a particle picture for Eucliean fiel theory. J. Func. Anal. 3 978) 34-357. [28] Yor M.: Renormalization et convergence en loi pour les temps locaux intersections u mouvement brownien ans IR 3. L.N.M 23 35-365. Springer, Berlin 985). Receive: October 27, 26