Formation of double white dwarfs and AM CVn stars

Similar documents
Understanding the AM CVn population:

The Evolution of Close Binaries

Modelling the formation of double white dwarfs

Mass Transfer in Binaries

arxiv:astro-ph/ v1 17 Oct 2006

FORMATION AND EVOLUTION OF COMPACT BINARY SYSTEMS

White Dwarf Binaries in Contact: Dynamical Stability at the Onset of Mass Transfer

arxiv: v1 [astro-ph.sr] 29 Dec 2011

Detached white dwarf main-sequence star binaries. B. Willems and U. Kolb

The evolution of the self-lensing binary KOI-3278: evidence of extra energy sources during CE evolution

arxiv: v1 [astro-ph] 6 Aug 2007

arxiv:astro-ph/ v2 6 Apr 2004

CATACLYSMIC VARIABLES. AND THE TYPE Ia PROGENITOR PROBLEM PROGENITOR PROBLEM

Formation and evolution of compact binaries with an accreting white dwarf in globular clusters.

arxiv:astro-ph/ v1 23 Jan 2003

Helium white dwarfs in binaries

Gravitational Waves from Compact Object Binaries

arxiv: v1 [astro-ph.sr] 14 Oct 2009

Population synthesis for double white dwarfs II. Semi-detached systems: AM CVn stars

On the formation of neon-enriched donor stars in ultracompact X-ray binaries

Red giant depletion in globular cluster cores

Rotation in White Dwarfs: Stellar Evolution Models

Five and a half roads to from a millisecond pulsar. Thomas Tauris AIfA, University of Bonn Max-Planck-Institut für Radioastronomie, Bonn

arxiv: v1 [astro-ph] 22 May 2008

7. BINARY STARS (ZG: 12; CO: 7, 17)

The AM CVn Binaries: An Overview. Christopher Deloye (Northwestern University)

Based on a study by L.Yungelson, J.-P.Lasota, G.Dubus, G. Nelemans, E. van den Heuvel, S. Portegies Zwart, J. Dewi

Cataclysmic variables with evolved secondaries and the progenitors of AM CVn stars

White Dwarf mergers: AM CVn, sdb and R CrB connections

arxiv: v1 [astro-ph.sr] 2 Apr 2009

arxiv: v1 [astro-ph.sr] 5 Aug 2013

arxiv: v2 [astro-ph.sr] 30 Nov 2009

The gravitational wave background from cosmological compact binaries

Constraining Roche-Lobe Overflow Models Using the Hot-Subdwarf Wide Binary Population

arxiv: v1 [astro-ph.sr] 23 Jun 2017

arxiv: v1 [astro-ph] 29 Apr 2008

Rob Izzard. February 21, University of Utrecht. Binary Star Nucleosynthesis. Nucleosynthesis. Single Star Evolution. Binary Star.

arxiv: v1 [astro-ph] 11 Oct 2008

arxiv: v1 [astro-ph] 10 Nov 2008

Asymmetric supernova explosions and the formation of short period low-mass X-ray binaries

Principles and Paradigms for ppne & PNe Engines: (More on CE, Accretion, B-fields)

6 th lecture of Compact Object and Accretion, Master Programme at Leiden Observatory

arxiv: v1 [astro-ph.sr] 14 Oct 2015

Thermal-timescale mass transfer and magnetic CVs

arxiv:astro-ph/ v1 8 Nov 2004

Received 2001 November 22; accepted 2002 February 18

SN1987A before(right) and during the explosion. Supernova Explosion. Qingling Ni

Creating ultra-compact binaries in globular clusters through stable mass transfer. M. V. van der Sluys, F. Verbunt, and O. R. Pols

Formation of millisecond pulsars I: Evolution of low-mass x-ray binaries with O_orb> 2days Tauris, Th.M.; Savonije, G.J.

arxiv: v2 [astro-ph.sr] 16 Sep 2014

Evolution of binary stars

Creating ultra-compact binaries in globular clusters through stable mass transfer

arxiv:astro-ph/ v1 3 Jun 2003

Astronomy. Astrophysics. Population synthesis of ultracompact X-ray binaries in the Galactic bulge

Galactic distribution of merging neutron stars and black holes prospects for short gamma-ray burst progenitors and LIGO/VIRGO

Formation and evolution of compact binaries in globular clusters I. Binaries with white dwarfs

Double-core evolution and the formation of neutron star binaries with compact companions

Cataclysmic variables

arxiv: v1 [astro-ph.sr] 19 Sep 2010

Lecture 13: Binary evolution

Luminous supersoft X-ray sources Bitzaraki, O.M.; Rovithis-Livaniou, H.; Tout, C.A.; van den Heuvel, E.P.J.

TRANSIENT LOW-MASS X-RAY BINARY POPULATIONS IN ELLIPTICAL GALAXIES NGC 3379 AND NGC 4278

The Evolution of Low Mass Stars

Unstable Mass Transfer

The Theory of Supernovae in Massive Binaries

The orbital periods of subdwarf B binaries produced by the first stable Roche Lobe overflow channel

ASTRONOMY AND ASTROPHYSICS The evolution of main sequence star + white dwarf binary systems towards Type Ia supernovae

Stellar Evolution. Eta Carinae

The Formation of the Most Relativistic Pulsar PSR J

Lecture Outlines. Chapter 20. Astronomy Today 8th Edition Chaisson/McMillan Pearson Education, Inc.

The evolution of naked helium stars with a neutron-star companion in close binary systems

arxiv: v1 [astro-ph.co] 26 Jan 2009

Chapter 12 Review. 2) About 90% of the star's total life is spent on the main sequence. 2)

Formation and evolution of white dwarf binaries

Stars + Galaxies: Back of the Envelope Properties. David Spergel

Symbiotic stars: challenges to binary evolution theory. Joanna Mikołajewska Copernicus Astronomical Center, Warsaw

Common Envelope Evolution

Massive Stellar Black Hole Binaries and Gravitational Waves

Dr. Reed L. Riddle. Close binaries, stellar interactions and novae. Guest lecture Astronomy 20 November 2, 2004

Astronomy. Astrophysics. The birth rate of supernovae from double-degenerate and core-degenerate systems. X. Meng 1,2 and W. Yang 1,3. 1.

arxiv:astro-ph/ v1 29 May 1996

Dr G. I. Ogilvie Lent Term 2005 INTRODUCTION

Evolutionary Status of Epsilon Aurigae

Accretion in Binaries

Recent Progress on our Understanding of He-Dominated Stellar Evolution

The evolution of binary fractions in globular clusters

Evolution from the Main-Sequence

Ph. Podsiadlowski, N. Langer, A. J. T. Poelarends, S. Rappaport, A. Heger, E. Pfahl

THE FORMATION OF LONG-PERIOD ECCENTRIC BINARIES WITH A HELIUM WHITE DWARF COMPANION

Stellar collisions and their products

ASTRONOMY AND ASTROPHYSICS. D. Vanbeveren, J. Van Bever, and E. De Donder

HR Diagram, Star Clusters, and Stellar Evolution

A PIONIER View on Mass-Transferring Red Giants

Announcement: Quiz Friday, Oct 31

On the α formalism for the common envelope interaction

Astronomy. Astrophysics. The gravitational wave signal from diverse populations of double white dwarf binaries in the Galaxy. S.YuandC.S.

White Dwarfs in Binary Systems

Astronomy. Astrophysics. A pair of CO + He white dwarfs as the progenitor of 2005E-like supernovae? Xiangcun Meng 1,2 and Zhanwen Han 1,2

The structure and evolution of stars. Learning Outcomes

Thermonuclear shell flashes II: on WDs (or: classical novae)

Transcription:

Formation of double white dwarfs and AM CVn stars Marc van der Sluys 1,2 Frank Verbunt 1, Onno Pols 1 1 Utrecht University, The Netherlands Mike Politano 3, Chris Deloye 2, Ron Taam 2, Bart Willems 2 2 Northwestern University, Evanston, IL, USA; 3 Marquette University, Milwaukee, WI, USA AM CVn workshop, Cape Town, September 2, 2008

Outline 1 Common envelopes Observed double white dwarfs Common-envelope evolution Envelope ejection 2 Progenitor models Single-star models 3 Reverse evolution Second mass-transfer phase Stable first mass-transfer phase Envelope ejection as first mass transfer 4 Future work

Observed double white dwarfs WD 0316+768, Adapted from Maxted et al., 2002

Observed double white dwarfs System P orb a orb M 1 M 2 q 2 τ (d) (R ) (M ) (M ) (M 2 /M 1 ) (Myr) WD 0135 052 1.556 5.63 0.52 ± 0.05 0.47 ± 0.05 0.90 ± 0.04 350 WD 0136+768 1.407 4.99 0.37 0.47 1.26 ± 0.03 450 WD 0957 666 0.061 0.58 0.32 0.37 1.13 ± 0.02 325 WD 1101+364 0.145 0.99 0.33 0.29 0.87 ± 0.03 215 PG 1115+116 30.09 46.9 0.7 0.7 0.84 ± 0.21 160 WD 1204+450 1.603 5.74 0.52 0.46 0.87 ± 0.03 80 WD 1349+144 2.209 6.59 0.44 0.44 1.26 ± 0.05 HE 1414 0848 0.518 2.93 0.55 ± 0.03 0.71 ± 0.03 1.28 ± 0.03 200 WD 1704+481a 0.145 1.14 0.56 ± 0.07 0.39 ± 0.05 0.70 ± 0.03-20 a HE 2209 1444 0.277 1.88 0.58 ± 0.08 0.58 ± 0.03 1.00 ± 0.12 500 a Unclear which white dwarf is older See references in: Maxted et al., 2002 and Nelemans & Tout, 2005.

Common envelope Average orbital separation: 7 R Typical progenitor: M c > 0.3 M R 100 R

Common envelope

Envelope ejection Classical α-common envelope (spiral-in): orbital energy is used to expel envelope (Webbink, 1984): [ G M1f M 2 U bind = α CE G M ] 1i M 2 2 a f 2 a i α CE is the common-envelope efficiency parameter γ-envelope ejection (EE, spiral-in not necessary): envelope ejection with angular-momentum balance (Nelemans et al., 2000): J i J f J i = γ CE M 1i M 1f M 1i + M 2 γ CE 1.5 is the efficiency parameter

Envelope ejection Assumption: Envelope ejection occurs much faster than nuclear evolution, hence: core mass does not grow during envelope ejection no accretion by companion during envelope ejection From Eggleton models: White-dwarf mass fixes evolutionary state of progenitor Giant radius determines orbital period of progenitor Envelope binding energy dictates what α CE is needed

Progenitor models Eggleton code 199 singe-star models 0.8-10 M RGB AGB

Progenitor models R provides P orb at onset of EE RGB AGB

Progenitor models Envelope U bind provides α CE RGB AGB

Evolutionary scenarios Stable + unstable MS + MS Unstable + unstable MS + MS Stable M.T. (cons.) Unstable M.T. (γ-ee) WD + MS WD + MS Unstable M.T. (α-ce) Unstable M.T. (α, γ-ee) WD + WD WD + WD

Confusogram Confusogram Observation: M wd1, M wd2, P dwd Yes Possible progenitor: M wd1, M 2, Progenitor model: M 2, R 2, M c, U b R 2 = R max when M c = M wd2? No Not a progenitor P prog (M 1,M 2,R 2) P prog P dwd : acceptable α/γ? Yes No Accept this model as a possible progenitor Reject as progenitor Marc van der Sluys How the Giant lost its mantle and became a Dwarf NUTGM October 19, 2006

α-ce results Accept cases with: 0.1<α ce <10 Assume no errors in observed masses

α-ce results Accept cases with: 0.1<α ce <10 Introduce errors in observed masses: ± 0.05 M

Conservative first mass transfer Maximum P orb after stable mass transfer with q i = 0.62 (Nelemans et al., 2000) Only 5 systems have CE solutions with P orb < P max

Conservative first mass transfer CE solutions that may be formed by stable mass transfer Conservative mass transfer: M tot and J orb fixed One free parameter: q i

Conservative mass transfer: M, P 570 binary models, computed to match pre-ce systems spiral-in stable Results: 39% dynamical 18% contact 43% DWD

Conservative mass transfer: q, t 1414 fits 0957, 1101, 1704b and 2209 nearly fit Out of ten systems, 1 can be explained, 4 are close

Conclusions Conservative MT: More accurate models change α-ce only slightly After stable mass transfer, white-dwarf primaries have too low mass and too long orbital periods We can reproduce perhaps 1 4 out of 10 systems, all with α ce > 1.6 Conservative mass transfer cannot explain the observed double white dwarfs

Angular-momentum balance Average specific angular momentum of the system: J i J f J i = γ s M 1i M 1f M tot,i Specific angular momentum of the accretor: [ J i J f = γ a 1 M ( )] tot,i M1f M 1i exp J i M tot,f M 2 Specific angular momentum of the donor: J i J f J i = γ d M 1i M 1f M tot,f M 2i M 1i

Models Number of progenitor models: Filters: 10+1 observed systems 199 progenitor models in our grid 11 variations in observed mass: 0.05, 0.04,..., +0.05 M total: 11 11 P 198 n=1 n 2.4 million dynamical MT: R > R BGB and q > q crit age: τ 1 < τ 2 < 13 Gyr EE-parameter: 0.1 < α ce, γ < 10 Candidate progenitors left: 204 000

Results for γ s + α ce

Results for γ d + γ a

Results: overview Select systems with: 0.8 < α ce < 1.2 1.46 < γ s < 1.79 0.9 < γ a,d < 1.1 System 1: γ sα ce 2: γ sγ s 3: γ aα ce 4: γ aγ a 5: γ dα ce 6: γ dγ a Best: 0135 + + + + 2,3,5,6 0136 + + + + + + 1 6 0957 + + + + + 1,2,4,5,6 1101 + + + + + 1,2,3,5,6 1115 + + + + + + 1 6 1204 + + + + + 2 6 1349 + + + + + + 1 6 1414 + + + 2,4,6 1704a + + 1,2 1704b + + + + + 1,2,4,5,6 2209 + + + + 1,2,5,6 +: α, γ within range, : α, γ outside range

Results: overview Select systems with: 0.8 < α ce < 1.2 1.46 < γ s < 1.79 0.9 < γ a,d < 1.1 System 1: γ sα ce 2: γ sγ s 3: γ aα ce 4: γ aγ a 5: γ dα ce 6: γ dγ a Best: 0135 / +/ +/ / +/ +/ 2,3,5,6 0136 +/+ +/+ +/ +/ +/+ +/+ 1,2,5,6 0957 +/+ +/+ / +/ +/+ +/+ 1,2,5,6 1101 +/ +/ +/ / +/ +/ 1,5,6 1115 +/ +/+ +/ +/ +/+ +/+ 2,5,6 1204 / +/ +/ +/ +/ +/+ 6 1349 +/+ +/+ +/+ +/+ +/+ +/+ 1 6 1414 / +/+ / +/+ / +/+ 2,4,6 1704a +/ +/ / / / / 1,2 1704b +/ +/ / +/ +/ +/ 1,2,4,5,6 2209 +/+ +/+ / / +/ +/+ 1,2,6 +: α, γ within range, : α, γ outside range +: ( t) < 50%, : 50% < ( t) < 500%, : ( t) > 500%

Results: example solution γ d = 0.96 γ a = 1.05 τ = 450 Myr

Results: solutions WD Mthd. γ 1 γ 2, τ/myr M 1i M 2i P i P m M 1f M 2f P f α ce2 obs mdl M M d d M M d 0135 γ d γ a 1.11 0.94 350 118 3.30 2.90 36.28 41.10 0.47 0.42 1.56 0136 γ d γ a 0.96 1.05 450 450 1.70 1.59 106.1 371.4 0.37 0.46 1.41 0957 γ d γ a 1.00 1.01 325 317 1.98 1.83 26.17 79.26 0.33 0.37 0.06 1101 γ d γ a 1.10 0.98 215 322 2.87 2.34 22.02 28.23 0.39 0.34 0.14 1115 γ d γ a 0.97 1.04 160 240 5.42 3.42 201.2 1012. 0.89 0.75 30.09 1204 γ d γ a 1.09 0.92 80 100 3.34 2.98 15.47 19.99 0.47 0.41 1.60 1349 γ d γ a 0.95 0.98 0 101 1.86 1.81 63.44 241.2 0.35 0.44 2.21 1414 γ d γ a 0.95 0.99 200 188 3.51 3.09 70.81 358.3 0.52 0.66 0.52 1704a γ d γ a 1.11 1.13-20 52 2.06 1.88 40.37 65.66 0.51 0.36 0.14 1704b γ d α ce 1.03 0.15 20 182 1.68 1.65 212.1 478.6 0.41 0.58 0.14 2209 γ d γ a 1.04 1.05 500 340 4.15 2.94 98.45 294.3 0.63 0.63 0.28

Conclusions Conservative mass transfer cannot explain the observed double white dwarfs Unstable envelope ejection can do this Several EE descriptions can reconstruct observed masses and periods γ s γ s and γ d γ a can in addition explain most observed cooling-age differences

Future work Population-synthesis code Based on grid of single-star models with Eggleton code Models provide M c, R, U bind Stellar wind, tidal coupling included Used for modelling binary mergers due to CE spiral-in (Politano et al., 2008) Second common-envelope phase implemented to study formation of double white dwarfs Need to: include naked helium-star models include more physics, e.g. magnetic braking

Future work Purpose: Study effect of e.g.: different α/γ-prescriptions wind mass loss angular-momentum loss on formation of e.g.: double white dwarfs He star/white dwarf binaries AM CVns CVs