VARIABLES. Contents 1. Preliminaries 1 2. One variable Special cases 8 3. Two variables Special cases 14 References 16

Similar documents
Research Article Some Formulae of Products of the Apostol-Bernoulli and Apostol-Euler Polynomials

Symmetric properties for the degenerate q-tangent polynomials associated with p-adic integral on Z p

1. INTRODUCTION AND RESULTS

EXPLICIT CONGRUENCES FOR EULER POLYNOMIALS

M ath. Res. Lett. 15 (2008), no. 2, c International Press 2008 SUM-PRODUCT ESTIMATES VIA DIRECTED EXPANDERS. Van H. Vu. 1.

Curious Bounds for Floor Function Sums

A RECURRENCE RELATION FOR BERNOULLI NUMBERS. Mümün Can, Mehmet Cenkci, and Veli Kurt

A Bernstein-Markov Theorem for Normed Spaces

Perturbation on Polynomials

ON THE 2-PART OF THE BIRCH AND SWINNERTON-DYER CONJECTURE FOR QUADRATIC TWISTS OF ELLIPTIC CURVES

Completeness of Bethe s states for generalized XXZ model, II.

Solving initial value problems by residual power series method

On a reduction formula for the Kampé de Fériet function

Uniform Approximation and Bernstein Polynomials with Coefficients in the Unit Interval

A note on the multiplication of sparse matrices

Feature Extraction Techniques

A symbolic operator approach to several summation formulas for power series II

Poly-Bernoulli Numbers and Eulerian Numbers

Algebraic Montgomery-Yang problem: the log del Pezzo surface case

Alireza Kamel Mirmostafaee

STRONG LAW OF LARGE NUMBERS FOR SCALAR-NORMED SUMS OF ELEMENTS OF REGRESSIVE SEQUENCES OF RANDOM VARIABLES

Generalized AOR Method for Solving System of Linear Equations. Davod Khojasteh Salkuyeh. Department of Mathematics, University of Mohaghegh Ardabili,

THE AVERAGE NORM OF POLYNOMIALS OF FIXED HEIGHT

Closed-form evaluations of Fibonacci Lucas reciprocal sums with three factors

Exponential sums and the distribution of inversive congruential pseudorandom numbers with prime-power modulus

The concavity and convexity of the Boros Moll sequences

On a Multisection Style Binomial Summation Identity for Fibonacci Numbers

AN ESTIMATE FOR BOUNDED SOLUTIONS OF THE HERMITE HEAT EQUATION

LATTICE POINT SOLUTION OF THE GENERALIZED PROBLEM OF TERQUEi. AND AN EXTENSION OF FIBONACCI NUMBERS.

On the summations involving Wigner rotation matrix elements

Explicit solution of the polynomial least-squares approximation problem on Chebyshev extrema nodes

Stability Ordinates of Adams Predictor-Corrector Methods

Combinatorial Primality Test

AN APPLICATION OF CUBIC B-SPLINE FINITE ELEMENT METHOD FOR THE BURGERS EQUATION

On Euler s Constant Calculating Sums by Integrals

Physics 221A: HW3 solutions

The Frequent Paucity of Trivial Strings

ON REGULARITY, TRANSITIVITY, AND ERGODIC PRINCIPLE FOR QUADRATIC STOCHASTIC VOLTERRA OPERATORS MANSOOR SABUROV

IN modern society that various systems have become more

ON SEQUENCES OF NUMBERS IN GENERALIZED ARITHMETIC AND GEOMETRIC PROGRESSIONS

APPROXIMATION BY MODIFIED SZÁSZ-MIRAKYAN OPERATORS

Prerequisites. We recall: Theorem 2 A subset of a countably innite set is countable.

Linear recurrences and asymptotic behavior of exponential sums of symmetric boolean functions

A new type of lower bound for the largest eigenvalue of a symmetric matrix

ON THE TWO-LEVEL PRECONDITIONING IN LEAST SQUARES METHOD

arxiv: v2 [math.nt] 5 Sep 2012

Fourier Series Summary (From Salivahanan et al, 2002)

lecture 36: Linear Multistep Mehods: Zero Stability

On the Dirichlet Convolution of Completely Additive Functions

lecture 37: Linear Multistep Methods: Absolute Stability, Part I lecture 38: Linear Multistep Methods: Absolute Stability, Part II

The Weierstrass Approximation Theorem

Bernoulli numbers and generalized factorial sums

A PROOF OF A CONJECTURE OF MELHAM

About the definition of parameters and regimes of active two-port networks with variable loads on the basis of projective geometry

A PROOF OF MELHAM S CONJECTURE

Polygonal Designs: Existence and Construction

Descent polynomials. Mohamed Omar Department of Mathematics, Harvey Mudd College, 301 Platt Boulevard, Claremont, CA , USA,

NON-COMMUTATIVE GRÖBNER BASES FOR COMMUTATIVE ALGEBRAS

Construction of the Electronic Angular Wave Functions and Probability Distributions of the Hydrogen Atom

Gamma Rings of Gamma Endomorphisms

An EGZ generalization for 5 colors

Differential Subordination and Superordination for Multivalent Functions Involving a Generalized Differential Operator

Note on generating all subsets of a finite set with disjoint unions

. The univariate situation. It is well-known for a long tie that denoinators of Pade approxiants can be considered as orthogonal polynoials with respe

Fast Montgomery-like Square Root Computation over GF(2 m ) for All Trinomials

MANY physical structures can conveniently be modelled

Characterization of the Line Complexity of Cellular Automata Generated by Polynomial Transition Rules. Bertrand Stone

Characterizations of the (h, k, µ, ν) Trichotomy for Linear Time-Varying Systems

Block designs and statistics

Partial traces and entropy inequalities

Algorithms for Bernoulli and Related Polynomials

Notations. Primary definition. Specific values. Traditional name. Traditional notation. Mathematica StandardForm notation. Specialized values

Enumeration of area-weighted Dyck paths with restricted height

arxiv: v2 [math.co] 8 Mar 2018

The Fundamental Basis Theorem of Geometry from an algebraic point of view

Chapter 6 1-D Continuous Groups

A1. Find all ordered pairs (a, b) of positive integers for which 1 a + 1 b = 3

Numerical Solution of Volterra-Fredholm Integro-Differential Equation by Block Pulse Functions and Operational Matrices

Hypergeometric functions of three variables in terms of integral representations

A SIMPLE METHOD FOR FINDING THE INVERSE MATRIX OF VANDERMONDE MATRIX. E. A. Rawashdeh. 1. Introduction

ORIGAMI CONSTRUCTIONS OF RINGS OF INTEGERS OF IMAGINARY QUADRATIC FIELDS

THE SUPER CATALAN NUMBERS S(m, m + s) FOR s 3 AND SOME INTEGER FACTORIAL RATIOS. 1. Introduction. = (2n)!

arxiv:math/ v1 [math.nt] 15 Jul 2003

Hermite s Rule Surpasses Simpson s: in Mathematics Curricula Simpson s Rule. Should be Replaced by Hermite s

A Simplified Analytical Approach for Efficiency Evaluation of the Weaving Machines with Automatic Filling Repair

Construction of Some New Classes of Boolean Bent Functions and Their Duals

Bipartite subgraphs and the smallest eigenvalue

THE POLYNOMIAL REPRESENTATION OF THE TYPE A n 1 RATIONAL CHEREDNIK ALGEBRA IN CHARACTERISTIC p n

DIFFERENTIAL EQUATIONS AND RECURSION RELATIONS FOR LAGUERRE FUNCTIONS ON SYMMETRIC CONES

On Conditions for Linearity of Optimal Estimation

δ 12. We find a highly accurate analytic description of the functions δ 11 ( δ 0, n)

#A52 INTEGERS 10 (2010), COMBINATORIAL INTERPRETATIONS OF BINOMIAL COEFFICIENT ANALOGUES RELATED TO LUCAS SEQUENCES

Zeta stars. Yasuo Ohno and Wadim Zudilin

A note on the realignment criterion

Physics 2107 Oscillations using Springs Experiment 2

Math 262A Lecture Notes - Nechiporuk s Theorem

Explicit Approximate Solution for Finding the. Natural Frequency of the Motion of Pendulum. by Using the HAM

Evaluation of various partial sums of Gaussian q-binomial sums

List Scheduling and LPT Oliver Braun (09/05/2017)

CHARACTER SUMS AND RAMSEY PROPERTIES OF GENERALIZED PALEY GRAPHS. Nicholas Wage Appleton East High School, Appleton, WI 54915, USA.

Transcription:

q-generating FUNCTIONS FOR ONE AND TWO VARIABLES. THOMAS ERNST Contents 1. Preliinaries 1. One variable 6.1. Special cases 8 3. Two variables 10 3.1. Special cases 14 References 16 Abstract. We use a ultidiensional extension of Bailey s transfor to derive two very general q-generating functions, which are q-analogues of a paper by Exton [7]. These expressions are then specialised to give ore practical forulae, which are q-analogues of generating relations for Karlssons generalised Kape de Fériet function. A nuber of exaples are given including q-laguerre polynoials of two variables. 1. Preliinaries The purpose of this paper is to continue the study of q-special functions by the ethod outlined in [3] and [4]. The paper is a q-analogue of Exton [7]. We begin with a few definitions. Definition 1. The power function is defined by q a e alog(q). We always use the principal branch of the logarith. The q-analogues of a coplex nuber a and of the factorial function are defined by: (1) {a} q 1 qa 1 q, q C\{1}, Date: June 10, 00. 0 1991 Matheatics Subject Classification: Priary 33D70; Secondary 33C65 1

THOMAS ERNST () {n} q! n {k} q, {0} q! 1, q C, k1 Definition. The q-hypergeoetric series was developed by Heine 1846 as a generalization of the hypergeoetric series: a; q n b; q n (3) φ 1 (a, b; c q, z) z n, 1; q n c; q n with the notation for the q-shifted factorial (copare [9, p.38]) 1, n 0; n 1 (4) a; q n (1 q a+ ) n 1,,..., 0 which is introduced in this paper. n0 Reark 1. The relation to Watson s notation, which is also included in the ethod, is (5) a; q n (q a ; q) n, where 1, n 0; n 1 (6) (a; q) n (1 aq ), n 1,,..., 0 Definition 3. Furtherore, (7) (a; q) (1 aq ), 0 < q < 1. 0 (8) (a; q) α (a; q) (aq α ; q), a q α, 0, 1,.... Definition 4. In the following, will denote the space of coplex nubers od πi. This is isoorphic to the cylinder R log q eπiθ, θ R. The operator is defined by : C Z C Z (9) a a + πi log q. Furtherore we define (10) a; q n ã; q n.

q-generating FUNCTIONS FOR ONE AND TWO VARIABLES. 3 By (9) it follows that n 1 (11) a; q n (1 + q a+ ), 0 where this tie the tilde denotes an involutioninvolution which changes a inus sign to a plus sign in all the n factors of a; q n. The following siple rules follow fro (9). (1) ã ± b ã ± b, (13) ã ± b a ± b, (14) q a q a, where the second equation is a consequence of the fact that we work od πi. log q Definition 5. Generalizing Heine s series, we shall define a q-hypergeoetric series by (copare [8, p.4]): [ ] pφ r (â 1,..., â p ; ˆb 1,..., ˆb â1,..., â p r q, z) p φ r q, z (15) n0 ˆb 1,..., ˆb r â 1,..., â p ; q [ n 1, ˆb 1,..., ˆb ( 1) n q ) ] 1+r p (n z n, r ; q n where q 0 when p > r + 1, and { a, if no tilde is involved (16) â ã otherwise We will skip the â for the rest of the paper. Definition 6. The following generalization of (15) will soeties be used: (17) p+p φ r+r (a 1,..., a p ; b 1,..., b r q; z; (s 1 ; q),..., (s p ; q); (t 1 ; q),..., (t r ; q)) [ ] p+p φ a1,..., a p r+r q; z; (s b 1,..., b 1 ; q),..., (s p ; q); (t 1 ; q),..., (t r ; q) r a 1 ; q n... a p ; q [ n ( 1) n q ) ] 1+r+r p p (n 1; q n b 1 ; q n... b r ; q n z n p n0 r (s k ; q) n (t k ; q) 1 k1 k1 n,

4 THOMAS ERNST where q 0 when p + p > r + r + 1. Reark. Equation (17) is used in certain special cases when we need factors (t; q) n in the q-series. Definition 7. Let the q-pochhaer sybol {a} n,q be defined by n 1 (18) {a} n,q {a + } q. 0 An equivalent sybol is defined in [6, p.18] and is used throughout that book. See also [1, p.138]. This quantity can be very useful in soe cases where we are looking for q-analogues and it is included in the new notation. The following ultidiensional generalization of Bailey s transfor was given by Exton [5, p.139]. Theore 1.1. If (19) γ 1,..., n (0) β 1,..., n p 1 1,...,p n n δ p1,...,p n u p1 1,...,p n n v p1 + 1,...,p n+ n, 1,..., n p 1,...,p n0 then forally (1) α 1,..., n γ 1,..., n α p1,...,p n u 1 p 1,..., n p n v p1 + 1,...,p n+ n, β 1,..., n δ 1,..., n. We assue that α, δ, u, v are functions of 1,..., n only. The notation denotes a ultiple suation with the indices 1,..., n running over all non-negative integer values. Definition 8. We will use the following abbreviation A () (a); q n a 1,..., a A ; q n a j ; q n. The following notation will be convenient. (3) QE(x) q x. j1 When there are several q:s, we generalize this to (4) QE(x, q i ) q x i.

q-generating FUNCTIONS FOR ONE AND TWO VARIABLES. 5 If {x j } n j1 and {y j} n j1 are two arbitrary sequences of coplex nubers, then their scalar product is defined by (5) xy n x j y j j1 We will only need one q-lauricella function, which is defined by (6) Φ (n) D (a, b 1,..., b n ; c q; x 1,..., x n ) a; q 1 +...+ n b 1 ; q 1... b n ; q n n j1 x j j c; q n 1 +...+ n j1 1; q. j The following reduction theore is a q-analogue of Appell and Kapé de Fériet [, p. 116]. Theore 1.. (7) Φ (n) D (a, b 1,..., b n ; c q; x, xq b, xq b b 3,..., xq b... b n ) φ 1 (a, b 1 +... + b n ; c q, xq b... b n ). Proof. In the LHS of (7) we change suation indices to {k l } n l1, where (8) k l n s. sl By atrix inversion, this is equivalent to (9) l k l k l+1, 1 l n 1, n k n.

6 THOMAS ERNST (30) LHS a; q 1 +...+ n b 1 ; q 1... b n ; q n x 1+...+ n n j q j(b +...+b j ) c; q n 1 +...+ n i j1 1;q j a; q n 1 k1 j1 b j; q kj k j+1 b n ; q kn x k 1 n 1 j q(k j+1 k j )(b +...+b j ) q ( kn)(b +...+b n) c; q n 1 k1 j1 1;q k j k j+1 1;q kn k i a; q n 1 k1 j1 b j; q kj k j ; q kj+1 q (k j+1)( b j +1) b n ; q kn x k 1 k i c; q n 1 k1 j1 1 b j k j ; q kj+1 1;q kj 1;q kn n 1 q (k j+1 k j )(b +...+b j ) q ( kn)(b +...+b n) j a, b 1 ; q k1xk1 c, 1; q k1 k 1,...,k n 1 n j b j, k j 1 ; q kj q (k j)(1 b j b j 1 ) 1, 1 b j 1 k j 1 ; q kj b n 1, k n, b n + b n 1 ; q kn 1 q (k n 1)(1 b n b n 1 b n) 1, 1 b n k n, b n 1 ; q kn 1 a, b 1 ; q k1xk1 c, 1; q k1 k 1,...,k n n j b j, k j 1 ; q kj q (k j)(1 b j b j 1 ) 1, 1 b j 1 k j 1 ; q kj 1 b n b n 1 b n k n ; q kn 1 b n k n ; q kn a, b 1 ; q k1xk1 c, 1; q k1 k 1,...,k n n j b n + b n 1 + b n ; q kn q k n (b n+b n 1 ) b n ; q kn. b j, k j 1 ; q kj q (k j)(1 b j b j 1 ) 1, 1 b j 1 k j 1 ; q kj We begin with the case n 1.. One variable Theore.1. If C( 1 ) is any arbitrary function, then, forally (31) C( 1 ) d; q 1 t 1 (tq d+ 1 ; q) (t; q) d; q 1 t 1 1; q 1 C(p 1 ) 1 ; q p1 ( 1) p 1 q p (p 1 ). p 1 0

q-generating FUNCTIONS FOR ONE AND TWO VARIABLES. 7 Proof. In (1) put (3) α 1 C( 1 ), (33) u 1 1 1; q 1, (34) v 1 1 and (35) δ 1 d; q 1 t 1. Now (19) and (0) iply that (36) and (37) γ 1 β 1 1 p 1 0 p 1 1 d; q 1 t 1 1 p 1 0 C(p 1 ) 1; q 1 p 1 C(p 1 ) 1 ; q p1 1; q 1 ( 1) p 1 q p (p1 ). d; q p1tp1 1; q p1 1 p 1 0 p 1 0 d + 1 ; q p1 t p 1 1; q p1 d; q 1 t 1 1 φ 0 (d + 1 ; q, t) d; q 1 t 1 (tqd+ 1 ; q) (t; q). d; q p1 + 1 t p 1+ 1 1; q p1 The proof is copleted by substituting (36) and (37) into (1). Theore.. If C( 1 ) is any arbitrary function of 1, then, forally (38) E q (t) C( 1 )t 1 (1 q) 1 t 1 (1 q) 1 1; q 1 Proof. Let d in (31). C(p 1 ) 1 ; q p1 ( 1) p 1 q p (p 1 ). p 1 0 The theores.1 and. are uch too general for any practical purposes when deriving generating functions for various classes of q- hypergeoetric polynoials. A ore convenient for is obtained by considering the following special case.

8 THOMAS ERNST (39) C( 1 ) (a), (f 1); q 1 ( x 1 ) 1 q θ( 1) (h), (g 1 ), 1; q 1, where θ( 1 ) is an arbitrary function. Theore.1 can be written as (40) The confluent for (a), (f 1 ), d; q 1 ( x 1 ) 1 (h), (g 1 ), 1; q 1 d; q 1 t 1 1; q 1 p 1 0 1 ; q p1 q p (p 1 ). t 1 q θ(1) (t; q) d+1 (a), (f 1 ); q p1 (x 1 ) p 1 q θ(p 1) (h), (g 1 ), 1; q p1 (41) E q (t) (a), (f 1 ); q 1 ( x 1 ) 1 (h), (g 1 ), 1; q 1 t 1 (1 q) 1 q θ( 1) t 1 (1 q) 1 1; q 1 1 ; q p1 q p (p 1 ) p 1 0 (a), (f 1 ); q p1 (x 1 ) p 1 q θ(p 1) (h), (g 1 ), 1; q p1 follows siilarly fro theore...1. Special cases. In the special case θ( 1 ) 0 and A + F 1 + H + G, the LHS of (40) can be written as (4) (43) 1 (t; q) d A+F +1φ H+G+1 ((a), (f 1 ), d; (h), (g 1 ) q; tx 1 ; ; (tq d ; q)). Put A F G 0, H 1, θ( 1 ) 1. Fro (40) it follows that ( x 1 ) 1 d; q 1 t 1 q 1 h 1 ; q 1 1; q 1 (t; q) d+1 1 0 1 0 d; q 1 t 1 1; q 1 p 1 0 1 ; q p1 q p+p 1 (p 1 ). (x 1 ) p 1 h 1 ; q p1 1; q p1

q-generating FUNCTIONS FOR ONE AND TWO VARIABLES. 9 By a change of variables x 1 x 1 q h 1 1 (1 q) this is equivalent to (44) n0 {c} n,q L (α) n,q(x)t n {1 + α} n,q n0 {c} n,q q n +αn ( xt) n {n} q!{1 + α} n,q (t; q) c+n 1 (t; q) c 1φ (c; 1 + α q; xtq 1+α (1 q); ; (tq c ; q)). n This is a wellknown generating function for the Laguerre polynoials. Put A H 1, F G 0, θ( 1 ) ( 1 ) in (41). Then we obtain the following generating function for the little q-jacobi polynoials: (45) t n (1 q) n 1; q n n p0 a + b + n + 1, n; q p x p q np a + 1, 1; q p t n (1 q) n 1; q n P n (xq n 1 ; a, b q) E q (t) 1 φ 1 (a + b + n + 1; a + 1 q, xt(1 q)). (46) Denote [ 4φ 7 (α) 4 φ 7 (47) [ 4φ 7 (β) 4 φ 7 a+b+n+1,, a+b+n+, 1+a, 1+a, +a, +a, 1, 1, 1 a+b+n+1 a+b+n+ a+b+n+ a+b+n+,, a+b+n+3, +a, +a, 3+a, 3+a, 3, 3, 1 a+b+n+3 ] q, q(1 q) x t, ] q, q 3 (1 q) x t. Making use of the decoposition of a series into even and odd parts fro [13, p.00,08], we can rewrite (45) in the for (48) P n (xq n 1 ; a, b q)t n P n+1 (xq n ; a, b q)t n+1 + {n} n0 q! {n + 1} n0 q! [ E q (t) 4φ 7 (α) xt {1 + a + b + n} ] q 4φ 7 (β), {1 + a} q

10 THOMAS ERNST and replacing t in (48) by it, we obtain (49) ( 1) n t n P n (xq n 1 ; a, b q) ( 1) n t n+1 P n+1 (xq n ; a, b q) + i {n} n0 q! {n + 1} n0 q! [ (Cos q (t) + isin q (t)) 4φ 7 (α) ixt {1 + a + b + n} ] q 4φ 7 (β). {1 + a} q (50) (51) Next equate real and iaginary parts fro both sides to arrive at the generating functions ( 1) n t n P n (xq n 1 ; a, b q) {n} q! n0 Cos q (t) 4 φ 7 (α) + xtsin q (t) {1 + a + b + n} q {1 + a} q 4φ 7 (β) and n0 ( 1) n t n+1 P n+1 (xq n ; a, b q) {n + 1} q! Sin q (t) 4 φ 7 (α) xtcos q (t) {1 + a + b + n} q {1 + a} q 4φ 7 (β). 3. Two variables We can generalize (31) to two variables. Theore 3.1. If C( 1, ) is any arbitrary function of 1,, then, forally C( 1, ) d; q 1 + j1 k j; q j t 1+ k 1 + k ; q 1 + (5) (tq d+ 1 k ; q) (tq k ; q) p 1,p 0 d; q 1 + j1 k j; q j t 1+ q k 1 + k ; q 1 + j1 1; q j C(p 1, p ) j ; q ( 1) p 1+p QE( j1 k ( p ) + + 1 p 1 + p ). j1 ( )

q-generating FUNCTIONS FOR ONE AND TWO VARIABLES. 11 Proof. In (1) put (53) α 1, C( 1, ), (54) u 1, QE( 3 4 k ) j1 1; q j, (55) v 1, q 1 4 and (56) δ 1, q d; q 1 + j1 k j; q j t 1+ k 1 + k ; q 1 +. Now (19) and (0) iply that (57) β 1, p 1,p 0 1, p 1,p 0 C(p 1, p ) j1 1; q j p j QE( 3( 4 p ) k ( p ) + 1( 4 + p ) ) 1, C(p 1, p ) j1 j; q ( ) j1 1; q ( 1) p 1+p QE( j k ( p ) + + 1p 1 + p ), j1 and

1 THOMAS ERNST (58) γ 1, p 1 1,p d; q p1+p j1 k j; q t p 1+p j1 1; q p j j k 1 + k ; q p1 +p QE( p + 3(p 4 ) k (p ) + 1( 4 + p ) ) d; q p1 + 1 +p + j1 k j; q + j t p 1+p + 1 + j1 1; q p j k 1 + k ; q p1 +p + 1 + p 1,p 0 QE( p (k + )) d; q 1 + j1 k j; q j t 1+ k 1 + k ; q 1 + p 1,p 0 d + 1 + ; q p1 +p j1 k j + j ; q t p 1+p j1 1; q p j k 1 + k + 1 + ; q p1 +p QE( p (k + )) d; q 1 + j1 k j; q j t 1+ k 1 + k ; q 1 + Φ () D (d + 1 +,, k 1 + 1, k + ; k 1 + 1 + k + q; t, tq k ) d; q 1 + j1 k j; q j t 1+ k 1 + k ; q 1 + 1φ 0 (d + 1 + ; q, tq k ) d; q 1 + j1 k j; q j t 1+ k 1 + k ; q 1 + 1 (tq k ; q)d+1 +. The proof is copleted by substituting (57) and (58) into (1). Theore 3.. If C( 1, ) is any arbitrary function of 1,, then, forally (59) p 1,p 0 E q (tq k )C( 1, ) j1 k j; q j t 1+ (1 q) 1+ k 1 + k ; q 1 + j1 k j; q j t 1+ (1 q) 1+ q k 1 + k ; q 1 + j1 1; q j C(p 1, p ) j ; q ( 1) p 1+p QE( j1 k ( p ) + + 1 p 1 + p ). j1 ( )

q-generating FUNCTIONS FOR ONE AND TWO VARIABLES. 13 Proof. Let d in (5). The theores 3.1 and 3. are uch too general for any practical purposes when deriving generating functions for various classes of hypergeoetric polynoials. A ore convenient for is obtained by considering the following special case. (60) C( 1, ) (a); q 1 + q θ( 1, ) j1 (f j); q j ( x j ) j (h); q 1 + j1 g j, 1; q j, where θ( 1, ) is an arbitrary function. Theore 3.1 can be written as (a); q 1 + q θ( 1, ) j1 (f j); q j ( x j ) j (h), k 1 + k ; q 1 + j1 g j, 1; q j (61) d; q 1 + j1 k j; q j t 1+ (tq d+ 1 k ; q) (tq k ; q) d; q 1 + j1 k j; q j t 1+ q k 1 + k ; q 1 + j1 1; q j p 1,p 0 (a); q p1 +p q θ(p 1,p ) j1 (f j), j ; q x p j j (h); q p1 +p j1 g j, 1; q ( ) QE( k ( p ) + + 1 p 1 + p ). j1

14 THOMAS ERNST The following confluent for follows siilarly fro theore (3.). E q (tq k ) (a); q 1 + q θ( 1, ) (h), k 1 + k ; q 1 + j1 g j, 1; q j t 1+ (1 q) 1+ (f j ), k j ; q j ( x j ) j j1 (6) j1 k j; q j t 1+ (1 q) 1+ q k 1 + k ; q 1 + j1 1; q j p 1,p 0 (a); q p1 +p q θ(p 1,p ) j1 (f j), j ; q x p j j (h); q p1 +p j1 g j, 1; q ( ) QE( k ( p ) + + 1p 1 + p ). j1 3.1. Special cases. Put A F G 0, H 1, θ( 1, ) 1 in (61). Then (63) q 1 d; q 1 + t 1+ j1 ( x j) j k j ; q j h, k 1 + k ; q 1 + (tq k ; q)d+1 + j1 1; q j d; q 1 + j1 k j; q j t 1+ q k 1 + k ; q 1 + j1 1; q j p 1,p 0 j1 j; q (x j ) p j ( ) j1 1; q QE( + p j + 1 p 1 ). p j j1 1, QE( k ( p )) h;q p1 +p By a change of variables x 1 x 1 q h 1 1 (1 q), x x (1 q) this is equivalent to (64) q 1 +1(h 1) d; q 1 + t 1+ j1 ( x j) j k j ; q j (1 q) 1+ h, k 1 + k ; q 1 + (tq k ; q)d+1 + j1 1; q j d; q 1 + j1 k j; q j t 1+ k 1 + k, h; q 1 + L h 1 1,,k,q (x 1, x ),

q-generating FUNCTIONS FOR ONE AND TWO VARIABLES. 15 where L α 1,,k,q (x 1, x ) is the q-laguerre poynoial in two variables given by (65) L α 1,,k,q (x 1, x ) α + 1; q 1 + j1 1; q j QE( 1 p 1 + 1 + p k ( p )) 1, p 1,p 0 q p 1 +αp 1 j1 j; q (x j ) p j 1 + α; q p1 +p j1 1; q p j ( ) )(1 q) p 1+p. QE( j1 By letting d h, d k 1 + k and d in (64), we obtain q-analogues of eq. A19-A1 in [7]. Put F G H 0, A 1, θ( 1, ) 1 in (61). Then (66) q 1 a, d; q 1 + t 1+ j1 ( x j) j k j ; q j k 1 + k ; q 1 + (tq k ; q)d+1 + j1 1; q j d; q 1 + j1 k j; q j t 1+ q k 1 + k ; q 1 + j1 1; q j 1, p 1,p 0 a; q p1 +p j1 j; q (x j ) p j j1 1; q p j QE( 1 p 1 + QE( k ( p )) j1 ) + p j ) ( d; q 1 + t 1+ q a; q 1 + j1 k j; q j ( x j ) j 1, k 1 + k ; q 1 + j1 1; q j j1 j; q ( x j ) p j p 1,p 0 a + 1 1 ; q p1 +p j1 1; q QE( k (p ) 1 p 1 + 1 p j + p 1 p (p 1 + p )( 1 + ) + p j ap j ). j1 This is a q-analogue of eq. A in [7]. The sybol denotes that the equality is purely foral.

16 THOMAS ERNST Put A F H 0, G 1, θ( 1, ) 1 (67) q 1 d; q 1 + t 1+ j1 ( x j) j k j ; q j k 1 + k ; q 1 + (tq k ; q)d+1 + j1 g j, 1; q j d; q 1 + j1 k j; q j t 1+ q k 1 + k ; q 1 + j1 1; q j j1 j; q (x j ) p j j1 g QE( 1 p 1 + j, 1; q j1 1, p 1,p 0 ( ) in (61). Then QE( k ( p )) + p j ). By a change of variables x j x j q g j 1 (1 q), j 1, this is equivalent to (68) q 1 d; q 1 + t 1+ j1 ( x j) j q j(g j 1) k j ; q j (1 q) 1+ k 1 + k ; q 1 + (tq k ; q)d+1 + j1 g j, 1; q j d; q 1 + j1 k j; q j t 1+ q k 1 + k ; q 1 + j1 1; q j 1, p 1,p 0 (1 q) p 1+p j1 j; q (x j ) p j q p j(g j 1) j1 g j, 1; q QE( 1 p 1 + QE( k ( p )) j1 ) + p j ). ( By letting k i g i, d g 1 + g, d and k i g i, d in (68 ), we obtain q-analogues of eq. A39-A4 in [7]. Acknowledgents. I want to thank Per Karlsson who gave soe valueable coents on the new ethod for q-hypergeoetric series, and who told e about Exton s paper. References [1] Álvarez-Nodarse, R., Quintero, N.R., Ronveaux A., On the linearization proble involving Pochhaer sybols and their q-analogues, J. Coput. Appl. Math. 107 (1999), no. 1, 133 146. [] Appell, P. and Kapé de Fériet, J.: Fonctions hypergéoétriques et hypersphériques, Paris 196. [3] Ernst, T., The history of q-calculus and a new ethod, U. U. D. M. Report 000:16, ISSN 1101-3591, Departent of Matheatics, Uppsala University, 000. [4] Ernst, T, A new ethod and its Application to Generalized q-bessel Polynoials, U. U. D. M. Report 001:10, ISSN 1101-3591, Departent of Matheatics, Uppsala University, 001.

q-generating FUNCTIONS FOR ONE AND TWO VARIABLES. 17 [5] Exton H.: Multiple hypergeoetric functions and applications. Ellis Horwood, 1976. [6] Exton, H. q-hypergeoetric functions and applications, Ellis Horwood, 1983. [7] Exton, H., Two new ultivariable generating relations, Ark. Mat. 30 (199), no., 45 58. [8] Gasper, G. and Rahan M., Basic hypergeoetric series, Cabridge, 1990. [9] Gelfand, I. M., Graev, M. I. and Retakh, V. S., General hypergeoetric systes of equations and series of hypergeoetric type, Russian Math. Surveys 47 (199), no. 4, 1 88. [10] Jackson, F.H., On basic double hypergeoetric functions, Quart. J. Math., Oxford Ser. 13 (194), 69 8. [11] Jackson, F.H., Basic double hypergeoetric functions, Quart. J. Math., Oxford Ser. 15(1944), 49 61. [1] Hahn, W., Beiträge zur Theorie der Heineschen Reihen, Matheatische Nachrichten (1949), 340-379. [13] Srivastava, H. M. and Manocha H. L., A treatise on generating functions, Ellis Horwood Series: John Wiley & Sons, Inc., New York, 1984. Departent of Matheatics, Uppsala University, P.O. Box 480, SE- 751 06 Uppsala, Sweden E-ail address: Thoas.Ernst@ath.uu.se