A Tutorial of The Context Tree Weighting Method: Basic Properties

Similar documents
1 Finite Automata and Regular Expressions

Revisiting what you have learned in Advanced Mathematical Analysis

Math 266, Practice Midterm Exam 2

DEPARTMENT OF ELECTRICAL &ELECTRONICS ENGINEERING SIGNALS AND SYSTEMS. Assoc. Prof. Dr. Burak Kelleci. Spring 2018

Poisson process Markov process

Laplace Transform. National Chiao Tung University Chun-Jen Tsai 10/19/2011

The Laplace Transform

Analysis of Remaining Uncertainties and Exponents under Various Conditional Rényi Entropies

Ma/CS 6a Class 15: Flows and Bipartite Graphs

Jonathan Turner Exam 2-10/28/03

K x,y f x dx is called the integral transform of f(x). The function

Statistics Assessing Normality Gary W. Oehlert School of Statistics 313B Ford Hall

Systems of First Order Linear Differential Equations

CS 688 Pattern Recognition. Linear Models for Classification

Boyce/DiPrima 9 th ed, Ch 2.1: Linear Equations; Method of Integrating Factors

Fourier Series and Parseval s Relation Çağatay Candan Dec. 22, 2013

Final Exam : Solutions

Fourier. Continuous time. Review. with period T, x t. Inverse Fourier F Transform. x t. Transform. j t

Chapter 5 The Laplace Transform. x(t) input y(t) output Dynamic System

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

CS 541 Algorithms and Programs. Exam 2 Solutions. Jonathan Turner 11/8/01

Systems of First Order Linear Differential Equations

The model proposed by Vasicek in 1977 is a yield-based one-factor equilibrium model given by the dynamic

CSE 245: Computer Aided Circuit Simulation and Verification

AE57/AC51/AT57 SIGNALS AND SYSTEMS DECEMBER 2012

Multipath Interference Characterization in Wireless Communication Systems

A Study of the Solutions of the Lotka Volterra. Prey Predator System Using Perturbation. Technique

Relation between Fourier Series and Transform

LaPlace Transform in Circuit Analysis

Advanced Engineering Mathematics, K.A. Stroud, Dexter J. Booth Engineering Mathematics, H.K. Dass Higher Engineering Mathematics, Dr. B.S.

Mathcad Lecture #4 In-class Worksheet Vectors and Matrices 1 (Basics)

Transfer function and the Laplace transformation

Elementary Differential Equations and Boundary Value Problems

where: u: input y: output x: state vector A, B, C, D are const matrices

Instructors Solution for Assignment 3 Chapter 3: Time Domain Analysis of LTIC Systems

Control Systems. Modelling Physical Systems. Assoc.Prof. Haluk Görgün. Gears DC Motors. Lecture #5. Control Systems. 10 March 2013

Single Correct Type. cos z + k, then the value of k equals. dx = 2 dz. (a) 1 (b) 0 (c)1 (d) 2 (code-v2t3paq10) l (c) ( l ) x.

3.4 Repeated Roots; Reduction of Order

Digital Signal Processing. Digital Signal Processing READING ASSIGNMENTS. License Info for SPFirst Slides. Fourier Transform LECTURE OBJECTIVES

EE Control Systems LECTURE 11

Introduction to Laplace Transforms October 25, 2017

Instructions for Section 1

The Procedure Abstraction Part II: Symbol Tables and Activation Records

CPSC 211 Data Structures & Implementations (c) Texas A&M University [ 259] B-Trees

Trigonometric Formula

SOLUTIONS. 1. Consider two continuous random variables X and Y with joint p.d.f. f ( x, y ) = = = 15. Stepanov Dalpiaz

Process Modeling of Short-Circuiting GMA Welding and Its Application to Arc Sensor Control

EEE 303: Signals and Linear Systems

Shortest Path With Negative Weights

More on FT. Lecture 10 4CT.5 3CT.3-5,7,8. BME 333 Biomedical Signals and Systems - J.Schesser

Section 2: The Z-Transform

Let s look again at the first order linear differential equation we are attempting to solve, in its standard form:

16.512, Rocket Propulsion Prof. Manuel Martinez-Sanchez Lecture 3: Ideal Nozzle Fluid Mechanics

Partial Fraction Expansion

Global Solutions of the SKT Model in Population Dynamics

CIVL 8/ D Boundary Value Problems - Quadrilateral Elements (Q4) 1/8

Bicomplex Version of Laplace Transform

Review: What s an FSM? EECS Components and Design Techniques for Digital Systems

UNSTEADY HEAT TRANSFER

INTERQUARTILE RANGE. I can calculate variabilityinterquartile Range and Mean. Absolute Deviation

READING ASSIGNMENTS. Signal Processing First. Fourier Transform LECTURE OBJECTIVES. This Lecture: Lecture 23 Fourier Transform Properties

Chapter4 Time Domain Analysis of Control System

FL/VAL ~RA1::1. Professor INTERVI of. Professor It Fr recru. sor Social,, first of all, was. Sys SDC? Yes, as a. was a. assumee.

Chapter 3: Fourier Representation of Signals and LTI Systems. Chih-Wei Liu

MEM 355 Performance Enhancement of Dynamical Systems A First Control Problem - Cruise Control

S.Y. B.Sc. (IT) : Sem. III. Applied Mathematics. Q.1 Attempt the following (any THREE) [15]

September 20 Homework Solutions

Embedding the Natural Hedging of Mortality/Longevity Risks into Product Design

Chapter 2: Evaluative Feedback

Statistical Analysis of Environmental Data - Academic Year Prof. Fernando Sansò

4.1 The Uniform Distribution Def n: A c.r.v. X has a continuous uniform distribution on [a, b] when its pdf is = 1 a x b

Explaining Synthesis of Three-Phase Sinusoidal Voltages Using SV-PWM in the First Power Electronics Course

REPETITION before the exam PART 2, Transform Methods. Laplace transforms: τ dτ. L1. Derive the formulas : L2. Find the Laplace transform F(s) if.

Generalized Half Linear Canonical Transform And Its Properties

CSE 421 Algorithms. Warmup. Dijkstra s Algorithm. Single Source Shortest Path Problem. Construct Shortest Path Tree from s

Lecture 26: Leapers and Creepers

graph of unit step function t

Lecture 21 : Graphene Bandstructure

On the Derivatives of Bessel and Modified Bessel Functions with Respect to the Order and the Argument

1. Be a nurse for 2. Practice a Hazard hunt 4. ABCs of life do. 7. Build a pasta sk

14.02 Principles of Macroeconomics Fall 2005 Quiz 3 Solutions

Contraction Mapping Principle Approach to Differential Equations

THE INVOLUTE-EVOLUTE OFFSETS OF RULED SURFACES *

AR(1) Process. The first-order autoregressive process, AR(1) is. where e t is WN(0, σ 2 )

TOPIC 5: INTEGRATION

Practice Problems: Improper Integrals

Double Slits in Space and Time

Week 06 Discussion Suppose a discrete random variable X has the following probability distribution: f ( 0 ) = 8

DYNAMICS OF A POPULATION SUBJECT TO IMPULSE TYPE RANDOM LOSS

Library Support. Netlist Conditioning. Observe Point Assessment. Vector Generation/Simulation. Vector Compression. Vector Writing

2. The Laplace Transform

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

UNIT I FOURIER SERIES T

1. Accident preve. 3. First aid kit ess 4. ABCs of life do. 6. Practice a Build a pasta sk

On the Speed of Heat Wave. Mihály Makai

Wave Equation (2 Week)

The transition:transversion rate ratio vs. the T-ratio.

CIVL 7/ D Boundary Value Problems - Quadrilateral Elements (Q8) 1/9

Boyce/DiPrima 9 th ed, Ch 7.8: Repeated Eigenvalues

Erlkönig. t t.! t t. t t t tj "tt. tj t tj ttt!t t. e t Jt e t t t e t Jt

Transcription:

A uoril of h on r Wighing Mhod: Bic ropri Zijun Wu Novmbr 9, 005 Abrc In hi uoril, ry o giv uoril ovrvi of h on r Wighing Mhod. W confin our dicuion o binry boundd mmory r ourc nd dcrib qunil univrl d comprion procdur, hich chiv dirbl coding diribuion for r ourc ih unknon modl nd unknon prmr. ompuionl nd org compliy of h propod procdur r boh linr in h ourc qunc lngh.. Inroducion In our cl, lrnd Huffmn cod. For mll ourc lphb, hough, hv fficin coding only if u long block of ourc ymbol. I i hrfor dirbl o hv n fficin coding procdur h ork for long block of ourc ymbol. Huffmn coding i no idl for hi iuion. Arihmic coding chiv hi gol. Whn no priori probbiliy diribuion knoldg of h ourc i vilbl, on u univrl coding lgorihm. For fini mmory ourc modl, Winbrgr, Ziv nd Lmpl dvlopd qunil lgorihm for univrl coding, hr rificil prmr K i involvd. o void chooing prmr, Willm, hrkov nd jlkn propod ighing mhod. hi mhod im h ourc probbiliy givn p ymbol nd hn combin i ih rihmic lgorihm. W ill oulin h bic of h mhod in hi uoril.. Binry Boundd Mmory r ourc A binry r ourc gnr qunc of digi uming vlu in h lphb {0,}. W dno by n m h qunc m m+ n nd llo m nd n o b infinily lrg. For n<m h qunc i mpy, dnod byφ. h iicl bhvior of binry fini mmory r ourc cn b dcribd by mn of uffi. hi uffi i collcion of binry ring (k, ih k=,,,. W rquir i o b propr nd compl. roprn of h uffi impli h no ring in i uffi of ny ohr ring in. ompln gurn h ch mi-infini qunc (ring h uffi h blong o. hi uffi i uniqu inc i propr. n n n A boundd mmory r ourc h uffi h ifi l ( for ll. W y h h ourc h mmory no lrgr hn. W dfin uffi funcion β (, hich mp mi-infin qunc ono hir uniqu uffi in. finiion : h cul n-ymbol probbilii for boundd mmory r ourc

ih uffi nd prmr vcor r ( X =,, = ( X = 0,, = θ ( for ll. h cul block probbilii r no produc of cul n-ymbol probbilii, i.. ( X 0 =,, = ( X = τ τ = τ τ τ,, All ourc ih h m uffi r id o hv h m modl. h of ll r modl hving mmory no lrgr hn i clld h modl cl. I i poibl o pcify modl in hi modl cl by nurl cod by ncoding h uffi rcurivly. h cod of i h cod of h mpy ring λ. h cod of ring i void if l ( = ; ohri, i i 0 if nd follod by h cod of h ring 0 nd if. If u hi nurl cod, h numbr of bi h r ndd o pcify modl i qul o Γ (, hr finiion : Γ (, h co of modl ih rpc o modl cl i dfind Γ ( = - + {:, l ( } hr i i umd h. o fr, v propod modl for h ourc. And lrdy kno rihmic coding i good qunil mhod in h n h i individul coding rdundncy i no mor hn bi. No our k i o find diribuion im hich bridg bn h modl nd rihmic coding mhod. In h folloing, dfin h coding rdundncy, dcrib h rdundncy uppr bound of rihmic coding, nd hn ighing mhod diribuion im. β 3. od nd Rdundncy W um h boh h ncodr nd h dcodr hv cc o h p ourc ymbol =, o h implicily h uffi h drmin h probbiliy diribuion 0 0 of h fir ourc ymbol, i vilbl o hm. W dno h funcionl rlionhip L 0 bn ourc qunc nd codord o b c (. h lngh of h codord, in 0 binry digi, i dnod L(. W rric ourlv o prfi cod hr. 0 h codord lngh L( drmin h individul rdundnci. 0 finiion 3: h individul rdundncy ρ (,, of qunc givn h p ymbol 0, ih rpc o ourc ih modl nd prmr vcor, i dfind

0 ρ (,, = 0 L( log 0 (,, 0 W only conidr qunc ih poiiv probbiliy (,,. 4. Arihmic oding uppo h h ncodr nd dcodr boh hv cc o, h i clld h coding diribuion (, {0,}, = 0,,, W rquir h hi diribuion ifi (φ =, ( = (, X = 0 + (, X, for ll = {0,}, = 0,,, nd ( > 0, for ll poibl {0,} ( hrom : Givn coding diribuion (, {0,}, = 0,,, h Eli lgorihm chiv codord lngh L ( h ify L ( log ( < + for ll poibl {0,}. h codord form prfi cod. W y h h coding individul coding rdundncy i ly l hn bi. h Eli lgorihm combin n ccpbl coding rdundncy ih dirbl qunil implmnion. h numbr of oprion i linr in h ourc qunc lngh. If r rdy o ccp lo of mo bi coding rdundncy, r no lf ih h problm of finding good, qunilly vilbl, coding diribuion. 5. robbiliy Eimion h probbiliy h mmoryl ourc ih prmr θ gnr qunc ih zro nd b on i ( θ θ b. If igh hi probbiliy ovr ll θ ih (, -irichl diribuion obin h o-clld Krichvky-rofimov im ( [5]. finiion 4: h Krichvky-rofimov imd probbiliy for qunc conining 0 zro nd b 0 on i dfind = b (, ( θ θ dθ 0 π ( θ θ 3

hi imor h propri h r lid in h lmm h follo. Lmm : h K- probbiliy imor (, cn b compud qunilly, i.., (0,0 =, nd for 0 nd b 0 + ( +, = (, nd + b + b + (, b + = (, ( + b + ifi, for + b, h folloing inquliy: + b b (, = ( ( + b b + b 6. oding for n Unknon r ourc A. finiion of h on-r Wighing Mhod onidr h c hr hv o compr qunc hich i (uppod o b gnrd by r ourc, ho uffi nd prmr vcor r unknon o h ncodr nd h dcodr. W ill dfin ighd coding diribuion for hi iuion. finiion 5: h con r i of nod lbld, hr i (binry ring ih lngh l ( uch h 0 l(. Ech nod ih l ( <, pli up ino o nod, 0 nd. h coun mu ify = 0 + nd b 0 + b = b finiion 6: o ch nod, ign ighd probbiliy dfind : (, b + (, b 0 for for 0 l ( l ( = (3 hich i h con r oghr ih h ighd probbilii of h nod i clld ighd con r. W dfin our ighd coding diribuion ( ( for ll {0,}, = 0,,,, hr λ i h roo 0 λ 0 nod of h con r. (4 W cn chck h h ighd coding diribuion ifi (. B. An Uppr Bound on h Rdundncy finiion 7: L 4

z for 0 z < γ ( z log z + for z h bic rul concrning h con-r ighing chniqu cn b d no. horm : h individul rdundnci ih rpc o ny ourc ih modl nd prmr vcor r uppr-boundd by 0 ρ (,, < Γ ( + γ ( + for ll {0,}, for ny qunc of p ymbol 0. h hr rm on h righ hnd id of h inquliy rprn uppr bound of modl rdundncy, prmr rdundncy nd coding rdundncy rpcivly. orollry: Uing h coding diribuion in (4, h codord lngh L ( r 0 uppr boundd by L ( < min(min log +Γ ( + γ ( + (,, 0 0. Implmnion of h on-r Wighing Mhod Encoding nd coding: W um h nod conin h pir (, b, h imd probbiliy (, b nd h ighd probbiliy. Whn nod i crd, h coun nd b r md 0, h probbilii (, b nd r md. W hn u h upd chm indicd by ( & (3 o g h coding diribuion. hn h ncoding nd dcoding procdur follo hrough ih h Eli lgorihm. ompliy Iu: For ch ymbol hv o vii + nod. om of h nod hv o b crd fir. From hi i follo h h ol numbr of llocd nod cnno b mor hn ( +. hi mk h org compliy no mor hn linr in. No lo h h numbr of nod cnno b mor hn +, h ol numbr of nod in. h compuionl compliy, i.. h numbr of ddiion, muliplicion, nd diviion, i proporionl o h numbr of nod h r viid, hich i ( +. hrfor, hi compliy i lo linr in. 5

REFERENE []. M. ovr nd J. A. hom, Elmn of Informion hory, N York: Wily, 99. [] J. Ziv nd A. Lmpl, A univrl lgorihm for qunil d comprion, IEEE rn. Inform. hory, vol. I-3, NO.3, My 977. [3] M. J. Winbrgr, A. Lmpl, nd J. Ziv, A qunil lgorihm for h univrl coding of fini mmory ourc, IEEE rn. Inform. hory, vol. 38, pp. 00-04, My 99. [4] G. G. Lngdon, An inroducion o rihmic coding. IBM Journl of Rrch nd vlopmn, 8: 35-49, 984 [5] J. Rinn nd G. G. Lngdon, Univrl modling nd coding, IEEE rn. Inform.hory, vol. I-7, pp. -3, Jn. 98. 6