Blue Supergiants in the E-ELT Era Extragalactic Stellar Astronomy

Similar documents
Supergiant Studies out to Virgo & Fornax

Massive Stars as Tracers for. Stellar & Galactochemical Evolution

The radial metallicity gradient from. OB star and HII region studies. Norbert Przybilla

Spectroscopy of Blue Supergiants in the Disks of Spiral Galaxies: Metallicities and Distances. Rolf Kudritzki

Chemical composition of cosmic dust in the solar vicinity

HII regions and massive stars are very valuable tools to measure present-day oxygen abundances across the Universe.

7. Non-LTE basic concepts

Spectroscopy of giants and supergiants! Maria Bergemann MPIA Heidelberg"

WINDS OF HOT MASSIVE STARS III Lecture: Quantitative spectroscopy of winds of hot massive stars

Stellar atmospheres: an overview

Radiative Transfer and Stellar Atmospheres

Physics and Chemistry of the Interstellar Medium

arxiv: v1 [astro-ph.sr] 13 Jun 2017

RADIATIVE TRANSFER AND STELLAR ATMOSPHERES. Institute for Astronomy Fall Semester Rolf Kudritzki

Open questions in our knowledge of the evolution of Galactic OB stars

Blue Supergiants as a Tool for Extragalactic Distances Empirical Diagnostics

Quantitative Spectroscopy of Blue Supergiants in Metal-Poor Dwarf Galaxy NGC 3109

Rolf-Peter Kudritzki. Institute for Astronomy, 2680 Woodlawn Drive, Honolulu, HI 96822; Miguel A. Urbaneja.

From theory to observations

THE OBSERVATION AND ANALYSIS OF STELLAR PHOTOSPHERES

Spitzer Infrared Spectrograph (IRS) Observations of Large Magellanic Cloud Planetary Nebula SMP 83

The Physics of the Interstellar Medium

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H -

12. Physical Parameters from Stellar Spectra. Fundamental effective temperature calibrations Surface gravity indicators Chemical abundances

RED SUPERGIANTS AS COSMIC ABUNDANCE PROBES: THE MAGELLANIC CLOUDS

Non-LTE Revisited. Abstract. 1.1 Introduction

Chapter 7: From theory to observations

Mapping the oxygen abundance in an elliptical galaxy (NGC 5128)

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Stellar Populations: Resolved vs. unresolved

7. Non-LTE basic concepts

Astr 5465 March 6, 2018 Abundances in Late-type Galaxies Spectra of HII Regions Offer a High-Precision Means for Measuring Abundance (of Gas)

arxiv: v1 [astro-ph.ga] 2 Oct 2018

I. Introduction. First suspicion of existence of continuous stellar winds: Optical spectrum of Wolf-Rayet stars: widths of lines

Energy transport: convection

FIA0221: Taller de Astronomía II. Lecture 14 Spectral Classification of Stars

Stellar Winds and Hydrodynamic Atmospheres of Stars. Rolf Kudritzki Spring Semester 2010

The Stellar Populations of Galaxies H. W. Rix IMPRS Galaxies Course March 11, 2011

Gas 1: Molecular clouds

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H -

The Interstellar Medium

High-mass stars in the Galactic center Quintuplet cluster

Substellar Atmospheres II. Dust, Clouds, Meteorology. PHY 688, Lecture 19 Mar 11, 2009

Measuring the Hubble Constant. Fundamental Cosmic Distance Scale Naples, May 3, 2011 Wendy Freedman Carnegie Observatories

6. Stellar spectra. excitation and ionization, Saha s equation stellar spectral classification Balmer jump, H -

Where are oxygen synthesized in stars?

Stellar Metallicity of the Extended Disk and Distance of the Spiral Galaxy NGC 3621

Building the cosmic distance scale: from Hipparcos to Gaia

Chapter 10 The Interstellar Medium

arxiv: v1 [astro-ph.sr] 2 Jul 2012

Pagel s Method to derive the O/H ratio in galaxies

The cosmic distance scale

M.Phys., M.Math.Phys., M.Sc. MTP Radiative Processes in Astrophysics and High-Energy Astrophysics

Measurement of the stellar irradiance

! p. 1. Observations. 1.1 Parameters

From theory to observations

The role of cold gas in the chemical evolution of nearby galaxies

Astrophysics of Gaseous Nebulae and Active Galactic Nuclei

ASTROPHYSICS. K D Abhyankar. Universities Press S T A R S A ND G A L A X I E S

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and

Astronomy II (ASTR-1020) Homework 2

The Red Supergiant Progenitors of Core-collapse Supernovae. Justyn R. Maund

Characterization of the exoplanet host stars. Exoplanets Properties of the host stars. Characterization of the exoplanet host stars

arxiv: v1 [astro-ph] 12 Jun 2007

Measuring the Hubble Constant through Cepheid Distances

Spectroscopy. AST443, Lecture 14 Stanimir Metchev

Chapter 10: Unresolved Stellar Populations

Spectral Energy Distribution of galaxies

3D spectroscopy of massive stars, SNe, and other point sources in crowded fields

Age Dating A SSP. Quick quiz: please write down a 3 sentence explanation of why these plots look like they do.

Metal Poor Stars: A Review for Non-Observers. Charli Sakari

Planetary Nebulae beyond the Milky Way historical overview

Spectral classification of blue supergiants in M31

A galaxy is a self-gravitating system composed of an interstellar medium, stars, and dark matter.

Quasars and Active Galactic Nuclei (AGN)

STAR FORMATION RATES observational overview. Ulrike Kuchner

Emission lines spectra and novae. OHP Spectro Party August 15 Ivan De Gennaro Aquino

The Next 2-3 Weeks. Important to read through Chapter 17 (Relativity) before I start lecturing on it.

Potential Synergies Between MSE and the ELTs A Purely TMT-centric perspective But generally applicable to ALL ELTs

9. Evolution with redshift - z > 1.5. Selection in the rest-frame UV

Stellar Explosions (ch. 21)

AG Draconis. A high density plasma laboratory. Dr Peter Young Collaborators A.K. Dupree S.J. Kenyon B. Espey T.B.

O STAR EFFECTIVE TEMPERATURES AND H ii REGION IONIZATION PARAMETER GRADIENTS IN THE GALAXY

Paul Broberg Ast 4001 Dec. 10, 2007

The Birth Of Stars. How do stars form from the interstellar medium Where does star formation take place How do we induce star formation

Astrophysics of Gaseous Nebulae

THE GALAXY. Spitzer Space Telescope Images & Spectra: 3µm - 170µm

Active Galaxies. Lecture Topics. Lecture 24. Active Galaxies. Potential exam topics. What powers these things? Lec. 24: Active Galaxies

Lecture 5. Interstellar Dust: Optical Properties

Neon Emission in HST Emission- Line Galaxies at z 2. Greg Zeimann

The Ṁass- loss of Red Supergiants

Distance Measuring Techniques and The Milky Way Galaxy

Midterm Results. The Milky Way in the Infrared. The Milk Way from Above (artist conception) 3/2/10

Revision of Galaxy SEDs with New Stellar Models

Chapter 9. The Formation and Structure of Stars

Universe Now. 9. Interstellar matter and star clusters

Oxygen in red giants from near-infrared OH lines: 3D effects and first results from. Puerto de la Cruz, May 14, 2012! Carlos Allende Prieto!

The parsec scale of. ac-ve galac-c nuclei. Mar Mezcua. International Max Planck Research School for Astronomy and Astrophysics

ASTRO 310: Galactic & Extragalactic Astronomy Prof. Jeff Kenney

v 3vesc phot [Z] 0.15

Transcription:

Blue Supergiants in the E-ELT Era Extragalactic Stellar Astronomy Norbert Przybilla Institute for Astro- and Particle Physics

Supergiants BSGs evolved progeny of OB main-sequence stars T eff : ~ 3000... 25000 K M: ~ 8... 40 M L: ~ 10 4...10 5.5 L R: ~ 50... 1500 R BSGs: M V ~M J > -9.5 mag RSGs: M J > -11 mag with VLT/Keck: spectroscopy@high-res throughout Local Group @med-res: out to 7-8Mpc

Blue Supergiants (BSGs) Meynet & Maeder (2000) BSGs evolved progeny of OB main-sequence stars B0-A5 T eff : ~ 8000... 25000 K M: ~ 8... 40 M L: ~ 10 4...10 5.5 L R: ~ 50... 400 R BSGs: M V ~M J > -9.5 mag with VLT/Keck: spectroscopy@high-res throughout Local Group matters: B.C. & size @med-res: out to 7-8Mpc log RSGs Miguel Urbaneja

BSGs BSGs: how to find them? Bresolin et al. (2002) target selection photometrically BSG NGC300 easy to identify with ground-based/hst imaging RSG NGC300 Bresolin et al. (2005)

BSGs: high-quality observations Diagnostics Firnstein & Przybilla (2012) high-s/n Echelle spectra: FEROS, FOCES, CAFE, FIES, UVES R = λ/ λ= 40,000-100,000 3800Å < λ< 9000Å

BSGs: what information can be extracted? quantitative spectroscopy via model atmospheres Diagnostics atmospheric parameters:. T eff, log g, ξ, vsin i, ζ, Y, Z, v rad stellar wind parameters: M, v, β fundamental stellar parameters: M, R, L, age elemental abundances: - He, CNO - α-process elements - iron group elements - s-process elemnets -(r-process elements) reddening, reddening law, ISM lines distances BSGs: what science can be addressed? spectral line formation under non-lte conditions stellar wind physics stellar evolution galaxy evolution ISM studies cosmic distance scale

Modelling Codes: hydrostatic: ATLAS/DETAIL/SURFACE hydrodynamic: FASTWIND & CMFGEN

Level populations: modelling approaches Modelling usually: LTE: Local Thermodynamic Equilibrium Saha-Boltzmann-Formulae, gf-values, line broadening Limited Tremendous Error hot, luminous stars: strong radiation field, low densities non-lte: non-local Thermodynamic Equilibrium rate equations, gf-values, line broadening, detailed level-coupling, millions of atomic cross-sections non-limited Tremendous Error

(Restricted) Non-LTE transfer equation Non-Local Thermodynamic Equilibrium Modelling statistical equilibrium: radiative rates: non-local collisional rates: local excitation, ionization, charge exchange, dielectronic recombination, etc. MgII Przybilla et al. (2001) model atoms

Atomic data Example: collisional excitation by e - -impact CII Modelling replacing approximations by experimental or ab-initio data Schrödinger equation Ω=1 Van Regemorter Formula LS-coupling: low-z Breit-Pauli Hamiltonian huge amounts of atomic data: OP/IRON Project & own Methods: R-matrix/CC approximation MCHF/MCDHF CCC

Modelling

Modelling: testing @ visual wavelengths HD92207 (A0 Iae) Modelling Przybilla et al. (2006) several 10 4 lines: ~30 elements, 60+ ionization stages complete spectrum synthesis in visual (& near-ir) ~70-80% in non-lte close match of models and observations

Elemental Abundances Przybilla et al. (2006) HD87737 (A0 Ib) VIS results absolute abundances relative to Cosmic Abundance Standard Nieva & Przybilla (2012) NLTE/LTE neutral ionized LTE: abundance pattern? - large uncertainties

Elemental Abundances Przybilla et al. (2006) HD87737 (A0 Ib) VIS results absolute abundances relative to Cosmic Abundance Standard Nieva & Przybilla (2012) NLTE/LTE neutral ionized no NLTE abundance corrections NLTE: consistency & reduced uncertainties

Summary: non-lte Modelling VIS results using robust analysis methodology& comprehensive model atoms ionization equilibria T eff /log g elements: e.g. C I/II, N I/II, O I/II, Mg I/II, Si II/III, S II/III, Fe I/II T eff / T eff ~ 1 2% usually: 5 10% Stark broadened hydrogen lines log g/t eff log g ~ 0.05 (cgs) usually: 0.2 microturbulence, helium abundance, metallicity + other constraints, where available: SED s, near-ir, minimising systematics! abundances: logε ~ 0.05...0.10 dex(1σ stat.) usually: factor ~2 logε~ 0.07...0.12 dex(1σ sys.) usually:??? + automatisation: tens to hundreds of stars analysable IAU Symposium 224: The A-Star Puzzle Poprad July 10, 2004

CNO mixing: objective quality test for analyses supergiants throughout MW nuclear physics: tight trend VIS results Przybilla et al. (2010), Nieva & Przybilla (2012), Firnstein & Przybilla (in prep.) OB-MS stars in solar neighbourhood

Preparing for E-ELT: Galactic BSGs with CRIRES Hi-res NIR CRyogenic high-resolution Infrared Echelle Spectrograph CRIRES@VLT-UT1 high resolving power R = λ/ λ 100,000 wavelength coverage 0.95 to 5.3 µm ~ 200 settings for full spectral coverage CRIRES+ detector: 4 x 4096 x 512 Aladdin III InSn Pilot program: 3 A-SGs HD87737 (A0 Ib) HD111613 (A2 Iabe) HD92207 (A0 Iae) -(partial) coverage of J, H, K, L band

Near-IR: Telluric Line Correction Hi-res NIR Przybilla et al. (in prep.) high-resolution: detailed line profiles telluric lines resolved HD111613 (A2 Iabe) telluric line removal via modelling: -radiative transfer code LBLRTM & HITRAN molecular database -GDAS atmospheric profiles adaptation expertise of Innsbruck ESO In-Kind Project

Przybilla et al. (in prep.) Near-IR spectra H + He atmospheric parameters metal lines in near-ir: C, N,O, Mg, Si, Fe, Sr+ He stellar evolution galactochemical evolution Hi-res NIR HD111613 (A2 Iabe)

Przybilla et al. (in prep.) Near-IR spectra H + He atmospheric parameters metal lines in near-ir: C, N,O, Mg, Si, Fe, Sr+ He stellar evolution galactochemical evolution Hi-res NIR modelling: - extension of previous modelling - strong NLTE effects - good agreement with visual but adjustment of some model atoms necessary (NLTE amplification) improved atomic data HD111613 (A2 Iabe) preparation for E-ELT ()

Extragalactic Stellar Astronomy Extragalactic Abundances so far: HII regions only indicators for abundances in nearby galaxies: He, N, O, Ne, S verification and extension via stars

Nebular abundances Extragalactic Stellar Astronomy strong line method: R 23 = f[n(o)/n(h)] Pagel et al. (1979) simple empirical calibration, but... R 23 depends on T electron, n electron, nature of ionizing stars, gas inhom., filling factors, depletion onto dust, velocity distribution,...

Extragalactic Stellar Astronomy Bresolin, Kudritzki, Méndez & Przybilla (2001) NGC 3621 VLT/FORS1 d ~ 6.6 Mpc

Extragalactic Stellar Astronomy Bresolin, Kudritzki, Méndez & Przybilla (2001) NGC3621 a Bresolin, Kudritzki, Méndez & Przybilla (2001) NGC 3621 spectrum synthesis for 0.5 and 0.2 solar metallicity VLT/FORS1 d ~ 6.6 Mpc

6 B-SGs Extragalactic Stellar Astronomy Urbaneja et al. (2005) Zaritsky et al. (1994) Abundance Gradients NGC300 gradient (nebulae): to steep, offset Kobulnicky et al. (1999) gradient (nebulae): slope fine, offset Pilyugin (2001) radial trend of O abundances different trends for HII-regions from 3 different R 23 -calibrations independent verification and extension via stellar analyses systematic bias in published gradients? gradient (nebulae): agreement Talk Miguel Urbaneja

Mass-metallicity relationship Extragalactic Stellar Astronomy Tremonti et al. (2004) Rosetta Stone for understanding galaxy formation and chemical evolution

Mass-metallicity relationship Extragalactic Stellar Astronomy Tremonti et al. (2004) However... something must be wrong... based on simplified emission line analysis

Mass-metallicity relationship -the stellar case Extragalactic Stellar Astronomy Hosek et al. (2014) Andrews & Martini (2013) direct method on stacked SDSS data metallicities for 13 star-forming galaxies Kewley & Ellison (2008) different strong-line calibrations stellar Local Group and beyond stellar vs. strong line analyses of HII regions investigate and minimise systematic bias of extragalactic metallicities

H 0 uncertainty and universe equation of state Extragalactic Stellar Astronomy Hubble constant uncertainty EoS parameter w despite enormous effort still: δh 0 ~ 5-10% w ~ 10-20% compare Freedman et al. (2001) Saha et al. (2001), Sandage et al. (2006) Mould & Sakai (2008, 2009ab) Riess et al. (2009, 2011, 2012) δh 0 ~ 3% δh 0 ~ 1%

Complications for extragalactic distances Extragalactic Stellar Astronomy metal-rich patchy dust extinction metal-poor metallicity depencence of distance indicators

Extragalactic Stellar Astronomy Flux weighted Gravity Luminosity Relationship (FGLR) Kudritzki, Bresolin & Przybilla (2003) B0-A5 Meynet & Maeder (2000) L, M ~ const. M ~ g R 2 ~ L (g/t 4 ) = const. const. with L ~ M x ~ L x (g/t 4 ) x x ~ 3 L 1-x ~ (g/t 4 ) x or with M bol ~ -2.5log L M bol = a log (g/t 4 ) + b FGLR a = 2.5 x/(1-x) ~ 3.75

Calibration of the FGLR Extragalactic Stellar Astronomy Kudritzki et al. (2008) M bol = 3.41 { log (g/t 4 eff,4) 1.5 } -8.02 σ= 0.32 mag 10 objects per galaxy ( m M ) ~ 0.1 mag

Reddening, reddening law, extinction Extragalactic Stellar Astronomy Kudritzki et al. (2008) A2 Ia Teff = 9500 K log g = 1.45 FORS1 SED fit E(B-V), R V, A V HST/ACS

Reddening & impact on distances Extragalactic Stellar Astronomy M33 U et al. (2009) distance too large Kudritzki et al. (2012) M81 distance too short adopted by HST Key Project Freedman et al. (1994, 2001)

Distance determination with FGLR Extragalactic Stellar Astronomy Kudritzki et al. (2012) calibrated FGLR Kudritzki et al. (2008) shift to reach best match btw. observation & calibration DM d = 3.47 ±0.16 Mpc

The E-ELT perspective NGC6822 14 from the Local Group to Virgo & Fornax Extragalactic Stellar Astronomy Field of View: several arcmin ideal NGC300 27 NGC253 26 CenA Target density O(100) in FoV depends on galaxy 16 M100 (Virgo) 22 NGC1365 (Fornax) R ~ 5000 sufficient for quantitative work on BSGs 12

M100 in Virgo Extragalactic Stellar Astronomy Stellar Spectroscopy in Virgo & Fornax problem: spatial resolution 1 @16.5Mpc: ~80pc diffraction-limited observation with ELT using AO (near-ir) starfield around Sk -69 211 in LMC 5.5 x 5.5 in LMC 1 x 1 @ Virgo deployable IFUs S/N constraints: S/N > 50 100

Summary Summary: BSGs are unique tools stellar atmosphere physics: non-lte, winds,... stellar evolution: metallicity effects He, CNO ISM studies in other galaxies galactic evolution: abundance patterns/gradients galaxies in Hubble sequence in field, groups & clusters 4 cosmic distance scale: FGLR L ~ log g/t eff Flux-weighted Gravity-Luminosity Relationship