!"#$%& IIT Kanpur. !"#$%&. Kanpur, How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors

Similar documents
Miniworkshop on Strong Correlations in Materials and Atom Traps August Superconductivity, magnetism and criticality in the 115s.

Heavy Fermion systems

Time reversal and the symplectic symmetry of the electron spin.

Topological Kondo Insulators!

Réunion du GDR MICO Dinard 6-9 décembre Frustration and competition of interactions in the Kondo lattice: beyond the Doniach s diagram

Detection of novel electronic order in Fe based superconducting (and related) materials with point contact spectroscopy

The Hubbard model in cold atoms and in the high-tc cuprates

Qu-Transitions. P. Coleman (CMT, Rutgers) IIT Kanpur Feb 7, 2010.

Odd-frequency superconductivity in two-channel Kondo lattice and its electromagnetic response

Ideas on non-fermi liquid metals and quantum criticality. T. Senthil (MIT).

Quantum phase transitions and the Luttinger theorem.

"From a theoretical tool to the lab"

Superconductivity in Heavy Fermion Systems: Present Understanding and Recent Surprises. Gertrud Zwicknagl

Effet Kondo dans les nanostructures: Morceaux choisis

Sunday, February 17, 13

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

Orbital order and Hund's rule frustration in Kondo lattices

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA

Quantum Impurities In and Out of Equilibrium. Natan Andrei

Sign-problem-free Quantum Monte Carlo of the onset of antiferromagnetism in metals

arxiv:cond-mat/ v1 [cond-mat.str-el] 21 Sep 2004

Phase diagrams of pressure-tuned Heavy Fermion Systems

Strongly Correlated Systems:

A quantum dimer model for the pseudogap metal

Optical conductivity of CeMIn 5 (M=Co, Rh, Ir)

Tuning order in cuprate superconductors

A Holographic Model of the Kondo Effect (Part 1)

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Coexistence of magnetism and superconductivity in CeRh 1-x Ir x In 5. Florida State University, Tallahassee, FL Version Date: January 19, 2001

Origin of non-fermi liquid behavior in heavy fermion systems: A conceptual view

Intermediate valence in Yb Intermetallic compounds

Electron Correlation

Let There Be Topological Superconductors

FROM NODAL LIQUID TO NODAL INSULATOR

Resistivity studies in magnetic materials. Makariy A. Tanatar

Comparison of the Crystal Structure of the Heavy-Fermion Materials

Non Fermi Liquids: Theory and Experiment. Challenges of understanding Critical and Normal Heavy Fermion Fluids

Hidden order in URu 2. Si 2. hybridization with a twist. Rebecca Flint. Iowa State University. Hasta: spear (Latin) C/T (mj/mol K 2 ) T (K)

Holographic Kondo and Fano Resonances

Quantum phase transitions

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Physics of iron-based high temperature superconductors. Abstract

ANTIFERROMAGNETIC EXCHANGE AND SPIN-FLUCTUATION PAIRING IN CUPRATES

Lecture 2: Ultracold fermions

Phase diagram of the cuprates: Where is the mystery? A.-M. Tremblay

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Quantum Choreography: Exotica inside Crystals

A brief Introduction of Fe-based SC

Dual fermion approach to unconventional superconductivity and spin/charge density wave

Exact results concerning the phase diagram of the Hubbard Model

Is Sr2RuO4 a triplet superconducor? ---analysis of specific heat under fields---

CFT approach to multi-channel SU(N) Kondo effect

Small and large Fermi surfaces in metals with local moments

Computational strongly correlated materials R. Torsten Clay Physics & Astronomy

Spin liquids in frustrated magnets

Understanding correlated electron systems by a classification of Mott insulators

RESUME DEPARTMENT OF PHYSICS AND ASTRONOMY IOWA STATE UNIVERSITY (2/12/2015)

PG5295 Muitos Corpos 1 Electronic Transport in Quantum dots 2 Kondo effect: Intro/theory. 3 Kondo effect in nanostructures

Landau s Fermi Liquid Theory

Quadrupolar Ordered Phases in Pr-based Superconductors PrT 2 Zn 20 (T = Rh and Ir)

A New look at the Pseudogap Phase in the Cuprates.

Luigi Paolasini

High Tc superconductivity in cuprates: Determination of pairing interaction. Han-Yong Choi / SKKU SNU Colloquium May 30, 2018

Quantum Criticality and Emergent Phases in Heavy Fermion Metals

arxiv:cond-mat/ v1 19 Aug 1992

Quantum Criticality in Heavy Fermion Metals. Qimiao Si. Rice University

Resonating Valence Bond point of view in Graphene

Coulomb-Blockade and Quantum Critical Points in Quantum Dots

Anisotropic Magnetic Structures in Iron-Based Superconductors

Quantum phase transitions in Mott insulators and d-wave superconductors

J. D. Thompson with Tuson Park, Zohar Nussinov, John L. Sarrao Los Alamos National Laboratory and Sang-Wook Cheong Rutgers University

Rashba vs Kohn-Luttinger: evolution of p-wave superconductivity in magnetized two-dimensional Fermi gas subject to spin-orbit interaction

Nuclear magnetic resonance in Kondo lattice systems

An introduction to the dynamical mean-field theory. L. V. Pourovskii

Anomalous spin suscep.bility and suppressed exchange energy of 2D holes

Which Spin Liquid Is It?

Deconfined Quantum Critical Points

The onset of antiferromagnetism in metals: from the cuprates to the heavy fermion compounds

Spinon magnetic resonance. Oleg Starykh, University of Utah

Superconducting state of quasiparticles with spin dependent mass and their

Functional renormalization group approach to interacting Fermi systems DMFT as a booster rocket

Quantum disordering magnetic order in insulators, metals, and superconductors

Vortex States in a Non-Abelian Magnetic Field

Two energy scales and slow crossover in YbAl 3

experiment, phenomenology, and theory

Spin liquids on the triangular lattice

Orbital magnetic field effects in spin liquid with spinon Fermi sea: Possible application to (ET)2Cu2(CN)3

Knight Shift Measurements on Superconducting Sr 2 RuO 4

Anomalous Scaling Relations & Pairing Mechanism of Fe-based SC

Neutron scattering from quantum materials

Quantum criticality in the cuprate superconductors. Talk online: sachdev.physics.harvard.edu

5. Superconductivity. R(T) = 0 for T < T c, R(T) = R 0 +at 2 +bt 5, B = H+4πM = 0,

Theory of d-vector of in Spin- Triplet Superconductor Sr 2 RuO 4

Order and quantum phase transitions in the cuprate superconductors

Kondo Physics in Nanostructures. A.Abdelrahman Department of Physics University of Basel Date: 27th Nov. 2006/Monday meeting

Twenty years have passed since the discovery of the first copper-oxide high-temperature superconductor

Degeneracy Breaking in Some Frustrated Magnets

Fe 1-x Co x Si, a Silicon Based Magnetic Semiconductor

Spin-orbital separation in the quasi-one-dimensional Mott insulator Sr 2 CuO 3 Splitting the electron

Theory of Electron Spin Resonance in Ferromagnetically Correlated Heavy Fermion Compounds

Transcription:

How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors!"#$%& IIT Kanpur Feb 6 2010 Interaction, Instability and Transport!"#$%&. Kanpur, 1857.

How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors!"#$%& IIT Kanpur Feb 6 2010 Interaction, Instability and Transport M. Dzero R. Flint P. Coleman Local Moment Center for Materials Theory 4.5K Heavy Fermion S.C NpAl2Pd5

How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors!"#$%& IIT Kanpur Feb 6 2010 Interaction, Instability and Transport M. Dzero R. Flint P. Coleman Local Moment Center for Materials Theory Local Moment 4.5K Heavy Fermion S.C NpAl2Pd5

How spins become pairs: Composite and magnetic pairing in the 115 Heavy Fermion Superconductors!"#$%& IIT Kanpur Feb 6 2010 Interaction, Instability and Transport M. Dzero R. Flint P. Coleman Local Moment Center for Materials Theory composite pair 4.5K Heavy Fermion S.C NpAl2Pd5

Acknowledgments: Nature Physics 4, 643 (2008). arxiv:0912.2339 Rebecca Flint Maxim Dzero (U. Maryland).

Acknowledgments: Nature Physics 4, 643 (2008). arxiv:0912.2339 Rebecca Flint Maxim Dzero (U. Maryland). Scott Thomas (Rutgers) Pascoal Pagliuso & group (Unicamp) Joe Thompson (LANL) Filip Ronning (LANL) E. D. Bauer (LANL) Zachary Fisk (UCIrvine) Cigdem Capan (UCIrvine) Alexei Tsvelik (BNL) Natan Andrei (Rutgers) Hae Young Kee (Toronto) PRB 60, 3609, (1998).

Acknowledgments: Nature Physics 4, 643 (2008). arxiv:0912.2339 Rebecca Flint Maxim Dzero (U. Maryland). Scott Thomas (Rutgers) Pascoal Pagliuso & group (Unicamp) Joe Thompson (LANL) Filip Ronning (LANL) E. D. Bauer (LANL) Zachary Fisk (UCIrvine) Cigdem Capan (UCIrvine) Alexei Tsvelik (BNL) Natan Andrei (Rutgers) Hae Young Kee (Toronto) PRB 60, 3609, (1998).

Outline

Outline! The materials: Why the 115s are so special?

Outline! The materials: Why the 115s are so special?! The concept: How do spins pair?! Composite pairing and the Two Channel Kondo model

Outline! The materials: Why the 115s are so special?! The concept: How do spins pair?! Composite pairing and the Two Channel Kondo model! The tool: Symplectic-N

Outline! The materials: Why the 115s are so special?! The concept: How do spins pair?! Composite pairing and the Two Channel Kondo model! The tool: Symplectic-N! The results: Composite pairing phase diagram

Outline! The materials: Why the 115s are so special?! The concept: How do spins pair?! Composite pairing and the Two Channel Kondo model! The tool: Symplectic-N! The results: Composite pairing phase diagram! Hybridization: of magnetic and composite pairing T C - - - -

Outline! The materials: Why the 115s are so special?! The concept: How do spins pair?! Composite pairing and the Two Channel Kondo model! The tool: Symplectic-N! The results: Composite pairing phase diagram! Hybridization: of magnetic and composite pairing T C - - - -

Conventional Heavy Fermion Superconductivity Example: UPt 3 T* ~ 100K, T C =.56K Pauli Susceptibility Curie

Conventional Heavy Fermion Superconductivity Example: UPt 3 Stage one: QP formation T* ~ 100K, T C =.56K Pauli paramagnetism fully Pauli Susceptibility developed by 30K~50 T C Curie

Conventional Heavy Fermion Superconductivity Example: UPt 3 Stage one: QP formation T* ~ 100K, T C =.56K Pauli paramagnetism fully Pauli Susceptibility developed by 30K~50 T C Curie

Conventional Heavy Fermion Superconductivity Example: UPt 3 Stage one: QP formation T* ~ 100K, T C =.56K Pauli paramagnetism fully Pauli Susceptibility developed by 30K~50 T C Curie Spin Fluctuations

Conventional Heavy Fermion Superconductivity Example: UPt 3 Stage one: QP formation Pauli T* ~ 100K, T C =.56K Susceptibility Curie Pauli paramagnetism fully developed by 30K~50 T C Stage two Unconventional superconductivity mediated by spin fluctuations

Conventional Heavy Fermion Superconductivity Example: UPt 3 T* ~ 100K, T C =.56K Stage one: QP formation Pauli paramagnetism fully developed by 30K~50 T C Stage two Unconventional superconductivity mediated by spin fluctuations Nodal SC Kohori 1988

Conventional Heavy Fermion Superconductivity Example: UPt 3 T* ~ 100K, T C =.56K Stage one: QP formation Pauli paramagnetism fully developed by 30K~50 T C Stage two Unconventional superconductivity mediated by spin fluctuations Led to proposal that AFM spin fluctuations drive d-wave pairing Nodal SC Beal-Monod, Bourbonnais and Emery Scalapino, Loh and Hirsch Miyake, Schmitt-Rink, and Varma 1986 Kohori 1988

115 materials: a new family of superconductors In

115 materials: a new family of superconductors Oxides T c? YBa 2 Cu 3 O 7 92K In Ba2201 12K

115 materials: a new family of superconductors Oxides 115 Intermetallics T c T c? YBa 2 Cu 3 O 7 92K Mathur et al, Nature 394, 39 (1998) In Ba2201 12K 0.2K CeIn 3 96

115 materials: a new family of superconductors Ce Co Oxides 115 Intermetallics T c T c? YBa 2 Cu 3 O 7 92K 2K CeCoIn 5 01 In Ba2201 12K 0.2K CeIn 3 96

115 materials: a new family of superconductors Ce Co Oxides 115 Intermetallics Tuson Park, (2007). CeRhIn 5 T c T c? YBa 2 Cu 3 O 7 92K 2K CeCoIn 5 01 In Ba2201 12K 0.2K CeIn 3 96

115 materials: a new family of superconductors Oxides 115 Intermetallics T c T c? 18.5K PuCoGa 5 02 YBa 2 Cu 3 O 7 92K 2K CeCoIn 5 01 In Ba2201 12K 0.2K CeIn 3 96

115 materials: a new family of superconductors Oxides 115 Intermetallics T c T c? 18.5K PuCoGa 5 02 NpAl 2 Pd 5 4.5K 07 YBa 2 Cu 3 O 7 92K 2K CeCoIn 5 01 4.5K Heavy Fermion S.C NpAl2Pd5 In D. Aoki et al., JPSJ 76 (2007) Ba2201 12K 0.2K CeIn 3 96

The 115s: local moments at T C NpPd 5 Al 2 T C = 4.5K Curie No Pauli paramagnetism ~1/3 R ln(2) Large condensation entropy Aoki et al 2007

The 115s: local moments at T C NpPd 5 Al 2 T C = 4.5K CeCoIn 5 T C = 2.3K Ce Co In ~1/3 R ln(2) ~1/3 R ln(2) Aoki et al 2007 Petrovic et al 2001

The 115s: local moments at T C Ce In NpPd 5 Al 2 T C = 4.5K CeCoIn 5 T C = 2.3K Co Follow spins below T C ~1/3 R ln(2) 1/3 R ln(2) 1/3 R ln(2) Knight Shift Aoki et al 2007 Petrovic et al 2001 Aoki et al 2007 Curro et al 2001

Curro et al 2001 The 115s: local moments at T C Above T C ~1/3 R ln(2) Curie Free local moments down to T C Aoki et al 2007 Below T C Knight Shift Spin singlet, nodal SC Spins pair and quench simultaneously Curro et al 2001 Sarrao and Thompson 2007 How are spins incorporated into the pair?

Kondo effect and Heavy Fermions Review: cond-mat/0612006 Nozieres 74

Kondo effect and Heavy Fermions Review: cond-mat/0612006 H = Jσ (0) S J. Kondo 64 Nozieres 74

Kondo effect and Heavy Fermions Review: cond-mat/0612006 H = Jσ (0) S T K F e F J J. Kondo 64 Nozieres 74

Kondo effect and Heavy Fermions Review: cond-mat/0612006 χ T K 1 T K H = Jσ (0) S χ 1/T T K F e F J T K J. Kondo 64 T Nozieres 74

Kondo effect and Heavy Fermions Review: cond-mat/0612006 χ T K 1 T K H = Jσ (0) S χ 1/T T K F e F J T K J. Kondo 64 T Nozieres 74

Kondo effect and Heavy Fermions Review: cond-mat/0612006

Kondo effect and Heavy Fermions Review: cond-mat/0612006 PuCoGa 5 H = Jσ (0) S

Kondo effect and Heavy Fermions Review: cond-mat/0612006 PuCoGa 5 H = Jσ (0) S Directly Curie PM to SC

Kondo effect and Heavy Fermions Review: cond-mat/0612006 PuCoGa 5 H = Jσ (0) S S.C. Directly Curie PM to SC

Kondo effect and Heavy Fermions Review: cond-mat/0612006 PuCoGa 5 H = Jσ (0) S S.C. How do spins quench and form pairs?

Outline! The materials: Why the 115s are so special?! The concept: How do spins pair?! Composite pairing and the Two Channel Kondo model model! The tool: Symplectic-N! The results: Composite pairing phase diagram! Hybridization: of magnetic and composite pairing T C - - - -

Cotunneling and composite fermions

Cotunneling and composite fermions van der Wiel et al, Science (2000)

Cotunneling and composite fermions van der Wiel et al, Science (2000) + T>>TK: Coulomb Blockade

Cotunneling and composite fermions van der Wiel et al, Science (2000) T<<TK

Cotunneling and composite fermions van der Wiel et al, Science (2000) T<<TK

Cotunneling and composite fermions van der Wiel et al, Science (2000) Cotunneling (Glazman +Pustilnik) (quantum dots) f = c S T<<TK

Cotunneling and composite fermions Cotunneling Cotunneling (Glazman +Pustilnik) (quantum dots) Heavy electron = (electron x spinflip) f = c S

Cotunneling and copairing: Copairing Cotunneling (Glazman +Pustilnik) (quantum dots) Heavy Cooper pair = (pair x spinflip) f = c S

Cotunneling and copairing: Copairing Cotunneling (Glazman +Pustilnik) (quantum dots) Heavy Cooper pair = (pair x spinflip) f = c S Ψ = c 1 c 2 S +

Cotunneling and copairing: Copairing Cotunneling (Glazman +Pustilnik) (quantum dots) Heavy Cooper pair = (pair x spinflip) f = c S Ψ = c 1 c 2 S + Abrahams, Balatsky, Scalapino, Schrieffer 1995

Two-channel model for composite pairing.

The Two Channel Kondo Model Wannier functions at site j:

The Two Channel Kondo Model Wannier functions at site j:! Both {

The Two Channel Kondo Model Wannier functions at site j:! Both {

The Two Channel Kondo Model Wannier functions at site j:! Both {

H = k k c kσ c kσ + 1 N cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

Impurity: quantum critical point for J 1 = J 2 Nozieres and Blandin 1980 T/TK FL1 FL2 J2/J1 H = k k c kσ c kσ + 1 N cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

Impurity: quantum critical point for J 1 = J 2 Nozieres and Blandin 1980 Singular composite pair fluctuations Emery and Kivelson 1992 T/TK FL1 FL2 J2/J1 H = k k c kσ c kσ + 1 N cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

Impurity: quantum critical point for J 1 = J 2 Nozieres and Blandin 1980 Singular composite pair fluctuations Emery and Kivelson 1992 T/TK Avoided in the lattice by composite pairing. FL1 FL2 J2/J1 H = k k c kσ c kσ + 1 N cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

Impurity: quantum critical point for J 1 = J 2 Nozieres and Blandin 1980 Singular composite pair fluctuations Emery and Kivelson 1992 T/TK Avoided in the lattice by composite pairing. FL1 - - FL2 J2/J1 H = k k c kσ c kσ + 1 N cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

Outline! The materials: Why the 115s are so special?! The concept: How do spins pair?! Composite pairing and the Two Channel Kondo model! The tool: Symplectic-N! The results: Composite pairing phase diagram! Hybridization: of magnetic and composite pairing T C - - - -

H = k cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k c kσ c kσ + 1 N k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

S[ψ] So how can we solve this τ,x model? ψ(x, τ) Wild quantum fluctuations! H = k cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k c kσ c kσ + 1 N k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

Method: symplectic large N Flint & Coleman ʼ08 PRB 79, 014424(2009) S[ψ] So how can we solve this τ,x model? ψ(x, τ) H = k cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k c kσ c kσ + 1 N k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

Method: symplectic large N Flint & Coleman ʼ08 PRB 79, 014424(2009) S[ψ] τ,x Large N limit ψ(x, τ) H = k cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k c kσ c kσ + 1 N k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

Method: symplectic large N Flint & Coleman ʼ08 PRB 79, 014424(2009) S[ψ] τ,x Large N limit ψ(x, τ) H = k cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k c kσ c kσ + 1 N k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

S[ψ] τ,x Large N limit 1 N eff ψ(x, τ) H = k cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k c kσ c kσ + 1 N k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

S[ψ] τ,x Large N limit 1 N eff ψ(x, τ) H = k cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k c kσ c kσ + 1 N k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

S[ψ] τ,x Large N limit 1 N eff classical path ψ(x, τ) H = k cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k c kσ c kσ + 1 N k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk S ba (j) c k e ik x j

S[ψ] τ,x Large N limit 1 N eff classical path ψ(x, τ) H = k cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k c kσ c kσ + 1 N k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk? S ba (j) c k e ik x j

Symplectic N (large N + time reversal symmetry) R. Flint and PC 08 S[ψ] τ,x Large N limit 1 N eff classical path ψ(x, τ) H = k cf Cox, Pang, Jarell (96) PC, Kee, Andrei, Tsvelik (98) k c kσ c kσ + 1 N k,k J 1 ψ 1a (j)ψ 1b(j) + J 2 ψ 2a (j)ψ 2b(j) Single FS, two channels. ψ Γ (j) = 1 V k γ Γk? S ba (j) c k e ik x j

The one channel model in Symplectic N H I = J K N = J K N ψ a ψ b S ba f b f a ã bf af b (ψ f)(f ψ) + (ψ σ 2 f )(fσ 2 ψ).

The one channel model in Symplectic N H I = J K N = J K N ψ a ψ b S ba f b f a ã bf af b (ψ f)(f ψ) + (ψ σ 2 f )(fσ 2 ψ) Hybridization.

The one channel model in Symplectic N H I = J K N = J K N ψ a ψ b S ba f b f a ã bf af b (ψ f)(f ψ) + (ψ σ 2 f )(fσ 2 ψ). Hybridization Pairing

The one channel model in Symplectic N H I = J K N = J K N ψ a ψ b S ba f b f a ã bf af b (ψ f)(f ψ) + (ψ σ 2 f )(fσ 2 ψ). Hybridization Pairing H I [V f + ( fσ 2 )]ψ + H.c + N V V + J K.

The one channel model in Symplectic N H I = J K N = J K N ψ a ψ b S ba f b f a ã bf af b (ψ f)(f ψ) + (ψ σ 2 f )(fσ 2 ψ). Hybridization Pairing Aside: Continuous particle-hole symmetry Reflects the neutrality of the spin Pairing can be gauged away N= 2: Affleck, Zou, Hsu and Anderson 1988 H I [V f + ( fσ 2 )]ψ + H.c + N V V + J K.

The one channel model in Symplectic N H I = J K N = J K N ψ a ψ b S ba f b f a ã bf af b (ψ f)(f ψ) + (ψ σ 2 f )(fσ 2 ψ). Hybridization Pairing Aside: Continuous particle-hole symmetry Reflects the neutrality of the spin Pairing can be gauged away N= 2: Affleck, Zou, Hsu and Anderson 1988 H I [V f + ( fσ 2 )]ψ + H.c. = f V 2 + 2 = f Ṽ + N V V + J K.

The one channel model in Symplectic N H I = J K N = J K N ψ a ψ b S ba f b f a ã bf af b (ψ f)(f ψ) + (ψ σ 2 f )(fσ 2 ψ). Hybridization Pairing Aside: Continuous particle-hole symmetry N= 2: Affleck, Zou, Hsu and Anderson 1988 Reflects the neutrality of the spin Pairing can be gauged away -recovering results of SU(N) large N.

The 2-channel model:

The 2-channel model: H I + [V 1 f +( 1 fσ 2 )]ψ 1 +H.c [V 2 f +( 2 fσ 2 )]ψ 2 +H.c + N + N V1 V 1 + 1 1 J 1 V2 V 2 + 2 2 J 2

The 2-channel model: H I + [V 1 f +( 1 fσ 2 )]ψ 1 +H.c [V 2 f +( 2 fσ 2 )]ψ 2 +H.c + N + N V1 V 1 + 1 1 J 1 V2 V 2 + 2 2 J 2 Gauge fixing does not remove the pairing [V 1 f ψ 1 +( 2 fσ 2 )ψ 2 ]+H.c + N V1 V 1 + 2 2 J 1 J 2

The 2-channel model: H I + [V 1 f +( 1 fσ 2 )]ψ 1 +H.c [V 2 f +( 2 fσ 2 )]ψ 2 +H.c + N + N V1 V 1 + 1 1 J 1 V2 V 2 + 2 2 J 2 Gauge fixing does not remove the pairing [V 1 f ψ 1 +( 2 fσ 2 )ψ 2 ]+H.c + N V1 V 1 + 2 2 J 1 J 2 The gauge-invariant cross term formation of composite pairs V 1 2 V 2 1 describe the overscreened S ψ 1 σ 2 σ ψ 2 V 1 2 V 2 1 PC, Kee, Andrei & Tsvelik. (97)

The 2-channel model: H I + [V 1 f +( 1 fσ 2 )]ψ 1 +H.c [V 2 f +( 2 fσ 2 )]ψ 2 +H.c + N + N V1 V 1 + 1 1 J 1 V2 V 2 + 2 2 J 2 Gauge fixing does not remove the pairing [V 1 f ψ 1 +( 2 fσ 2 )ψ 2 ]+H.c + N V1 V 1 + 2 2 J 1 J 2 The gauge-invariant cross term formation of composite pairs V 1 2 V 2 1 describe the overscreened S ψ 1 σ 2 σ ψ 2 V 1 2 V 2 1 k k PC, Kee, Andrei & Tsvelik. (97) V 1 γ 1 (k) 2 γ 2 ( k) eff (k) V 1 2 γ 1 (k)γ 2 (k) k k 2 γ 2 (k) V 1 γ 1 ( k) resonant Andreev scattering.

Outline! The materials: Why the 115s are so special?! The concept: How do spins pair?! Composite pairing and the Two Channel Kondo model! The tool: Symplectic-N! The results: Composite pairing phase diagram! Hybridization: of magnetic and composite pairing T C - - - -

The Phase Diagram 1 V 1 " 0 # 2 " 0 V 1! 2 " 0 0 0.2 1 5!

The Phase Diagram 1 Heavy Fermi Liquid One Heavy Fermi Liquid Two V 1 " 0 # 2 " 0 - V 1! 2 " 0 - - - 0 0.2 1 5!

Outline! The materials: Why the 115s are so special?! The concept: How do spins pair?! Composite pairing and the Two Channel Kondo model! The tool: Symplectic-N! The results: Composite pairing phase diagram! Hybridization: of magnetic and composite pairing T C - - - -

But how to unify magnetically mediated pairing and composite pairing in the Ce 115s?

But how to unify magnetically mediated pairing and composite pairing in the Ce 115s? Magnetically mediated pairing

But how to unify magnetically mediated pairing and composite pairing in the Ce 115s? Magnetically mediated pairing

But how to unify magnetically mediated pairing and composite pairing in the Ce 115s? Magnetically mediated pairing

But how to unify magnetically mediated pairing and composite pairing in the Ce 115s? Magnetically mediated pairing Composite pairing

The Two channel Kondo-Heisenberg Model Two channel Kondo Model Heisenberg Model

The Two channel Kondo-Heisenberg Model

The Two channel Kondo-Heisenberg Model

The Two channel Kondo-Heisenberg Model - Spin liquid state

The Two channel Kondo-Heisenberg Model - + + = - - Spin liquid state d-wave Anderson 1973 Baskaran, Zou and Anderson 1987

The Two channel Kondo-Heisenberg Model - + + - Spin liquid state d-wave Anderson 1973 Baskaran, Zou and Anderson 1987

The Two channel Kondo-Heisenberg Model - V 1 - + + - V 1 -

The Two channel Kondo-Heisenberg Model Valence bonds become charged, mobile Cooper pairs + - V 1 - + - V 1 -

The Two channel Kondo-Heisenberg Model Valence bonds become charged, mobile Cooper pairs Inheriting d-wave nature from the antiferromagnetism - V 1 + - - V 1 - +

The Two channel Kondo-Heisenberg Model Valence bonds become charged, mobile Cooper pairs Inheriting d-wave nature from the antiferromagnetism - V 1 + - - V 1 - + Two band version of RVB pairing - - Anderson 1987 Andrei and Coleman 1989 Miyake, Schmitt-Rink, Varma 1986

The Two channel Kondo-Heisenberg Model Spin Liquid # H V 1 # H Heavy Fermi Liquid V 1 Superconductor - - Andrei and Coleman 1989

The Phase Diagram Magnetic pairing V 1 # H " 0

The Phase Diagram Composite pairing V 1 # 2 " 0

The Phase Diagram Decoupled magnetic and composite pairing V 1 # H +V 1 # 2 " 0

The Phase Diagram Hybrid pairing V 1 # 2 # H " 0

The Phase Diagram Composite and d-wave pairing mutually reinforce. Hybrid pairing V 1 # 2 # H " 0

Landau Theory

Comparision to the Ce 115s Sarrao and Thompson 2007

Comparision to the Ce 115s Chemical pressure traces a path through phase space Sarrao and Thompson 2007

Comparision to the Ce 115s Chemical pressure traces a path through phase space CeCoIn 5 CeIrIn 5 CeRhIn 5 Sarrao and Thompson 2007

Comparision to the Ce 115s Chemical pressure traces a path through phase space? Sarrao and Thompson 2007

Comparision to the Ce 115s Chemical pressure traces a path through phase space Sarrao and Thompson 2007

Experimental implications! Valence shift (#n f ) associated with Kondo physics Gunnarsson and Schonhammer 1983

Experimental implications! Valence shift (#n f ) associated with Kondo physics! Sharp valence shift of opposite sign expected at T C! Observable in core level spectroscopy n f 1 X-ray 0 T C T K T Gunnarsson and Schonhammer 1983

Experimental implications! Valence shift (#n f ) associated with Kondo physics! Sharp valence shift of opposite sign expected at T C! Observable in core level spectroscopy 1 X-ray n f! Orbital Knight shift in NQR? 0 T T C T K

Conclusions! Spins quench as they pair in the 115s - -! Must be incorporated directly into the condensate! Two channel physics leads to composite pairs! First controlled mean field theory of heavy fermion superconductivity - Symplectic-N! Composite and magnetic pairing cooperate to enhance T C - - - -

Discussion: Thank You!