On Multigrid for Phase Field

Similar documents
Constrained Minimization and Multigrid

Nonsmooth Schur Newton Methods and Applications

On preconditioned Uzawa-type iterations for a saddle point problem with inequality constraints

Numerical Approximation of Phase Field Models

A sharp diffuse interface tracking method for approximating evolving interfaces

Numerical Solution I

Multigrid Methods for Elliptic Obstacle Problems on 2D Bisection Grids

FDM for parabolic equations

A Recursive Trust-Region Method for Non-Convex Constrained Minimization

LECTURE 3: DISCRETE GRADIENT FLOWS

On Nonlinear Dirichlet Neumann Algorithms for Jumping Nonlinearities

Modelling of interfaces and free boundaries

Part IV: Numerical schemes for the phase-filed model

ITERATIVE METHODS FOR NONLINEAR ELLIPTIC EQUATIONS

Universität Regensburg Mathematik

THE CAHN-HILLIARD EQUATION WITH A LOGARITHMIC POTENTIAL AND DYNAMIC BOUNDARY CONDITIONS

Block-Structured Adaptive Mesh Refinement

A PRACTICALLY UNCONDITIONALLY GRADIENT STABLE SCHEME FOR THE N-COMPONENT CAHN HILLIARD SYSTEM

VARIATIONAL AND NON-VARIATIONAL MULTIGRID ALGORITHMS FOR THE LAPLACE-BELTRAMI OPERATOR.

Numerical explorations of a forward-backward diffusion equation

Entropy-dissipation methods I: Fokker-Planck equations

Numerical Modeling of Methane Hydrate Evolution

arxiv: v1 [cs.na] 13 Jan 2016

Efficient smoothers for all-at-once multigrid methods for Poisson and Stokes control problems

A MULTILEVEL SUCCESSIVE ITERATION METHOD FOR NONLINEAR ELLIPTIC PROBLEMS

Evolution Under Constraints: Fate of Methane in Subsurface

Iterative Methods for Linear Systems

EXISTENCE OF SOLUTIONS TO THE CAHN-HILLIARD/ALLEN-CAHN EQUATION WITH DEGENERATE MOBILITY

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction

Chapter Two: Numerical Methods for Elliptic PDEs. 1 Finite Difference Methods for Elliptic PDEs

Partial Differential Equations

Adaptive Finite Element Methods Lecture Notes Winter Term 2017/18. R. Verfürth. Fakultät für Mathematik, Ruhr-Universität Bochum

1. Fast Iterative Solvers of SLE

A Sobolev trust-region method for numerical solution of the Ginz

Finite Elements. Colin Cotter. February 22, Colin Cotter FEM

Geometric Multigrid Methods

Kasetsart University Workshop. Multigrid methods: An introduction

Numerical Simulations on Two Nonlinear Biharmonic Evolution Equations

Small energy regularity for a fractional Ginzburg-Landau system

Boundary Value Problems and Iterative Methods for Linear Systems

A Line search Multigrid Method for Large-Scale Nonlinear Optimization

NUCLEATION AND SPINODAL DECOMPOSITION IN TERNARY-COMPONENT ALLOYS

FDM for wave equations

arxiv: v2 [math.na] 17 Jun 2010

Chapter 1: The Finite Element Method

Goal-oriented error control of the iterative solution of finite element equations

Goal-oriented error control of the iterative solution of finite element equations

CONVERGENCE PROPERTIES OF COMBINED RELAXATION METHODS

A C 1 virtual element method for the Cahn-Hilliard equation with polygonal meshes. Marco Verani

Chapter 7 Iterative Techniques in Matrix Algebra

MULTIMATERIAL TOPOLOGY OPTIMIZATION BY VOLUME CONSTRAINED ALLEN-CAHN SYSTEM AND REGULARIZED PROJECTED STEEPEST DESCENT METHOD

Weak solutions for the Cahn-Hilliard equation with degenerate mobility

Numerical Solution of Nonsmooth Problems and Application to Damage Evolution and Optimal Insulation

arxiv: v1 [math.na] 11 Jul 2011

A generalized MBO diffusion generated motion for constrained harmonic maps

Approximation of fluid-structure interaction problems with Lagrange multiplier

Applied/Numerical Analysis Qualifying Exam

Nonlinear Multigrid and Domain Decomposition Methods

LECTURE 1: SOURCES OF ERRORS MATHEMATICAL TOOLS A PRIORI ERROR ESTIMATES. Sergey Korotov,

Multigrid and Domain Decomposition Methods for Electrostatics Problems

UNCONDITIONALLY ENERGY STABLE SCHEME FOR CAHN-MORRAL EQUATION 3

A SHORT NOTE COMPARING MULTIGRID AND DOMAIN DECOMPOSITION FOR PROTEIN MODELING EQUATIONS

An additive average Schwarz method for the plate bending problem

A STOKES INTERFACE PROBLEM: STABILITY, FINITE ELEMENT ANALYSIS AND A ROBUST SOLVER

Space-time sparse discretization of linear parabolic equations

Title of your thesis here

Aspects of Multigrid

Multigrid Methods and their application in CFD

Spectral element agglomerate AMGe

Sobolev Spaces. Chapter 10

Multi-Factor Finite Differences

Coupled second order singular perturbations for phase transitions

Numerical Oscillations and how to avoid them

Stability Analysis of Stationary Solutions for the Cahn Hilliard Equation

A Space-Time Multigrid Solver Methodology for the Optimal Control of Time-Dependent Fluid Flow

The method of lines (MOL) for the diffusion equation

Optimal multilevel preconditioning of strongly anisotropic problems.part II: non-conforming FEM. p. 1/36

Multi-Level Monte-Carlo Finite Element Methods for stochastic elliptic variational inequalities

On Two Nonlinear Biharmonic Evolution Equations: Existence, Uniqueness and Stability

Variational and Topological methods : Theory, Applications, Numerical Simulations, and Open Problems 6-9 June 2012, Northern Arizona University

Discontinuous Galerkin methods for fractional diffusion problems

ASYMPTOTICALLY EXACT A POSTERIORI ESTIMATORS FOR THE POINTWISE GRADIENT ERROR ON EACH ELEMENT IN IRREGULAR MESHES. PART II: THE PIECEWISE LINEAR CASE

Priority Programme The Combination of POD Model Reduction with Adaptive Finite Element Methods in the Context of Phase Field Models

Simulating Solid Tumor Growth Using Multigrid Algorithms

A New Approach for the Numerical Solution of Diffusion Equations with Variable and Degenerate Mobility

Numerical Analysis of Differential Equations Numerical Solution of Parabolic Equations

PDEs in Image Processing, Tutorials

Solving Distributed Optimal Control Problems for the Unsteady Burgers Equation in COMSOL Multiphysics

Computational Linear Algebra

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2

Parameter-Uniform Numerical Methods for a Class of Singularly Perturbed Problems with a Neumann Boundary Condition

An Iterative Substructuring Method for Mortar Nonconforming Discretization of a Fourth-Order Elliptic Problem in two dimensions

Subdiffusion in a nonconvex polygon

NEWTON-GMRES PRECONDITIONING FOR DISCONTINUOUS GALERKIN DISCRETIZATIONS OF THE NAVIER-STOKES EQUATIONS

A domain decomposition algorithm for contact problems with Coulomb s friction

Allen Cahn Equation in Two Spatial Dimension

Numerical Solution of PDEs: Bounds for Functional Outputs and Certificates

Universität Regensburg Mathematik

Multigrid finite element methods on semi-structured triangular grids

A posteriori error estimation for elliptic problems

Transcription:

On Multigrid for Phase Field Carsten Gräser (FU Berlin), Ralf Kornhuber (FU Berlin), Rolf Krause (Uni Bonn), and Vanessa Styles (University of Sussex) Interphase 04 Rome, September, 13-16, 2004

Synopsis adaptivity in time and space fast, robust solution of discrete spatial problems vector-valued Allen Cahn equations (Kh. & Krause) obstacle potential: monotone multigrid (MMG) by successive 1-D minimization logarithmic potential: robustness by constrained Newton linearization numerical experiments diffusion induced grain boundary motion (Kh., Krause & Styles) phase field models multigrid algorithms for the phase field and the solute Cahn Hilliard equation with obstacle potential (Gräser & Kh.) minimization, saddle point formulation and Uzawa-type iteration numerical experiments

Ginzburg Landau Approach Ginzburg Landau free energy: E(u) = phase field: u [ 1, +1] Ω ε u 2 + 1 ψ(u) dx ε ψ T 500 400 logarithmic free energy: 300 200 100 0 100 200 300 ψ T (u) = 1 2T((1 u) ln(1 u 2 ) + (1 + u) ln( 1+u 2 )) + 1 2 T c(1 u 2 ) temperature T, critical temperature T c 400 500 1.5 1 0.5 0 0.5 1 1.5 u deep quench limit: T 0 ψ T ψ 0 robustness of numerical solvers for T 0: no classical Newton linearization

Phase Field Models isothermal case: T = const. phase transition: Allen-Cahn equation (non-conserving) εu t = d du E(u) = ε u 1 ε ψ (u) (Cahn 60, Allen & Cahn 77) phase separation: Cahn-Hilliard equations (conserving) εu t = w, w = d du E(u) = ε u + 1 ε ψ (u) (Cahn & Hilliard 58) Lyapunov functional: d dt E(u(t)) 0 deep quench limit: complementarity problems, variational inequalities

Phase Transition with N Phases concentrations: u1,...,un vector-valued phase field: u = (u1,...,un) R N Gibbs simplex: u(x, t) G = {v R N 0 vi, N i=1 vi = 1} (closed, convex) examples: N=2: u 1 u 2 G N=3: u 1 u 3 u 2 G

Vector-valued Allen-Cahn Equation: Obstacle Potential Ginzburg-Landau free energy: E(u) = Ω ε N 2 i=1 u i 2 + 1 εψ(u) dx, ε > 0 obstacle potential: ψ = ψ 0 = T c N 2 N i=1 u i(1 u i ) u G parabolic variational inequality (Bronsard & Reitich 93, Garcke et al. 98, 99a, 99b): u(t) G : Gibbs constraints: G = ε(u t, v u) + ε( u, (v u)) T cn ε (u,v u) 0 v {v ( H 1 (Ω) ) N v(x) G a.e. in Ω } G special case N = 2: scalar free energy for u := u 1 u 2

Discretization semi-implicit Euler discretization (concave part explicit): stepsize τ (unconditionally stable) linear finite elements S N j : triangulation T j, meshsize h j = O(2 j ), nodes N j, nodal basis λ (j) p discrete spatial problems: u k j G j : u k j, v u k j + τ( u k j, (v u k j)) }{{} a(u k j,v uk j ) τ 1 + T c N ε 2uk 1 j, v u k j }{{} l(v u k j ) k uj G j discrete Gibbs constraints: G j = { v S N j v(p) G p N j }

Equivalent Formulation: Convex Minimization u j G j : J (u j ) J (v) v G j quadratic energy: J (v) = 1 2a(v, w) l(v) s.p.d. bilinear form: a(v, w) = v, w + τ( v, w) linear functional: l(v) = 1 + T c N τ u k 1 ε 2 j,v closed convex set: G j = { v S N j v(p) G p N j } Sj iterative solution by descent methods

Polygonal Gauß-Seidel Relaxation (Kh. & Krause 02) descent directions: λ (j) p E m, p N j, m = 1,...,M edge vectors of G: E 1,...,E M R N, M := N(N 1) 2 = O(N 2 ) E 2 E 3 G hyperplane: H j = span{λ (j) p E m p N j,m = 1,...,M} E 1 polygonal splitting: H j = p N j M m=1 V (j) p,m, V (j) p,m = span{λ (j) p E m } complexity: O(N 2 n j ) successive minimization of J = J + χ Gj on 1-D subspaces V (j) p,m for p N j and m = 1,...,M

convergence of subsequence: u ν k j Convergence u = u pλ (j) p G j u is fixed point: a(u,λ (j) p η i ) l(λ (j) p η i ) η i span{e i }, u p + η i G Lemma (Kh., Krause & Ziegler) u p, v p G there is a decomposition N 1 v p u p = η i, η i span{e mi }, u p + η i G i=1 v p u p u = u j is the solution: a(u,λ (j) p (v p u p)) l(λ (j) p (v p u p)) v p G a(u,v u ) l(v u ) v G j

A Variant: Block Gauß-Seidel nodal splitting: H j = p N j V p, V p = {λ (j) p E E span{e 1,...,E M }} successive minimization of J + χ Gj on V p : convergence proof similar (but simpler) solution of (N 1) D subproblems complicated for large N typical drawback of any Gauß-Seidel approach: convergence speed might deteriorate exponentially (i.e. ρ j = 1 O(2 j ))

Multilevel Version of Polygonal Gauß-Seidel adaptive refinement: T 0 T 1 T j nodes: N 0 N 1 N j nested finite element spaces: S 0 S 1 S j, λ (j 2) q S k = span{λ (k) p p N k } λ (j) p q p polygonal multilevel splitting: H j = j k=0 p N k M m=1 V (k) p,m V (k) p,m = span{λ (k) p E m }

Polygonal Monotone Multigrid (Kh. & Krause 02) sucessive minimization of J = J + χ Gj on subspaces V (k) p,m for p N k, m = 1,...,M and k = j,j 1,...,0 k = j polygonal Gauß-Seidel relaxation on S N j : fine grid smoother: M j (convergent descent method) k < j coarse grid correction: C j (monotone: J (C j w)) J (C j w)) technical modifications (monotone restriction, truncation) monotone multigrid: u ν+1 j = C j ū ν j ū ν j = M ju ν j properties: implementation as multigrid V -cycle: complexity O(N 2 n j ) globally convergent: u ν j u j ν asymptotic multigrid convergence rates for N = 2

logarithmic potential: Logarithmic Potential ψ T (u) = Tφ(u) + φ 0 (u) convex part: φ(u) = N i=1 u i ln(u i ) concave part: φ 0 (u) = T c N 2 N i=1 u i(1 u i ) ψ T has N distinct minima for 0 T< T c spatial problems: u j G j : a(u j,v) + τ ε 2 T φ (u j ),v = l(v) v H j minimization of convex energy J T (v) = 1 2 a(v, v) + τ ε 2 T φ(v), 1 l(v): u j G j : J T (u j ) J T (v) v G j family of problems: T > 0 logarithmic potential, T = 0 obstacle potential robustness: family of convergent algorithms T 0

What can we do? nonlinear polygonal Gauß-Seidel: robust but slow multilevel version: too expensive (no representation of φ on S k, k < j) Newton s method: not robust (not applicable for T = 0) 500 500 400 400 constrained Newton linearization: 300 200 100 300 200 100 0 0 100 100 200 200 300 300 400 400 500 1.5 1 0.5 0 0.5 1 1.5 small Newton corrections 500 1.5 1 0.5 0 0.5 1 1.5 implicit local damping

Robust Multigrid for the Logarithmic Potential (Kh. & Krause 04) given iterate u ν j fine grid smoothing: M j (globally convergent descent method) nonlinear polygonal Gauß-Seidel iteration: smoothed iterate ū ν j = M ju ν j coarse grid correction: C j (monotone) Newton linearization of φ at ū ν j constrain corrections to smooth regime G u ν j of φ 1 step of polygonal MMG with local damping G Gūν j (p) ū ν j (p) new iterate u ν+1 j = C j ū ν j family of multigrid algorithms T 0 : V -cycle with complexity O(N 2 n j ), (asymptotic) multigrid convergence

Numerical Experiments: The Scalar Case N = 2 time discretization: backward Euler parameter: ε = 0.005, T = 1 10 T c, T c = 1, τ = 1 200 ε2, j = 7 (h j = 1/256 ε/2) initial condition: u(x, 0) 1, random evolution: t = 100τ t = 500τ t = 2000τ t = 3000τ

Robust Convergence parameter: ε = 0.005, T c = 1, τ = 1 2 ε2 initial condition: u(x, 0) 1, random algorithm: multigrid V (1, 1)-cycle with nested iteration, uniform refinement various time steps (T = 0.001, h j = 1/256) meshsize: h j 0 (T = 0.001, 1. time step) temperature T 0 (1. time step, h j = 1/256) 0.5 0.5 0.5 0.4 0.4 0.4 0.3 0.3 0.3 0.2 0.2 0.2 0.1 0.1 0.1 0 0 100 200 300 400 time steps k 0 2 4 6 8 10 refinement level j 10 0 10 1 10 2 10 3 inverse temperature 1/T

N = 5 Phases in 2D parameter: logarithmic potential ψ T, 0 T T c = 1, ε = 0.08 semi-implicit Euler method: 1. time step, τ 0 = ε 2 /80, linear finite elements: uniform refinement j = 6 (h j ε/5) multigrid algorithm: truncated MMG V (3, 3)-cycle with nested iteration time step τ (T = 0.0, h j = 1/64) mesh size: h j 0 (T = 0.0, τ = τ 0 ) temperature T 0 (τ = τ 0 h j = 1/128) 1 0.8 0.6 0.4 0.2 0 10 4 10 2 10 0 time step size τ 1 0.8 0.6 0.4 0.2 0 0 2 4 6 refinement level j 1 0.8 0.6 0.4 0.2 0 10 0 10 1 10 2 10 3 inverse temperature 1/T

N = 3 Phases in 3D parameter: logarithmic potential ψ 0, T c = 1, ε = 0.16 semi-implicit Euler method: 1. time step, τ 0 = ε 2 /2, linear finite elements: uniform refinement j = 5 (h j ε/5) multigrid algorithm: truncated MMG V (3, 3)-cycle with nested iteration timesteps: τ k (T = 0.0, h j = 1/32) meshsize: h j 0 (T = 0.0, τ = τ 0 ) temperature T 0 (τ = τ 0, h j = 1/32) 1 0.8 0.6 0.4 0.2 0 10 4 10 2 10 0 time step size τ 1 0.8 0.6 0.4 0.2 0 0 1 2 3 4 5 refinement level j 1 0.8 0.6 0.4 0.2 0 10 0 10 1 10 2 10 3 inverse temperature 1/T

Conclusion fast, robust solver for arbitrary N and 2 or 3 space dimensions convergence slows down for T > 0 and increasing τ: local damping strategy too pessimistic Current Work anisotropic interfacial energy (cf. Garcke, Nestler & Stoth 99) adaptivity in time and space heuristic refinement indicators, a posteriori error estimates (cf. Kessler, Nochetto & Schmidt 03)

Diffusion Induced Grain Boundary Motion (Garcke & Styles 04) un-alloyed and alloyed grains: ϕ i and ϕ i+n, i = 1,...,N order parameter: ϕ = (ϕ 1,...,ϕ 2N ), free energy with obstacle potential: E(ϕ,u) = ( 1 Ω 2ε u2 + ε N 2 i=1 (ϕ i + ϕ i+n ) 2 + 1 2 ψ 0(ϕ) + g(u) ) N i=1 ϕ i dx alloying solute: u semi-linear parabolic equation: u t (D(ϕ) u) = q(u) grain 3 grain 2 degenerate diffusion: D(ϕ) = 2N i=1 (1 ϕ i) grain 1

Multigrid for the Phase Field variational inequality: ϕ(t) G : ε(ϕ t, η ϕ) + ε( ϕ, ( ϕ ṽ)) ( 1 εϕ + g(u)e, ϕ ṽ) v G ṽ = (v i + v i+n ) N i=1 RN, e = (1,...,1,0,...,0) R 2N semi-implicit Euler method, finite elements: ϕ k+1 j, v ϕ k+1 j + τ( ϕ k+1 j, (ṽ ϕ k+1 j )) }{{} a(ϕ k+1 j,v ϕ k+1 j ) ( τ + 1)ϕ k ε 2 j + τ ε g(ϕk j )e, v ϕk+1 j }{{} l(v ϕ k+1 j ) fast solution by monotone multigrid complexity: O((2N) 2 n j ), alternative model (Elliott & Styles 03): N phases

Multigrid for the Solute semi-implicit Euler method, finite elements: u k+1 j S j : ϕ k+1,v + τ(d(ϕ k j ) uk+1 j, v) = u k j, v + τ(q(uk j ), v) v S j j observation: u k+1 j (p) = u k j (p) p N j = {p N j D(ϕ k j ) suppλ p (j) 0} reduced solution space: S j = {v Ω v S j} Ω = Ω \ Ω, Ω = p N j suppλ (j) p reduced Neumann problem: u k+1 j S j : b(uk+1 j,v) = f(v) v S j no representation of Ω on coarse grids: truncated multigrid (Kh. & Yserentant 94)

Current work numerical results comparison of thin/thick film models with 3D realistic geometries improved models effects of continuum mechanics