Feature Extraction and Image Processing

Similar documents
Edge Detection. CS 650: Computer Vision

System Dynamics for Engineering Students Concepts and Applications

Fundamentals of Applied Probability and Random Processes

Digital Control Engineering Analysis and Design

Tensor Calculus, Relativity, and Cosmology

Differential Equations with Mathematica

APPLIED PARTIAL DIFFERENTIAL EQUATIONS

OBJECT DETECTION AND RECOGNITION IN DIGITAL IMAGES

STOCHASTIC PROCESSES IN PHYSICS AND CHEMISTRY

The Finite Element Method for Solid and Structural Mechanics

Edges and Scale. Image Features. Detecting edges. Origin of Edges. Solution: smooth first. Effects of noise

Feature detectors and descriptors. Fei-Fei Li

Feature extraction: Corners and blobs

Feature detectors and descriptors. Fei-Fei Li

Machine vision. Summary # 4. The mask for Laplacian is given

An Introduction to Stochastic Modeling

SURF Features. Jacky Baltes Dept. of Computer Science University of Manitoba WWW:

Machine vision, spring 2018 Summary 4

Geophysical Data Analysis: Discrete Inverse Theory

Lecture 8: Interest Point Detection. Saad J Bedros

Principles of Electron Optics

Image Analysis. Feature extraction: corners and blobs

Multimedia Databases. Previous Lecture. 4.1 Multiresolution Analysis. 4 Shape-based Features. 4.1 Multiresolution Analysis

Multimedia Databases. 4 Shape-based Features. 4.1 Multiresolution Analysis. 4.1 Multiresolution Analysis. 4.1 Multiresolution Analysis

Multimedia Databases. Wolf-Tilo Balke Philipp Wille Institut für Informationssysteme Technische Universität Braunschweig

GAME PHYSICS SECOND EDITION. дяййтаййг 1 *

A First Course in Wavelets with Fourier Analysis

Boundary. DIFFERENTIAL EQUATIONS with Fourier Series and. Value Problems APPLIED PARTIAL. Fifth Edition. Richard Haberman PEARSON

Fundamentals of Nuclear Reactor Physics

Edge Detection. Introduction to Computer Vision. Useful Mathematics Funcs. The bad news

Advances in Computer Vision. Prof. Bill Freeman. Image and shape descriptors. Readings: Mikolajczyk and Schmid; Belongie et al.

Corners, Blobs & Descriptors. With slides from S. Lazebnik & S. Seitz, D. Lowe, A. Efros

Three-Dimensional Electron Microscopy of Macromolecular Assemblies

Handbook of Radiation and Scattering of Waves:

Filtering and Edge Detection

Edge Detection. Image Processing - Computer Vision

CSE 473/573 Computer Vision and Image Processing (CVIP)

Recap: edge detection. Source: D. Lowe, L. Fei-Fei

Lecture 6: Edge Detection. CAP 5415: Computer Vision Fall 2008

DIFFERENTIAL EQUATIONS, DYNAMICAL SYSTEMS, AND AN INTRODUCTION TO CHAOS

Vlad Estivill-Castro (2016) Robots for People --- A project for intelligent integrated systems

INTEREST POINTS AT DIFFERENT SCALES

arxiv: v1 [cs.cv] 10 Feb 2016

DIFFERENTIAL EQUATIONS, DYNAMICAL SYSTEMS, AND AN INTRODUCTION TO CHAOS

Exploring Monte Carlo Methods

GAME PHYSICS ENGINE DEVELOPMENT

Roadmap. Introduction to image analysis (computer vision) Theory of edge detection. Applications

Computational Fluid Dynamics

Lecture 8: Interest Point Detection. Saad J Bedros

CS5670: Computer Vision

The Fractional Fourier Transform with Applications in Optics and Signal Processing

The Hydraulics of Open Channel Flow: An Introduction

Contents. Acknowledgments

DISCRETE-TIME SIGNAL PROCESSING

Wave Propagation in Anisotropic, Anelastic, Porous and Electromagnetic Media

Numerical Methods with MATLAB

Fault-Zone Properties arid Earthquake Rupture Dynamics

Overview. Harris interest points. Comparing interest points (SSD, ZNCC, SIFT) Scale & affine invariant interest points

Harris Corner Detector

FUNDAMENTALS OF POLARIZED LIGHT

LoG Blob Finding and Scale. Scale Selection. Blobs (and scale selection) Achieving scale covariance. Blob detection in 2D. Blob detection in 2D

Environmental Hydraulics of Open Channel Flows

CS 3710: Visual Recognition Describing Images with Features. Adriana Kovashka Department of Computer Science January 8, 2015

Problem Session #5. EE368/CS232 Digital Image Processing

Blob Detection CSC 767

Edited by GRAHAM ELLIOTT ALLAN TIMMERMANN

Scale & Affine Invariant Interest Point Detectors

Total Variation Image Edge Detection

Overview. Introduction to local features. Harris interest points + SSD, ZNCC, SIFT. Evaluation and comparison of different detectors

Stream Ciphers and Number Theory

Achieving scale covariance

Overview. Introduction to local features. Harris interest points + SSD, ZNCC, SIFT. Evaluation and comparison of different detectors

Corner detection: the basic idea

Detectors part II Descriptors

Representing regions in 2 ways:

J. MEDHI STOCHASTIC MODELS IN QUEUEING THEORY

Blobs & Scale Invariance

Advanced Edge Detection 1

RELATION ALGEBRAS. Roger D. MADDUX. Department of Mathematics Iowa State University Ames, Iowa USA ELSEVIER

Wavelet-based Salient Points with Scale Information for Classification

Feature detection.

Nanomaterials, Nanotechnologies and Design

SIFT keypoint detection. D. Lowe, Distinctive image features from scale-invariant keypoints, IJCV 60 (2), pp , 2004.

Advanced Features. Advanced Features: Topics. Jana Kosecka. Slides from: S. Thurn, D. Lowe, Forsyth and Ponce. Advanced features and feature matching

Basic Concepts of. Feature Selection

Pattern Recognition Letters

SIFT: SCALE INVARIANT FEATURE TRANSFORM BY DAVID LOWE

The structure tensor in projective spaces

Independent Component Analysis. Contents

Approaches. Solvent Extraction: Classical and Novel. Vladimir S. Kislik. Campus Givat Ram, Jerusalem 91904, Israel

Fundamentals Nuclear Reactor Physics Lewis Solution

INF Shape descriptors

MATLAB for Engineers

Dynamic Systems. Modeling and Analysis. Hung V. Vu. Ramin S. Esfandiari. THE McGRAW-HILL COMPANIES, INC. California State University, Long Beach

Differential Operators for Edge Detection

TRACKING and DETECTION in COMPUTER VISION Filtering and edge detection

Astronomical Optics. Second Edition DANIEL J. SCHROEDER ACADEMIC PRESS

INTRODUCTION TO APPLIED STATISTICAL SIGNAL ANALYSIS: GUIDE TO BIOMEDICAL AND ELECTRICAL ENGINEERING APPLICATIONS

Object Recognition Using Local Characterisation and Zernike Moments

Transcription:

Feature Extraction and Image Processing Second edition Mark S. Nixon Alberto S. Aguado :*авш JBK IIP AMSTERDAM BOSTON HEIDELBERG LONDON NEW YORK OXFORD PARIS SAN DIEGO SAN FRANCISCO SINGAPORE SYDNEY TOKYO ELSEVIER Academic Press is an imprint of Elsevier

Contents Preface 1 Introduction 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 Overview Human and computer vision The human vision system 1.3.1 The eye 1.3.2 The neural system 1.3.3 Processing Computer vision systems 1.4.1 Cameras 1.4.2 Computer interfaces 1.4.3 Processing an image Mathematical systems 1.5.1 Mathematical tools 1.5.2 Hello Mathcad, hello images! 1.5.3 Hello Matlab! Associated literature 1.6.1 Journals and magazines 1.6.2 Textbooks 1.6.3 The web Conclusions 2 Images, sampling and frequency domain processing 2.1 Overview 2.2 Image formation 2.3 The Fourier transform 2.4 The sampling criterion 2.5 The discrete Fourier transform 2.5.1 One-dimensional transform 2.5.2 Two-dimensional transform 2.6 Other properties of the Fourier transform 2.6.1 Shift invariance 2.6.2 Rotation 2.6.3 Frequency scaling 2.6.4 Superposition (linearity) XI 1 1 1 3 4 6 7 9 10 12 14 15 16 16 21 24 24 25 28 29 29 33 33 34 37 43 47 47 49 54 54 56 56 57 V

2.7 Transforms other than Fourier 58 2.7.1 Discrete cosine transform 58 2.7.2 Discrete Hartley transform 59 2.7.3 Introductory wavelets: the Gabor wavelet 61 2.7.4 Other transforms 63 2.8 Applications using frequency domain properties 64 2.9 Further reading 65 2.10 66 3 Basic image processing operations 69 3.1 3.2 3.3 3.4 3.5 3.6 3.7 3.8 Overview Histograms Point operators 3.3.1 Basic point operations 3.3.2 Histogram normalization 3.3.3 Histogram equalization 3.3.4 Thresholding Group operations 3.4.1 Template convolution 3.4.2 Averaging operator 3.4.3 On different template size 3.4.4 Gaussian averaging operator Other statistical operators 3.5.1 More on averaging 3.5.2 Median filter 3.5.3 Mode filter 3.5.4 Anisotropic diffusion 3.5.5 Force field transform 3.5.6 Comparison of statistical operators Mathematical morphology 3.6.1 Morphological operators 3.6.2 Grey-level morphology 3.6.3 Grey-level erosion and dilation 3.6.4 Minkowski operators Further reading 69 70 71 71 74 75 77 81 81 84 87 88 90 90 91 94 96 101 102 103 104 107 108 109 112 113 Low-level feature extraction (including edge detection) 115 4.1 Overview 115 4.2 First order edge detection operators 117 4.2.1 Basic operators 117 4.2.2 Analysis of the basic operators 119 4.2.3 Prewitt edge detection operator 121 4.2.4 Sobel edge detection operator 123 4.2.5 Canny edge detection operator 129 vi Contents

4.3 4.4 4.5 4.6 4.7 4.8 Second order edge detection operators 4.3.1 Motivation 4.3.2 Basic operators: the Laplacian 4.3.3 Marr-Hildreth operator Other edge detection operators Comparison of edge detection operators Further reading on edge detection Phase congruency Localized feature extraction 4.8.1 Detecting image curvature (corner extraction) 4.8.1.1 Definition of curvature 4.8.2 4.8.1.2 4.8.1.3 4.8.1.4 Computing differences in edge direction Measuring curvature by changes in intensity (differentiation) Moravec and Harris detectors Further reading on curvature 4.8.1.5 Modern approaches: region/patch analysis 4.8.2.1 Scale invariant feature transform 4.8.2.2 Saliency 4.8.2.3 Other techniques and performance issues 4.9 Describing image motion 4.9.1 Area-based approach 4.9.2 Differential approach 4.9.3 Further reading on optical flow 4.10 Conclusions 4.11 137 137 137 139 144 145 146 147 152 153 153 154 156 159 163 163 163 166 167 167 168 171 177 178 178 5 Feature extraction by shape matching 5.1 Overview 5.2 Thresholding and subtraction 5.3 Template matching 5.3.1 Definition 5.3.2 Fourier transform implementation 5.3.3 Discussion of template matching 5.4 Hough transform 5.4.1 Overview 5.4.2 Lines 5.4.3 Hough transform for circles 5.4.4 Hough transform for ellipses 5.4.5 Parameter space decomposition 5.4.5.1 Parameter space reduction for lines 5.4.5.2 Parameter space reduction for circles 5.4.5.3 Parameter space reduction for ellipses 5.5 Generalized Hough transform 5.5.1 Formal definition of the GHT 5.5.2 Polar definition 183 183 184 186 186 193 196 196 196 197 203 207 210 210 212 217 221 221 223

5.5.3 The GHT technique 224 5.5.4 Invariant GHT 228 5.6 Other extensions to the Hough transform 235 5.7 Further reading 236 5.8 237 6 Flexible shape extraction (snakes and other techniques) 241 6.1 Overview 241 6.2 Deformable templates 242 6.3 Active contours (snakes) 244 6.3.1 Basics 244 6.3.2 The greedy algorithm for snakes 246 6.3.3 Complete (Kass) snake implementation 252 6.3.4 Other snake approaches 257 6.3.5 Further snake developments 257 6.3.6 Geometric active contours 261 6.4 Shape skeletonization 266 6.4.1 Distance transforms 266 6.4.2 Symmetry 268 6.5 Flexible shape models: active shape and active appearance 272 6.6 Further reading 275 6.7 276 7 Object description 281 7.1 Overview 281 7.2 Boundary descriptions 282 7.2.1 Boundary and region 282 7.2.2 Chain codes 283 7.2.3 Fourier descriptors 285 7.2.3.1 Basis of Fourier descriptors 286 7.2.3.2 Fourier expansion 287 7.2.3.3 Shift invariance 289 7.2.3.4 Discrete computation 290 7.2.3.5 Cumulative angular function 292 7.2.3.6 Elliptic Fourier descriptors 301 7.2.3.7 Invariance 305 7.3 Region descriptors 311 7.3.1 Basic region descriptors 311 7.3.2 Moments 315 7.3.2.1 Basic properties 315 7.3.2.2 Invariant moments 318 7.3.2.3 Zernike moments 320 7.3.2.4 Other moments 324 7.4 Further reading 325 7.5 326 viii Contents

8 Introduction to texture description, segmentation and classification 8.1 8.2 8.3 8.4 8.5 8.6 8.7 Overview What is texture? Texture description 8.3.1 Performance requirements 8.3.2 Structural approaches 8.3.3 Statistical approaches 8.3.4 Combination approaches Classification 8.4.1 The fc-nearest neighbour rule 8.4.2 Other classification approaches Segmentation Further reading 9 Appendix 1: Example worksheets 9.1 Example Mathcad worksheet for Chapter 3 9.2 Example Matlab worksheet for Chapter 4 10 Appendix 2: Camera geometry fundamentals 10.1 Image geometry 10.2 Perspective camera 10.3 Perspective camera model 10.3.1 Homogeneous coordinates and projective geometry 10.3.1.1 Representation of a line and duality 10.3.1.2 Ideal points 10.3.1.3 Transformations in the projective space 10.3.2 Perspective camera model analysis 10.3.3 Parameters of the perspective camera model 10.4 Affine camera 10.4.1 Affine camera model 10.4.2 Affine camera model and the perspective projection 10.4.3 Parameters of the affine camera model 10.5 Weak perspective model 10.6 Example of camera models 10.7 Discussion 10.8 11 Appendix 3: Least squares analysis 11.1 The least squares criterion 11.2 Curve fitting by least squares

12 Appendix 4: Principal components analysis 385 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 12.9 12.10 12.11 Introduction Data Covariance Covariance matrix Data transformation Inverse transformation Eigenproblem Solving the eigenproblem PCA method summary Example 385 385 386 388 389 390 391 392 392 393 398 399.. x Contents