( ( ( ( ( ( ( (! ! 1!

Similar documents
Supplementary Materials for

Soil microbial responses to climate perturbations Sarah E. Evans Kellogg Biological Station Michigan State University

Root- associated Bacterial Communities in Flax (Linum usitatissimum) and Their Response to Arbuscular Mycorrhizal (AM) Inoculation

DETAILED RESULTS ON FUNGAL AND BACTERIAL COMMUNITIES COLONIZING THE COMPOST-INCUBATED POLYMER CARD SURFACE

Lecture 2: Diversity, Distances, adonis. Lecture 2: Diversity, Distances, adonis. Alpha- Diversity. Alpha diversity definition(s)

Microbiota: Its Evolution and Essence. Hsin-Jung Joyce Wu "Microbiota and man: the story about us

Variations in pelagic bacterial communities in the North Atlantic Ocean coincide with water bodies

Katrina Agno Lutap Iowa State University. Iowa State University Capstones, Theses and Dissertations. Graduate Theses and Dissertations

Using Topological Data Analysis to find discrimination between microbial states in human microbiome data

Multivariate Statistics 101. Ordination (PCA, NMDS, CA) Cluster Analysis (UPGMA, Ward s) Canonical Correspondence Analysis

H. Pieter J. van Veelen *, Joana Falcao Salles and B. Irene Tieleman

Genomics and Bioinformatics

The Thirteen Colonies

STAT Chapter 10: Analysis of Variance

BIO 682 Multivariate Statistics Spring 2008

Amplicon Sequencing. Dr. Orla O Sullivan SIRG Research Fellow Teagasc

PCA Advanced Examples & Applications

FIG S1: Rarefaction analysis of observed richness within Drosophila. All calculations were

The microbiome and its influence on plant growth and health. Friederike Trognitz

Outline Classes of diversity measures. Species Divergence and the Measurement of Microbial Diversity. How do we describe and compare diversity?

Characterizing and predicting cyanobacterial blooms in an 8-year

Trites and Larkin, 1996). The dashed line shows the division between the declining

Innovation and Regional Growth in the European Union

Dissimilarity and transformations. Pierre Legendre Département de sciences biologiques Université de Montréal

A meta-analysis of changes in bacterial and archaeal communities with time

ANOVA approach. Investigates interaction terms. Disadvantages: Requires careful sampling design with replication

Seasonal, spatial, and maternal effects on gut microbiome in wild red squirrels

1Department of Demography and Organization Studies, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX

19-1 Notes Bacteria. Named after the Greek word Little stick because many bacteria have a stick-like shape when viewed under a microscope

SUPPLEMENTARY INFORMATION

Chemometrics. Matti Hotokka Physical chemistry Åbo Akademi University

Other resources. Greengenes (bacterial) Silva (bacteria, archaeal and eukarya)

Bivariate data analysis

Practical Statistics

16S Metagenomics Report

Bacteria Outline. 1. Overview. 2. Structural & Functional Features. 3. Taxonomy. 4. Communities

Exploring Microbes in the Sea. Alma Parada Postdoctoral Scholar Stanford University

Revision: Chapter 1-6. Applied Multivariate Statistics Spring 2012

Section 5: Dummy Variables and Interactions

Chad Burrus April 6, 2010

Lab 11. Multilevel Models. Description of Data

Dr. Emily A. Fogarty, Coordinator History, Politics and Geography Dept School of Arts & Sciences

Niche Modeling. STAMPS - MBL Course Woods Hole, MA - August 9, 2016

Bacterial Community Variation in Human Body Habitats Across Space and Time

Structure, function and host control of rhizosphere microbiome

Multivariate Analysis of Ecological Data

DETECTING BIOLOGICAL AND ENVIRONMENTAL CHANGES: DESIGN AND ANALYSIS OF MONITORING AND EXPERIMENTS (University of Bologna, 3-14 March 2008)

DOWNLOAD OR READ : TRAIT BASED ECOLOGY FROM STRUCTURE TO FUNCTION PDF EBOOK EPUB MOBI

Multiple Linear Regression

Why Spatial Data Mining?

This gives us an upper and lower bound that capture our population mean.

Analysis of Variance: Part 1

Fecal Bacterial Communities as an Indicator of Trophic Interactions Among Anuran Larvae

STATISTICAL LEARNING OF INTEGRATIVE ANALYSIS. Meilei Jiang

Figure 1. Locations of major geographic features cited in the text. The inserted graph

Announcements. Lecture 1 - Data and Data Summaries. Data. Numerical Data. all variables. continuous discrete. Homework 1 - Out 1/15, due 1/22

Climate controls prokaryotic community composition in desert soils of the southwestern United States

Edwin A. Hernández-Delgado*

CAP. Canonical Analysis of Principal coordinates. A computer program by Marti J. Anderson. Department of Statistics University of Auckland (2002)

Community Health Needs Assessment through Spatial Regression Modeling

2/19/2018. Dataset: 85,122 islands 19,392 > 1km 2 17,883 with data

ECOLOGY OF CALLIPHORID LARVAL MASSES AND POSTMORTEM COLONIZATION ESTIMATE VARIABILITY. Courtney R. Weatherbee

Istituto di Microbiologia. Università Cattolica del Sacro Cuore, Roma. Gut Microbiota assessment and the Meta-HIT program.

MICROBIOLOGY ECOLOGY. Chronic N-amended soils exhibit an altered bacterial community structure in Harvard Forest, MA, USA.

G E INTERACTION USING JMP: AN OVERVIEW

Spatial Variation in Local Road Pedestrian and Bicycle Crashes

Chapter 44. Table of Contents. Section 1 Development of Behavior. Section 2 Types of Animal Behavior. Animal Behavior

An Analysis of College Algebra Exam Scores December 14, James D Jones Math Section 01

Global Clinical Data Classification: A Discriminate Analysis

INTRODUCTION TO MULTIVARIATE ANALYSIS OF ECOLOGICAL DATA

Taxonomy and Clustering of SSU rrna Tags. Susan Huse Josephine Bay Paul Center August 5, 2013

Multivariate Data Analysis a survey of data reduction and data association techniques: Principal Components Analysis

III Introduction to Populations III Introduction to Populations A. Definitions A population is (Krebs 2001:116) a group of organisms same species

Microbial diversity pa1erns in rela3on to hydrocarbon seepage

PubH 7405: REGRESSION ANALYSIS. MLR: INFERENCES, Part I

Clusters. Unsupervised Learning. Luc Anselin. Copyright 2017 by Luc Anselin, All Rights Reserved

Analysis of Bivariate Data

User Guide. Affirmatively Furthering Fair Housing Data and Mapping Tool. U.S. Department of Housing and Urban Development

Assessment Schedule 2016 Biology: Demonstrate understanding of the responses of plants and animals to their external environment (91603)

Geographical knowledge and understanding scope and sequence: Foundation to Year 10

SUPPLEMENTARY INFORMATION

ATINER's Conference Paper Series PLA

Supplementary Information

CHAPTER 2: KEY ISSUE 1 Where Is the World s Population Distributed? p

The Scope and Growth of Spatial Analysis in the Social Sciences

Catalonia is a small region, managed by an autonomous government (depending from Spain), and placed in NE. Spain, next to Mediterranean sea.

Example. Multiple Regression. Review of ANOVA & Simple Regression /749 Experimental Design for Behavioral and Social Sciences

Appendix S1 Replacement, richness difference and nestedness indices

Intro to Linear Regression

Workshop 9.3a: Randomized block designs

Microbiome: 16S rrna Sequencing 3/30/2018

diversity(datamatrix, index= shannon, base=exp(1))

Advanced Mantel Test

Microbes and mountains: metagenetics on Mount Fuji, Japan. Jonathan Adams, Biology Department, SNU, Korea

Supplementary Material

Department of Geography: Vivekananda College for Women. Barisha, Kolkata-8. Syllabus of Post graduate Course in Geography

unadjusted model for baseline cholesterol 22:31 Monday, April 19,

Simple Linear Regression

Unit 7: Multiple linear regression 1. Introduction to multiple linear regression

Mission Geography and Missouri Show-Me Standards Connecting Mission Geography to State Standards

Transcription:

( ( ( ( ( ( ( ( SocialBehaviorandGutMicrobiotainWild Red7belliedLemurs(Eulemur(rubriventer) (In SearchoftheRoleofImmunityintheEvolutionof Sociality( ProGradu AuraRaulo DepartmentofBiosciences DivisionofEcologyandEvolutionaryBiology UniversityofHelsinki May2015 1

Table&of&Contents& 1. INTRODUCTION 3 1.1. GUTMICROBIOTAANDTHEHOLOBIOMEAPPROACH 3 1.2. SOCIALBEHAVIORANDMICROBETRANSMISSIONINASOCIALGROUP 5 SOCIALBEHAVIORANDDIVERSITYOFMICROBIOTA 5 SOCIALBEHAVIORANDSIMILARITYOFMICROBIOTA 6 SOCIALBEHAVIORANDPRESENCEOFCERTAINBENEFICIALMICROBES 7 1.3. STRESSANDMICROBIOTA 8 1.4. AIMS 10 1.5. STUDYSPECIESANDSTUDYSITE 11 2. MATERIALSANDMETHODS 12 2.1. COLLECTIONOFBEHAVIORALDATA 12 CONSTRUCTINGSOCIALITYINDICESANDINTERACTIONMATRICES 14 2.2FECALSAMPLECOLLECTIONANDANALYSISFORCORTISOLMETABOLITES 14 2.3 FECALSAMPLECOLLECTIONANDGUTMICROBIALDNAANALYSIS 15 2.2.STATISTICALANALYSES 16 DESCRIBINGMICROBIALDATA 16 CLUSTERINGOFMICROBIALDATA 17 ANALYSESUSINGDISSIMILARITYINDICES 18 ANALYSESUSINGDIVERSITYANDRICHNESS 18 WHICHBACTERIALTAXAAREBEHINDTHETREND? 19 3. RESULTS 19 3.1. ENVIRONMENTAL,DEMOGRAPHICANDGENETICFACTORSAFFECTINGMICROBIOTA 19 3.2. SEASONALCHANGEINGUTMICROBIOTA 23 3.3. GUTMICROBIALCOMPOSITIONANDINTERACTIONMATRICES 24 3.4. GUTMICROBIALCOMPOSITIONANDSOCIALITYINDICES 24 3.5. GUTMICROBIALCOMPOSITIONANDSTRESSHORMONES 26 4. DISCUSSION 26 4.1. ENVIRONMENTALANDDEMOGRAPHICVARIATIONINGUTMICROBIOTA 26 4.2. GROUPASPECIFICMICROBIOTA 28 4.3. MICROBIALTRANSMISSIONINASOCIALNETWORK 29 4.4. GUTMICROBIOTA,HPAAAXISANDINDIVIDUALDIFFERENCESINSOCIALBEHAVIOR 30 4.5. SEASONALCHANGEINGUTMICROBIOTA 32 4.6. FUTUREDIRECTIONSANDAFRAMEWORKFORSOCIALTRANSMISSIONOFBENEFICIAL GUTMICROBIOTA 33 5. CONCLUSIONS 35 6. ACKNOWLEDGEMENTS 36 2

1. Introduction& 1.1. Gut&microbiota&and&the&holobiome&approach&& Microbialcommunitieslivinginthegut,skinandglandsofvertebratesareofgrowing scientificinterest,duetotheiremergingroleasafunctionallinkbetweentheindividual anditssurroundingecosystem.recentdevelopmentsinmolecularmethodshave inspiredagreatamountofresearchonmutualisticmicrobiotainalltaxa.infields rangingfromendocrinologyandphysiologytobehavioralandevolutionaryecology,this new holobiomeapproach (Rosenbergetal.2007)focusesonthereciprocaland dynamicrelationshipsofmutualisticmicrobiotaandtheirhost. Mostofourcurrentknowledgeongutmicrobiotacomesfromhumanmedical researchfocusingonpathogens,whilethemutualisticmicrobiotaofwildvertebrate specieshasreceivedmuchlessattention.furthermore,whiletheeffectsofmicrobiota onhealthareincreasinglyacknowledged,currentresearchisforthemostpartlacking evolutionaryperspectiveonthistopic(butseestillingetal.2014).itisknown, however,thatvertebrategutmicrobiotahaveanimportantinfluenceonindividual immunity(reviewedbyhooperetal.2012)andisneededforprovidingenzymesfor digestion(mackie2000).forexampleruminantsareknownfortheirbacteria7rich rumenthatslowsdownthepassageoffoodmaterialtoenableefficientfermentationof cellulosebymutualisticmicrobes(mackie2000).newevidencealsosuggeststhat consistentwiththe"fermentationhypothesis"(alboneetal.1974,albone1990), microbiota,especiallythatlivinginmammalianscentglands,affectssocialrecognition bysynthesizingpheromones(sinetal.2012,theisetal.2012,2013,douglas&dobson 2013).Inadditiontothispotentialtoalterbehaviorindirectly,anorganism s microbiotaisknowntohavedirecteffectsonitsmoodandbehavior(bravoetal.2011, Ezenwaetal.2012).Thedirecteffectsofgutmicrobesonbehaviorlikelyhappen throughmicrobe7gut7brain(mgb)7axis,aphysiologicalpathwayinvolvingthevagus7 nerve(bravo2011,montiel7castroetal.2013). Mutualisticmicrobesplayanotableroleinananimal sphenotype,butthe determinantsofindividual smicrobiotaarescantlyknown.studiesofwildspecies, 3

laboratoryrodentsandhumansyieldinconsistentresultsregardingtherelative importanceofgeneticbackground,maternaltransmission,andsubsequent environmentalcontactsindetermininggutmicrobialcompositionsinceallthesefactors canhaveamajorimpactonthemicrobiota(pendersetal.2006,lanyonetal.2007, Khachatryanetal.2008,Turnbaughetal.2009a,b,Bensonetal.2010,Degnanetal. 2012,Ubedaetal.2012,Stevensonetal.2014,Leclaireetal.2014).Firstly,itisknown thatthecompositionofmicrobiotacanhaveageneticbasis.forexample,immunity7 relatedgenesareresponsibleforselectivelyenablingtheestablishmentofcertain microbesinthebody,andthusformthephysiologicalbasisformicrobiotainmice (Lanyonetal.2007,Zomeretal.2009,Bensonetal.2010).Ontheotherhand, relatednesswithinhumanfamiliesdoesnotpredictsimilarityofgutmicrobiota (Turnbaughetal.2009b).Secondly,themicrobesthatcolonizeananimalbodycome primarilyfromthemother.manygutmicrobescannotliveoutsidethehostbody,and mustrelyentirelyonmaternaltransmission(reviewedbyfunkhouser&bordenstein 2013).Thus,aswithmanyphenotypictraits,earlylifeisimportantindetermining microbiota.forexamplebirth(mandaretal.1996)andearlypostnatalexposureby nursing(jinetal.2011,fernandezetal.2013)orevenbyeatingsoilorfeces(troyer 1984b,Soave&Brand1991)havebeenconsideredthemostimportantperiodsof transmissiondeterminingindividualmicrobiota.inaddition,recentevidencesuggests thatpartofthemicrobiotacanbeacquiredpriortobirth(funkhouser&bordenstein 2013).Lastly,gutmicrobialcompositionisneverthelessknowntofluctuatewith changingdiet,hormonalprofiles,seasonandenvironment,hencehighlightingthe environmentalimpactonmicrobiota.whilesomeoftheseeffectsareduetoachanging dietandtheabioticenvironment,socialenvironmentislikelyanimportantfactoras well.thusamixtureofvertical(genetic,maternal)andhorizontal(social, environmental)transmissionmostlikelydetermineindividualmicrobiota.forexample, bothspottedhyenas(crocuta(crocuta)andchimpanzees(pan(troglodytes)havebeen foundtohavemoresimilarmicrobiotawithingroupsduetosharedenvironmentand socialcontact,butimmigrantindividualsstillretainedaslightlydifferentmicrobiota afteryearsofco7living(degnanetal.2012,theisetal.2012) 4

1.2. Social&behavior&and&microbe&transmission&in&a&social&group& Microbialtransmissionhasbeenmainlystudiedinthecontextofpathogensand parasites.itisknownthatoneimportantfactoraffectingpathogenorparasite transmissionissocialcontactandthisisconsideredoneofthemaincostsofsociallife (Alexanderetal.1974,Mölleretal.1993,Altizeretal.2003).Forexamplevulnerability toinfectionsincreaseswithincreasinggroupsizeininsects(turnbulletal.2011). However,itislessoftensuggestedthatinadditiontoentailingimmunologicalchallenge, socialitymightactuallyalsoenhanceimmunitythroughtransmissionofbeneficial microbes(troyeretal.1984a,lombardo2008,archie&theis2011,gilbert2015).this isanimportantandunderstudiedpointofviewwhenbalancingtheprosandconsof sociallifestyletounderstandtheevolutionofsociality.tosketchtheroleofgut microbiotaintheevolutionandsocialdynamicsofsocialspecies,oneneedstopay attentiontothreeimportantaspectsofthemicrobiotainasocialcontext:diversity (affectsimmunity),similaritybetweenindividuals(affectsrecognitionandimmunity) andthepresenceofcertainbacteriawithknownbehavioralimpacts. Social'behavior'and'diversity'of'microbiota' Manysocialbehaviorsincludephysicalcontactandcanfunctionaspotentialpathways formicrobialtransmission.forexample,kulkarni&heeb(2007)experimentally infectedzebrafinches(taeniopygia(guttata)withbacillus(licheniformis(bacteria(and followedhowtheinfectionspreadintheirsocialgroup;preeningandsexualbehaviors transmittedthebacteriatoallgroupmembersinlessthanaday.similarly,frequent intimatekissingenhancedmutualtransmissionofmouthmicrobiotainhumans(kortet al.2014).behaviorcanaffectmicrobialtransmissionandrecentfindingssuggestthat microbiotacanaffecthostbehavioraswell(ezenwaetal.2012,montiel7castroetal. 2014).Forexamplegerm7freemicewerefoundtobemoreactiveandlessanxiousthan micewithnormalmicrobiota(heijtzaetal.2011).similarly,autism7relatedlackofpro7 socialityisassociatedwithalteredmicrobiota(mingetal2012,caoetal.2013) Manyauthorshavesuggestedthatpro7socialandaffiliativebehaviors,suchas grooming,licking,preening,kissingorsocio7sexualbehaviors,mighthavepartly evolvedtoservebeneficialmicrobialtransmission(troyer1984,lombardoetal.2008, Ezenwaetal.2012,Montiel7Castroetal.2013).Insocialgroups,exchangingmutualistic 5

microbesbetweenmultipleindividualsallowsmorediversemicrobiotatobepresent. Diversemicrobiotainturnhasbeenlongsuggestedtobearequisiteforaresilient immunity(hooperetal.2012,lozuponeetal.2012),inthesamewaybiodiversity makesecosystemsmoreresilienttochange(levineetal.1999,gunderson2000).for example,sociallytransmittedmicrobiotawasfoundtoprotectbumblebees(bombus( terrestris)fromacommonparasite(koch&schmid7hempel2011).whilesociality bringsimmunechallengesintheformofincreasedexposure(infectionfromothers)and evensusceptibility(immunosuppressivesocialstress)tosimilarlytransmittable parasites(alexander1974,mölleretal.1993,altizeretal.2003,turnbulletal.2011), transmissionofbeneficialbacteriamightcompensatethis.thisisanimportantissuefor thetheoriesoftheevolutionofsociality.becausemutualisticmicrobescanaffect behaviorandsocialbehaviorservesasatransmissionrouteforthesemicrobes,a positivefeedbackloopofincreasedsocialityandmicrobialtransmissionisapossible mechanismintheevolutionofsociality.thiscouldhelpexplaintheassociationbetween socialityandhealthfoundinhumansandotheranimals(houseetal.1988,cohenetal. 2003,Sapolskyetal.2004,Holt7Lunstadetal.2010,Archieetal.2014) Social'behavior'and'similarity'of'microbiota' Manygroup7livinganimalsusefriendlyandaffiliativebehaviorstoenhancesocial bondsorgroupcohesionandtoavoidorreconcileconflictsbetweengroup7members (Vasey1995,Aurelietal.2002,Wittigetal.2008,Hohmannetal.2009,Radford2011). Whenmicrobesaretransmittedthroughsocialbehaviorinasocialnetwork,individuals mostcloselysociallylinkedcanbeexpectedtosharethesamemicrobes.mutualistic microbiotainsocialsystemshavereceivedrelativelylittleattention,whereas transmissionpatternsofparasitesinsocialnetworksarewellstudied(dreweetal. 2010,Godfreyetal.2010,Griffin&Nunn2011,Fenneretal.2011,Bulletal.2012, MacIntoshetal2012,Rimbachetal.2015).Forexample,MacIntoshetal.(2012)found thatfemalejapanesemacaques(macaca(fuscata(yakui)withmorecentralpositionina socialnetwork,andhencemoregroomingpartners,hadmoreendoparasites.consistent withthis,malesocialrolepredictedgutmicrobialcompositioninmeerkats(suricata( suricatta,leclaireetal.2014).whensocialrelationshipsaresymmetric,transmission leadstomoresimilarmicrobiotabetweensocialpartners.forexamplehumanfamily memberslivingtogethersharemoresimilargutmicrobiotawitheachotherthanwith 6

peopleoutsidethefamily,regardlessofrelatedness(turnbaughetal.2009b,songetal. 2013).Actually,evendogssharemoresimilargutmicrobiotawiththeirhumanowners thanotherdogsoutsidethefamily(songetal.2013).suchgroup7specificmicrobiota hasbeenfoundinyellowbaboons(tungetal.2015),gorillas(gomezetal.2015), hyenas(theisetal.2012),meerkats(leclaireetal.2014)andchimpanzees(degnanet al.2012).similarmicrobialcompositionsinsocialgroupshavebeensuggestedtoplaya roleinchemicalcommunication,sincemutualisticbacteriaareresponsiblefor synthesizingmostoftheodorsandpheromonesusedinrecognitionbyavarietyof species.forexampleinspottedhyenas,groupmemberssharea scentmarksignature, asimilarscentmarkchemicalcompositioncreatedbyasimilarscentglandmicrobial community(theisetal.2012). Thefactthatindividualsdifferintheirsocialpersonality(Englishetal.2010,Koski 2011,Seyfarthetal.2012,Neumann2013,Carteretal.2014)andpossiblyunderlying physiology,speaksforafluctuatingbalancebetweentheimmunologicalbenefitsand challengesofsociallife.thisbalancedeterminesforexampletherelativevaluesof microbialdiversityandsimilarityunderselection.eventhoughgainingadiverse microbialcommunitythroughsocialcontactmightbebeneficial,contactwith individualswithtoodissimilarmicrobiotamightbeharmful,becauseindividuals becomeco7adaptedtotheirmicrobesandunfamiliarbacteriamightbepathogenicina non7adaptedindividual(fengetal.2011,stillingetal.2014).inlinewiththis, Barribeauetal.(2012)concludedthattadpolesmostlikelypreferthecompanyof individualswithsimilarmhc7genotypeaswellassimilarmicrobiota.furthermore,such avoidanceofopportunisticpathogensmightbethereasonbehindmatechoicedrivenby similarmicrobiota.forexample,drosophila(melanogastermaleswereobservedtomate morereadilywithfemaleswhohadhadthesamedietandsimilargutmicrobiota (Sharonetal.2010). Social'behavior'and'presence'of'certain'beneficial'microbes' Gutmicrobiotaconsistsofavarietyofbacteria,ofwhichsomearemorerelevantfor socialbehaviorandtransmissionthanothers.microbesthatvarylittleinabundance andaresharedmoreorlessbyallindividualsofagivenspeciesarethoughttoformthe CoreMicrobiota (Turnbaughetal.2007,butseealsoLozuponeetal.2012).Moreover, coremicrobiotacanbethoughttoconsistofthematernallytransmittedpartof 7

microbiota.inaddition,somemicrobesaremoreeasilysociallytransmittableand highlyvariableinabundance(heretermedas PeripheralMicrobiota ).Forexampleina recentstudy,tungetal.(2015)foundthataspecificsetof sociallystructuredbacteria weretransmittedthroughsocialinteraction,leadingmoresimilarmicrobiotabetween socialpartners.oneimportantgenusamongthesesociallystructuredbacteriawas Bifidobacterium,whichisassociatedwithmanyhealthbenefitsinhumans(Turronietal. 2008).Anotherbacteriallineagewithemergingimportanceinsocialbehavioris Lactobacillus.RecentstudieshaverevealedthatLactobacillusbacteriaareassociated withdecreasedanxietyinmice(bravoetal.2011),possiblyduetotheircapabilityto promoteoxytocinsecretion(poutahidisetal.2013). 1.3. Stress&and&microbiota& Socialbehaviorandmicrobiotaseemtobemoreintimatelylinkedthanpreviously thought.onefactorentwinedwiththisrelationshipisstressphysiologysincestress affectsbothsocialbehaviorandmicrobiota.stressisknowntoaffectphysiological homeostasisandtoresultinmoreorlesssocialbehaviordependingonthecontext. Specifically,theeffectsofsocialstresscandifferfromtheeffectsofnon7socialstress. Theevolutionofsociallifehascreatedawholenewnicheforthehormonalstress response,mediatedbythehypothalamic7pituitary7adrenalaxis(hpa).whereas environmentalstresscanreducesocialproximity(barbosa&dasilva7mota2009, Overdorff&Tecot2006,Tecot2013),socialstresscaninfactenhanceaffiliationaimed atreducingstressandavoidingconflicts(devriesetal.1996,carter1998,enghetal. 2006,Stöweetal.2008).Itisclearthatstresscanaffectmicrobialtransmissionthrough itseffectsonsocialbehavior,butglucocorticoidstresshormonesalsohavedirecteffects onmicrobiota.hormonalprofilesareassociatedwithmicrobiotaingeneral,whichis evidentinmicrobiotadifferencesbetweenthesexes(alexyetal.2003,saagetal.2011, Markleetal.2013,Leclaireetal.2014),butglucocorticoidstresshormoneshave especiallyfastandprofoundeffectsongutmicrobes.inmiceandprimates,stressis knowntoreducegutmicrobialdiversity(bailey&coe1999,baileyetal.2010),reduce therelativeamountoflactobacilli(bailey&coe1999,galleyetal.2014,galley&bailey 2014)andchangerelativeabundancesofresidentbacteriaingeneral(Parketal.2003). Inhumans,stressfultimeperiodswithhighercortisollevelsareassociatedwith changesingutmicrobiota,mostimportantlyreducedlactobacilli(lizkoetal.1987, 8

Knowlesetal.2008).However,stresseffectsonmicribiotaarenotunidirectional; throughthevagusnerveofthegut7brain7axis(bravoetal.2011,montiel7castroetal. 2013)microbiotaisknowntoaffectHPA7axisfunctionaswell.Forexample,lackof functionalmicrobiotasensitizesmicetostressorsandincreasedhpa7axisreactivityand anxiety7likebehavior(sudoetal.2004,crumeyrolle7ariasetal.2014). Figure 1 9

Figure1depictstherelationshipsbetweenmicrobiota,immunity,socialbehavior andstressphysiology.thisholobiomicmaplinksanindividualtoitssurrounding ecosystem,blurringtheboundariesofindividualsasfunctionalunitsofnature.some interactions,suchasthosebetweenimmunityandmicrobiotaorstressphysiologyand socialbehavior,areextensivelystudied,butotherinteractions,suchasthosebetween socialbehaviororstressphysiologyandmicrobiotaorstressphysiologyand microbiota,callformoreresearchbeforewecandrawanextensivemapofthese interactions. 1.4. Aims& Toshedlightontheinteractionsofgutmicrobiota,socialbehaviorandHPA7axis,I collecteddataaboutsocialbehavior,taxonomiccompositionofgutmicrobiotaandfecal cortisolmetabolitesfromawildpopulationofred7belliedlemurs(eulemur(rubriventer)( intheranomafananationalpark,easternmadagascar.iaskwhetherpatternsofsocial contact(group7membership,groupsize,socialnetwork)areassociatedwithpatternsof gutmicrobialcomposition(similarity)andwhetherindividualdifferencesinsociality arerelatedtospecificaspectsofgutmicrobiota(diversity,(presence(of(certain(microbes).( Furthermore,Iaddressthequestionofgeneticvs.environmentaldeterminantsof microbiotabycomparinggutmicrobialcompositionoffamilymemberswithdifferent relatedness.lastly,iexaminecorrelationsbetweenfecalcortisollevelsandgut microbialcompositiontotakethefirststeptowardsrelatinghpa7activityandgut microbialcompositioninthisspeciesandtoraisefurtherquestionsabouttheoriginof possiblecovariance. Red7belliedlemursarecooperativeandhighlysocialprimates.Individualsvaryin howmuchtheycontributetosocialactionsandwithwhom.forexampleindividual significantlydifferinhowmuchallomaternalcaretheyprovidetoinfants(tecot& Baden,unpublisheddata).Byusingsocialnetworkanalysisandbyconstructing individualsocialityindicesfromtheamountofsocialbehaviorsanindividualexhibits,i examinetheintra7groupdifferencesinsocialbehavior.myoverallhypothesisisthatthe amountanddirectionofclosesocialinteractionispositivelycorrelatedwithgut microbialdiversityandsimilarity,respectively.thispatternshouldbevisiblewhen comparingi)individualswithdifferentlevelsofsocialinteractionsinthesamegroup,ii) 10

individualsbetweengroups(nointeraction),andiii)individualsfromgroupsof differentsizes.inaddition,theassociationbetweengutmicrobiotaandsocialbehavior couldpartlybemediatedbyinteractionwiththestresshormonesofthehpa7axis.to testthishypothesis,severalspecificpredictionscanbemade: 1. Gutmicrobialcompositionshouldbemoresimilarbetweengroup7membersthan betweenindividualsfromdifferentgroups 2. Gutmicrobialdiversityshouldbegreaterinlargergroups 3. Moresocialindividualsshouldhavemorediversegutmicrobiotathanlesssocial individuals. 4. Pairswithshortdistanceinasocialnetwork(frequentmutualinteraction) shouldhavemoresimilargutmicrobialcompositionthanpairswithagreater distance(rarelyinteractwitheachother) 5. Gutmicrobialcompositionandfecalcortisolmetabolitesshouldcovary. Specifically,highfecalcortisollevelsshouldbeassociatedwithlowgutmicrobial diversity Inadditiontosociallife,Iinvestigatewhethergeneticrelatednessandearly environmentwithingrouparedeterminantsofgutmicrobiotainthisspecies.totest thishypothesisipredictthefollowing:ifgenesaremoreimportantthanthesocial environmentindetermininggutmicrobiota,adultsshouldhavemoresimilargut microbialcompositionwiththeiroffspringthanwitheachother. 1.5. Study&species&and&study&site& IcarriedoutthebehavioralobservationsandfecalsamplecollectionintheRanomafana NationalPark,EasternMadagascar,fromAugust2013toFebruary2014.Theareaisa rainforestwithtopographicvariation,montanecloudforestgrowingonridgesand lowlandrainforestinvalleys(wright1999).myspecificstudysite,vatoharanana,isa highaltituderegionlocated5kmsouthofthecentrevalbioresearchstation,bythe edgeoftheforest.thereareatleast12lemurspecieslivinginthearea. Withinthisstudyarea,thefocalstudysubjectswereeightfamilygroupsofred7bellied lemurs(eulemur(rubriventer).additionalfecalsampleswerecollectedfromother groupswhenencountered(total36individuals).red7belliedlemursarefrugivorous strepssirrhines,livinginsmall,relativelystable,monogamousfamilyunitsof276 11

individualswithonebreedingpairandtheiroffspringofdifferentages(overdorff 1996b,OverdorffandTecot2006,Tecot2008).Theyanegalitarianspeciesthatexhibit allomaternalcareandhaveaseasonalbreedingcycle(tecot2008,2010).somefathers andjuvenileshelptoraiseinfantsandallfamilymembersparticipateinsocial interactions,suchasgrooming,huddlingorplayingwitheachother.groupsofred7 belliedlemurshavefixedterritoriesthatvaryintheirfruitavailabilityduringtheyear (Overdorff1996a,Tecot2008).Mydatawerecollectedduringthetimeoftheyearwhen infantswerebornandfruitavailabilitywasgenerallylow(tecot2008),thoughwithin thisseasonthedietoftheanimalschangedmanytimesdependingonwhichparticular treeswerefruiting.furthermore,becauseofthegeneralfruitingpatternsofthefood plants,allstudyindividualshadarelativelysimilardietatanygiventime. 2. Materials&and&Methods& 2.1. Collection&of&Behavioral&Data&& Therewerefourpeoplecollectingbehavioraldatainourfieldteam.Twoofuswere localfieldtechnicianswithextensiveexpertiseinlemurbehavioralandhormonal research.wefollowedtheeightfamilygroupsofred7belliedlemursinthe Vatoharananaareaopportunistically:Wheneveragroupwasfound,itwasfollowedfor therestoftheday.ikepttrackofgroupsizeandcompositionandofanychanges therein.continuousbehavioraldatawerecollectedfrom27focalindividualsineight groups,byfollowingeachgrouponewholedayopportunisticallyeverytimetheywere found(approximatelysevenhoursperday,everyonortwoweeks).behavioraldata wereobtainedbyusingscansamplingmethodwithfive7minuteintervals;everyfive minutes,eachgroupmemberwasclassifiedtoonebehavioralcategoryofthered7 Bellied7LemurAllomaternalCareProjectethogram(Table1;Tecot&Baden, unpublishedfieldmanual).forsocialbehaviors(mutualgrooming,huddling,playing),i recordedwithwhomthebehaviorwasexhibited.becausefourdifferentpeople participatedinthebehavioralclassification,inter7observer7reliabilitywastested repeatedly(gwet2001).weaccumulated157150hoursofbehavioraldatafromeach 12

group(table2).onlythegroupswithmorethantwoindividualsandmorethan50 hoursofbehavioraldatawereusedtoinvestigatequestionsrelatedtosocialbehavior. Table 1. Ethogram, Tecot & Baden, unpublished field manual Mark Behavior Description M( Move Movinginsideasingletree(lessthan3meters) T( Travel Directedmovementmorethan3meters R( Rest Animalismotionless(eyesopenorclosed) HUD( Huddle Restinginphysicalcontactwithothers,tailswrapped aroundeachother PPLY( PartnerPlay Disorientednon7continuousplayfulbehaviorbetween morethanoneindividuals SPLY( Self7play Disorientednon7continuousplayfulbehaviornot directedtootherindividuals SGR( Self7groom Groomingone sownfur AGR( Allogroom Groominganotherindividual RGR( ReceivingGroom Receivinggroomfromanotherindividual MGR( MutualGroom Twoindividualsgroomingeachothersimultaneously FD( Feed Handling,sniffingandeatingfooditems AGG( Aggression Fastandloudchasingorcuffingotherindividual AGM( Scentmarking Ano7genitalscentmarkingbehavior ' Table 2. Amount of behavioral data per group and the criteria used to choose groups to study social behavior. All groups were used in other analyses described in the methods Group GroupSize Hoursofbehavioraldata Usedtostudybehavior 3 3 60 X 5 2 150 7 374 140 X 8 476 150 X 9 5 15 10 2 115 11 3 130 X 53 3 44 13

Constructing'sociality'indices'and'interaction'matrices' Individualsocialityindiceswereconstructedbasedonthebehavioralscansampledata. Theywerecalculatedastheproportionsoftimeeachsubjectspentinparticularsocial behaviors.specifically,iconstructedtwoindicesfortwodifferentsocialbehaviors, respectively: 1. Huddleindex:proportionoftimespenthuddlingwithothersoutofthetotal amountofresttime. 2. Socialgroomindex:proportionoftimespentsociallygrooming(mutualgroom, allogroom,receivinggroom)outofthetotalamountoftimeobserved. Toconstructinteractionmatrices,Iusedastandardmethodforsocialnetworkanalyses (Whitehead2008).Pairwisecomparisonsofmutualinteractionsyieldedsocialdistance valuesforeachpairofindividuals.distancevalueswerecalculatedforapairof individualsastheproportionoftimespentinmutualinteractionoutoftotaltimespent insocialinteractionofthetwoindividualsineachpair.interactionmatriceswere constructedfortwosocialbehaviors: 1. Huddlematrix:adistancematrixofhowmucheachpairspenthuddling together 2. Groommatrix:adistancematrixofhowmucheachpairspentgroomingeach other Socialityindicesandinteractionmatriceswereconstructedseparatelyfortwotime periods:1)beforeinfantswereborn(september7octoberin2013),and2)andafter infantswereborn(december2013untiljanuary2014). 2.2&& Fecal&Sample&Collection&and&Analysis&for&Cortisol&Metabolites& Icollectedfecalsamplesforhormonalassaysbywrappingtheminfoilanddryingthem byfire(tecot2001,2008,2013).sampleswerekeptdrybystoringtheminabagfullof silicapearls.hormonalsampleswerecollectedfromindividualsofthefocalgroups wheneverpossibletodetectchangesinhormonalstatus.sampleswerekeptdryand broughttothelaboratoryfortheevolutionaryendocrinologyofprimates(leep)in UniversityofArizona.Fecalsampleswereground,siftedand0.1gwasextractedfrom eachsampleintoasolutionofhalfethanolhalfwater.sampleswerethenmixed 14

(vortexed),centrifugedandthesupernatantwaspouredoff.onemlofeachsamplewas takenintonewtubesand4mlofethylacetatewasaddedtofreeconjugantsteroids. Samplesweremixedandcentrifugedagainandthetoplayerwasaspiratedintoculture tubes,evaporatedinwaterbathafterwhich1mlof30%methanolwasadded.samples wereconditionedwith1mlofmethanoland1mlofwater(distilled).1mlofsample wasaddedandwashedwith5%methanol.steroidswereelutedfromthecolumnwith 2mlofmethanol,whichwasthenevaporatedandreplacedwith1mlofethanol. Cortisolassaysweredoneusinganenzymeimmunoassay(EIA)protocolby CoralieMunro:Enzyme7labeledantigen(horseradishperoxidasecortisol)wasdiluted ineia7buffer(1:100000)andmixed.0.5mlofsampleswerefirstevaporatedand0.3 mloftheantigendilution(t:hrp7eia)wasaddedtoallsamplesandstandards.samples andstandardswerethenmixedandtransferredtoassaytubes.forcontrol,0.3mlpure EIA7bufferwasaddedtoNSB7tubesand0.3mlT:HRP7EIAwasaddedtoB07assaytubes. Platescoatedwithsteroidconjugatewerewashedand0.1mlofeachsampleand standardmixturewereplatedinduplicate,shakenandincubatedfor2hoursina humiditychambertoenablebinding.plateswerethenwashedtoseparateboundand freecortisol.1mlsubstratewasadded,theplatewasmixedforfiveminutesand absorbancewascalculatedwithabiotekplatereader.theslopeofseriallydilutedfecal extractswasparalleltothatofthecortisolstandard,f=0.12(11,12),p=0.730.fecal cortisolassaysweredeterminedtobeaccurate(96.68±1.79%standarderrorofthe mean) 2.3& Fecal&sample&collection&and&gut&microbial&DNA&analysis&& IcollectedfecalsamplesformicrobialDNAanalysisinEppendorftubesfilledwith RNAlater.Minimumofonesamplewascollectedfromallfocalindividuals.Second samplesforseasonalcomparisonwerecollectedfrom15individualsinfivegroups.to increasesamplesize,icollectedadditionalsamplesopportunisticallywhenever encounteringindividualsfromnon7focalgroups.eventhoughididnothavematching behavioraldataforthesesamples,theywereusedintheanalysisofdemographic correlates,suchaswithage,sexorgroupsize.altogether110microbialfecalsamples werecollected. 15

Eppendorftubeswerekeptinafreezer(780C)for6monthsbeforesendingthem totheknightlaboratoryintheuniversityofcoloradotobeanalyzed.dna7extraction wasdoneusingmobiopowersoil kits.pcrwasrunwithprimerstargetedatv17v3 regionofthe16srrnagene.theresultingampliconsweresequencedusingillumina MiSeqplatform.IusedQIIMEsoftwaretomatchbarcodeswithsamples,toeliminate badqualitydnaandtoflipreversesequences(caporasoetal.2010).here,quality filteringwasdonewithdefaultsettingsofthe split_libraries_fastq.py command(q>20, 1%riskmarginalinbases).Sequenceswereclusteredandmatchedwithknown taxonomicdatabase(greengeens)usingopenreferenceotupicking(pick_openm reference_otus.py)whileenablingreversestrandmatching.thiswaythelistofthe knownotus(operationaltaxonomicunit,comparableto species )thatmatchedwith thedatabasecouldbeenrichedwiththedenovoclusteredunknownotus.thisis important,becauseasignificantproportionofgutmicrobiota,especiallythatoflemurs, belongstotheseunknowntaxa(katherineamato,personalcommunication).herefor example,openreferenceotupickingyielded1,131,454reads(sequences)whereas closedreferenceotupicking(withoutdenovoclustering)yieldedonly304,163reads. Theamountofsamplesthatweresuccessfullysequencedandhadaminimumof3,000 readswas92.thedatawasrarefiedto3,000readspersample. 2.2. Statistical&analyses& Describingmicrobialdata IperformedstatisticalanalysesusingR(Rversion3.1.2, PumpkinHelmet,RCore Team2014).Themicrobialdatawerefirststandardizedasrelativeabundances(the frequencyofcountsofeachoturelativetothetotalcount)andconvertedinto dissimilarityindices.theuseddissimilarityindicesdescribetherelativedifferencesof microbialspeciescommunitiesbetweenindividualsbasedonpresence absence information(sørensendissimilarityindex)orrelativeabundance(bray Curtis dissimilarityindex)(legendre&legendre2012).thebray Curtisdissimilarityindexis anindexusedtocalculatethedissimilarityofspeciescompositionbetweentwosites (here,betweensamples).itiscalculatedasfollows: " " = 1 ", 16

where " isthesumofthelessercountsofeachotupresentinbothsamples"#, and "# arethetotalnumberofotuspresentinbothsamples.thesørensen dissimilarityindexisasimilarindex,butunlikebray Curtis,itonlyappliesfor presence absencedata.itiscalculatedasfollows: " =, wherecistheabsolutenumberofotussharedbythetwosamples,andaandbarethe totalnumberofotusineachsamples,respectively.iusedthesetwodifferentindicesto getanoverviewofgutmicrobialdissimilaritybasedonboth(a)havingdifferentotus presentorabsent(sørensen),and(b)havingdifferentrelativeabundancesofotus (Bray Curtis).SørensenindiceswerealsousedtoreinforceBray7Curtismetricsof dissimilarity,becausedifferencesinthepresence absenceofcertainbacteriaarea morereliablemeasureofdissimilarityofmicrobialcommunitiesthandifferencesin relativeabundances.inadditiontodissimilarityindices,iusedshannondiversityindex andrichnesstodescribethegutmicrobialdiversity. Clusteringofmicrobialdata Iuseddissimilarityindicestoconstructdissimilaritymatricesofallindividuals,and thesewereusedtoclusterdatatorevealthedistributionofgutmicrobiotaacrossthe studypopulation.clusteringfromthedissimilaritymatriceswasdoneusingthek7 meansmethod,whichisanalgorithmthatassignsdatapointstoclustersbyminimizing thesumofsquareddistancesofpointstothecenterofeachcluster(legendre& Legendre2012).Eightclusterswerefoundusingthismethod,whichcoincideswiththe numberofstudygroups. Sincethemonthlychangesinthegutmicrobiotaweresmall(controlledfor individualandpregnancy,r 2 =0.02,p=0.012),Ipooledthesamplesfromtwomonths beforeandafterinfantswereborn(september OctoberandDecember January)to formtwocomparabletimeperiods(seasons).clusteringwasthendoneonasubsetof thedatacontainingonlyonesampleperindividual,alltakenduringthefirstseason (Sep Oct).Here,clusteringwasdonewithadefinednumberofeightclusters,derived fromtheobservedclusteringpatternofthewholedata.thiswasfurthervisualized usingprincipalcoordinateanalysis(pcoa),whichprovidesagoodoverviewofthedata 17

distributionbeforeanyfurtheranalyses.pcoaaimsatfindingtheaxisalongthe multidimensionaldistributionthatexhibitsthemostvariation(legendre&legendre 2012);thisaxisiscalledthefirstprincipalcoordinate. Analysesusingdissimilarityindices Totesttheeffectoftime(monthandseason)andpregnancyonthemicrobiota composition,iusedpermutationalmultivariateanalysisofvarianceusingdissimilarity indicesasdistancematrices.thisanalysiswasperformedwiththeadonisfunctionas implementedintheveganpackageinr(oksanenetal.2014).permutational multivariateanalysiswaschosenbecausetheelementsinadissimilaritymatrixarenot independent.thistestisbasedoncomparingtheobservedassociationbetween dissimilarityindicesandothervariableswiththosearisingwhentheindexvaluesare repeatedlyrandomlypermuted.thisallowsreliableestimationofstatistical significance.thesametestwasusedforthesmallersubsetofdatawithonesampleper individualcollectedinthefirstseasontotestfortheeffectsofage,sex,groupandgroup size.similarly,icomparedsamplesofasetoffemalesandtheirmatesbeforeandafter pregnancytotestforthepossibleeffectsofpregnancy,andusedprincipalcoordinate analysistovisualizethis. Analysesusingdiversityandrichness Inadditiontothese,Iusedgeneralizedlinearmodelstotestfortheeffectofseasonand socialityindicesongutmicrobialdiversityandrichness.thiswasdonebyfittingaline bylinearregressionthedata(minimizingthesumofsquaredresiduals)andcalculating whetherthisregressionexplainssignificantlymoreoftheobservedvariationthat wouldbeexpectedbychance,assumingadistributionofexponentialfamily(grafen& Hails2002).Furthermore,totestcorrelationsbetweeninteractionmatrices(converted fromsocialproximitytosocialdistancematrices)andmicrobialdissimilaritymatrices,i usedthemanteltestofmatrixcorrelation(legendre&legendre2012).themanteltest isapermutationaltestofcorrelation,wherestatisticalsignificanceistestedby repeatedlyrandomlypermutingtherowsandcolumnsofoneofthematrices,andthe correlationcoefficientsarecomparedwiththatobservedfortheoriginalmatrices.p7 valueiscalculatedasaproportionofpermutationsthatleadtohigherthanthe observedcorrelationcoefficient.fortestsinvolvingsocialityindicesandinteraction 18

matricesiuseddataonlyfromgroups,forwhichtherewassufficientbehavioraldatato constructtheseindicesandmatricesforbothseasons(beforeandafterinfantswere born).thissubsetofdataconsistedof26samplesencompassing13individualsfrom fourgroups. Whichbacterialtaxaarebehindthetrend? Tofindoutwhichbacterialtaxaareresponsibleforagiventrend,IusedDufrene LegendreindicatoranalysistocalculateindicatorvaluesforeachOTUinthegroupsof samplesundercomparison(dufrene&legendre1997).thedufrene Legendre indicatorvalueiscalculatedasfollows: "#$%& " = " " 100,where " isthenumberofotuiinclassj(suchasthefamilygroup)dividedbythe totalnumberofotui,and " isthenumberofsamples(individuals)inclassjthat containotuidividedbytotalamountofsamplesinclassj.thestatisticalsignificanceof theresultingindicatorvaluesarethentestedbyrandompermutation.here,p7valueof 0.01(except0.05whenanalyzingtheeffectofpregnancywithasmalldataset)wasused asathresholdforsignificance,andofeachclass,tenotuswiththehighestindicator valueswerechosen. 3. Results& 3.1. Environmental,&demographic&and&genetic&factors&affecting&microbiota&& Thegutmicrobiotaofred7belliedlemurswasdominatedbythephylaBacterioidetes, ProteobacteriaandFirmicutes(Fig.5).Withinoneseason,gutmicrobiotaclustered stronglyaccordingtothefamilygroupandthegroupsformedthreebiggerclusters partiallyparallelingthelocationoftheirterritories(fig.2and3).thatis,thegroupsin thetwosmallerclustershaveneighboringoroverlappingterritories,butnotallgroups inthebiggestclusterseemtobesocloselylocated.individualdifferencesingut microbialcomposition(bybothdissimilarityindices)werebestexplainedbygroup identity(seetable3).inaddition,within7groupdifferencesweresignificantlyexplained 19

bypregnancy(seetable3).additionalanalysesrevealedthatmicrobiotaduringand afterpregnancychangedsignificantlyinadultfemales(r 2 =0.16,p=0.02withboth dissimilarityindices;seefig.4),butnotinacontrolgroupofthecorrespondingmales (p=0.5).thisdifferencewasnotinthegutmicrobialdiversity,butratherindifferences inthespecies(otus)ofthebacterialcommunity. Indicatoranalysisrevealedthatdifferencesbetweenthemicrobiotaofthesame femalesduringandafterpregnancyweredrivenbyphylum7levelchanges.specifically, pregnantfemales gutmicrobiotawascharacterizedbybacteriabelongingtophyla ProteobacteriaandVerrucomicrobia,whereaspost7pregnantfemales gutmicrobiota wascharacterizedbyabundanceofbacteriabelongingtophylumfirmicutes.moreover, thebestindicatorspeciesforgroup7specificdifferencesingutmicrobialcomposition werebacteriabelongingtotheorderclostridiales(inphylumfirmicutes).figure5 summarizesgroupdifferencesingutmicrobialcompositionatthephylum7level.group size,age,sexandage7sexinteractioncontrollingforpregnancyhadnosignificanteffect ongutmicrobialcomposition(seetable3). Table 3. Correlations of demographic factors (age, sex, group, group size) with the gut microbial composition (Sørensen dissimilarity index). All data are from the same season. Df SS MS F7value R 2 p( Pregnancy 3 0.69 0.23 2.39 0.19 <0.01 Age 1 0.12 0.12 1.27 0.03 0.13 Sex 1 0.11 0.11 1.10 0.03 0.23 Group 7 1.29 0.18 1.92 0.36 <0.01 GroupSize 1 0.08 0.08 0.87 0.02 0.65 Age:Sex 1 0.08 0.08 0.82 0.02 0.76 Residuals 13 1.25 0.10 0.35 Total 27 3.62 1.00 20

Figure 2. PCA-ordination of the filtered data. Gut microbes cluster as family groups (numbered colored areas) and these groups form three bigger clusters, partially paralleling their territory location (See Fig. 3). Figure 3. Geographical territories of the study groups. Group colors are the same as in Fig. 2. 21

pca[,2] -0.2-0.1 0.0 0.1 0.2 DURING AFTER -0.3-0.2-0.1 0.0 0.1 0.2 pca[,1] Figure 4. Breeding females gut microbial compositions in relation to each other (lines) and during and after pregnancy (colors) visualized with principal component analysis. 1 1 1 2 2 2 7 12 15 3 12 15 7 3 12 15 7 3 5 5 5 2 1 7 12 15 3 2 1 12 15 7 2 1 7 12 15 Bacteroidetes Proteobacteria Verrucomicrobia Firmicutes Euryarchaeota Acidobacteria Planctomycetes 3 5 5 3 5 1 1 1 2 2 2 3 7 12 15 12 15 7 3 12 15 7 3 5 5 5 Figure 5 Gut microbial composition of the eight study groups, allocated by phyla. White area covers unknown species 22

3.2. Seasonal&Change&in&Gut&Microbiota& Seasonalchangeinthegutmicrobialcompositionwasinvestigatedwitha datasetwherebreedingfemaleshadbeenremovedtoeliminatethestrongeffect ofpregnancy.therelativeabundancesofgutmicrobes(bray7curtisdissimilarity index)variedbetweenthetwoseasonssignificantly,thoughtheeffectwasquite small(table4).analysisusingpresence7absencedataformicrobialcomposition (Sørensendissimilarityindex)showednosignificanteffectoftheseason(Table 5).Gutmicrobialdiversity(Shannon)andrichnessdecreasedsignificantlyfrom beforetoafterinfantswereborn(p=0.02forrichness,p=0.04fordiversity,fig. 5).Asimilartrendindiversitywasnotdetectedinbreedingfemaleswhenthis wasanalyzedseparately.indicatoranalysisrevealedthatthetrendofdecreasing gutmicrobialdiversitywasassociatedwithincreasingabundanceofbacteria belongingtothephylumbacteroidetes,mostimportantlygenusprevotella. Table 4. The effect of season on gut microbial composition using relative abundances (Bray- Curtis dissimilarity index). Because data were unevenly distributed in time (Different groups had different amount of data in different months), Month, Group and their interaction were added to the analysis as control variables before Season. Df SS MS F7value R 2 p Group 3 0.34 0.11 1.50 0.18 0.03 Month 1 0.32 0.32 4.24 0.17 <0.01 Season 1 0.16 0.16 2.07 0.08 <0.01 Group:Month 3 0.36 0.12 1.61 0.20 0.01 Residuals 9 0.68 0.08 0.37 Total 17 1.86 1.00 Table 5. The effect of season on gut microbial composition using relative abundances (Sørensen dissimilarity index). Because data was unevenly distributed in time (Different groups had different amount of data in different months), Month, Group and their interaction were added to the analysis as control variables before Season. Df SS MS F7value& R 2 p Group 3 0.42 0.14 1.16 0.17 0.10 Month 1 0.26 0.26 2.13 0.11 <0.01 Season 1 0.15 0.15 1.25 0.06 0.11 Group:Month 3 0.49 0.16 1.36 0.20 0.01 Residuals 9 1.09 0.12 0.45 Total 17 2.41 1.00 23

3.8 4.0 4.2 4.4 4.6 220 240 260 280 300 320 340 A (Before) B (After) A (Before) B (After) Figure 6 Gut microbial diversity (left) and richness (right) are higher before than after infants are born 3.3. Gut&Microbial&Composition&and&Interaction&Matrices& Therewasnosignificantcorrelationbetweengutmicrobialdissimilarity(by Bray7CurtisorSørensendissimilarityindices)andsocialconnectednesswithin groupwithanyoftheinteractionmatrices(huddlematrixandgroommatrix beforeandafterinfantswereborn). 3.4. Gut&Microbial&Composition&and&Sociality&Indices& Individualsvariedintheamountofrestingtimetheyspenthuddlingtogether andtheamountoftimetheyspentgroomingothers(fig.7).groomindiceswere significantlynegativelycorrelatedwithgutmicrobialdiversitybetween individualsthroughtime(p=0.01).afteraddingtimetotheanalysis,negative correlationswereapparentinbothindices(table6),butonlybeforeinfants wereborn(fig.7.a,b).richnessfollowedasimilartrend(fig.7.c,d),thoughit wasnotsignificantlycorrelatedwiththehuddleindexatanytime.overall, huddleindexdecreased(p<0.01)andgroomindexdidnotchangefrombeforeto afterinfantswereborn. 24

Table 6. Results of generalized linear model testing for the effects of both sociality indices on gut microbial diversity, after the effect of time (Pre/Post infant) is taken into account. Estimate( Std.Error( tvalue( p (Intercept) 4.30251 0.09567 44.973 <0.001 Pre/PostInfant 0.18386 0.07929 2.319 0.0317 GroomIndex 78.65217 3.37531 72.563 0.019 Estimate( Std.Error( tvalue( p (Intercept) 4.4605 0.1764 25.287 <0.001 Pre/PostInfant 0.3958 0.1143 3.462 0.00261 HuddleIndex 70.8527 0.3967 72.149 0.0447 Figure7Gutmicrobialdiversityandrichnessinrelationtosocialityindices.Beforeinfantsare born(inred),diversityisnegativelycorrelatedwithgroomindex(a)andhuddleindex(b),but correlationisnotapparentafterinfantsareborn(inblack).richnessfollowssimilartrends(c,d), butcorrelationwithhuddleindex(d)isnotsignificant 25

3.5. Gut&microbial&composition&and&stress&hormones& TocontrolfortheeffectsofpregnancyonHPA7axisactivity,breedingfemales wereexcludedfromtheanalysisofcorrelationsbetweencortisolprofilesandgut microbialcomposition.fecalcortisollevelswerepositivelycorrelatedwithgut microbialcomposition(r 2 =0.14,p=0.05withSørensendissimilarityindex,R 2 = 0.14,p=0.04withBray7Curtisdissimilarityindex).Dissimilarityindices correlatedwitheachother(p<0.01),indicatingthattheyspeakforthesame thing.afteraddinggroupandsex7ageclassintotheanalysisascontrolvariables, theresultwasevenmoresignificant(table7).theeffectofcortisolongut microbiotawasnotrelatedtodiversityorrichness,butrathertodifferencesin thespeciesofthebacterialcommunity,specificallyspeciesbelongingtophylum Firmicutes. Table 7. Correlation of Cortisol levels (CORT) with gut microbial composition using relative abundances (Bray-Curtis dissimilarity index). Group and sex-age class are control variables. Df SS MS F7value R 2 p Group 5 0.56 0.11 1.74 0.49 <0.01 Sex7AgeClass 2 0.23 0.12 1.80 0.20 0.01 CORT 1 0.15 0.15 2.29 0.13 0.01 Residuals 3 0.19 0.06 0.17 Total 11 1.14 1.00 4. Discussion& 4.1. Environmental&and&Demographic&Variation&in&Gut&Microbiota& Groupidentity,age,andseasonalchangewerethemainfactorsexplaining variationinthegutmicrobiotaofred7belliedlemurs,whichwasverysimilar betweenallindividualswithinonegroup.noeffectofrelatedness(differencesin microbiotabetweenparent7offspring,parent7parentandoffspring7offspring pairs)wasdetected.themainfactorexplainingwithin7groupdifferencesingut microbiotawaspregnancy.inparticularfemalesgutmicrobiotadifferedfrom theothergroupmember smicrobiotaandbreedingfemalesalsoexperienceda changeinthegutmicrobialcompositionatthetimeofgivingbirth.similarlyto 26

theseresults,themicrobiotaofpregnantwomen(colladoetal.2008,korenetal. 2012,Romeroetal.2014)aswellaswellbreedingfemaleEuropeanbadgers (Meles(meles)werefoundtodifferfromnon7breedingfemales'microbiota. Moreover,parallelingthetrendfoundbyKorenetal.(2012)inpregnantwomen, ourresultsshowthatpregnantfemalesgutisabundantinbacteriabelongingto thephylumproteobacteria,whilepost7pregnantfemales gutsareabundantin bacteriabelongingtothephylumfirmicutes.sincebirthandearlyenvironment areimportantinthedevelopmentofahealthymicrobiota,pregnancy7related modificationofgutmicrobiotamightbeanadaptivewayofreadyingthe microbialenvironmentfortheinfant(korenetal.2012).inadditionto pregnancy,noothersexoragedifferenceswerefound.thisisquitesurprising, giventhenumberofstudiesindicatingthatmicrobiotacandifferbetweensexes (Alexyetal.2003,Saagetal.2011,Markleetal.2013,Leclaireetal.2014)and tendstochangeduringdevelopmentuntilindividualsreachmaturity(palmeret al.2007,mariatetal.2009,sinetal.2012,leclaireetal.2014). Thedissimilarityofgutmicrobiotabetweenfamilygroupsmightbe partiallyduetodifferencesinthefoodsourcesandmicrohabitatsofdifferent territories.geographicalrangehasbeenpreviouslylinkedwithdifferencesingut microbiotainprimates(degnanetal.2012,moelleretal.2013,gomezetal. 2015)However,sincetheterritoriesofourstudygroupshaveoverlap, environmentaldifferencesseemaninadequateexplanationfortheobserved dissimilarityofmicrobiota.furthermore,red7belliedlemursarefrugivoresand allindividualswithinthesameareaexperiencemoreorlesssynchronized changesindietbecauseofthefruitingpatternsoftheirfoodplants.despitethis, theseasonalchangeingutmicrobiotawasnotnearlyasrobustasdifferences betweengroups,suggestingthatspatialvariationindietorenvironmental conditionscannotaloneexplainthedifferencesbetweengroups. However,group7specificmicrobiotasformedthreebiggerclustersthat mightbeexplainedbythelocationofgroupterritories(fig3).indeed,thegroups inthetwosmallerclusters(8+11and5+10)haveneighboringoroverlapping territories,butnotallgroupsinthebiggestcluster(3+7+9+53)seemtobeso closelylocated.thisterritoryinformationisnotbasedongps7coordinates,buta trail7locatingsystemandmightbeslightlymisleading.morespecificinformation 27

ofterritoriesfromvariousdistancesofeachotherisneededbeforetheeffectof territorydistanceongutmicrobialcompositioncanbedescribed. 4.2. GroupKspecific&microbiota& Group7specificgutmicrobiotareflectsthesociallifeofthisspecies,withhigh within7groupcohesionandextremelylowinteractionbetweenmembersof differentgroups.theseresultsaddtotheincreasingevidenceofgroup7specific microbiotainhighlysocialspecies(turnbaughetal.2009b,songetal.2013, Degnanetal.2012,Theisetal.2012,Leclaireetal.2014,Tungetal.2015,Gomez etal.2015).red7belliedlemurs,justlikecooperativelybreedingmeerkatsand hyenas,provideallomaternalcareandrelyonin7groupcooperationincaringfor theyoung.inthiscontext,sharedmicrobiotamightbecrucialforgroup7specific scentmarks,recognitionandbonding.moreimportantly,however,shared microbiotainasmallgroupcanbeseenasamechanismofimmunity synchronization;individualsbecomeaccustomedtotheirgutmicrobesand indeedthesamegutbacteriamightbemutualisticinanaccustomedindividual butpathogenicasanovelinfection(barribeauetal.2011,fengetal.2011, Stillingetal.2014).Sharingmicrobiotamakesitcertainthateverybodyis accustomedtothesamebacterialallies,andwillnotinfecttheirgroupmembers withpotentialpathogens.insupportofthishypothesis,cooperativebreeders andatleastonespecieswithsharedinfantcarearegenerallyknowntopossess synchronizedphysiologicalprocesseswithinthegroup.forexample,inmany cooperativelybreedingprimates,othergroupmemberscanreflectthehormonal statusofthepregnantfemale(storeyetal.,2000,nunesetal.,2001,ziegleretal., 2004,Tecot2008)possiblyreadyingthemtotheirtaskinprovidingallomaternal care(ziegler2000).furthermore,cooperativelybreedingmarmosets(callithrix( jacchus)werefoundtohavemoresimilarpersonalities,andthusmostlikely moresimilarhormonalprofiles(koolhaasetal.,1999,carereetal.2010, Koolhaasetal.,2010Sih2011)thanchimpanzeesrelyingondyadicratherthan group7widecooperation(koski&burkart2015).toexplorethisfurther, synchronizedhormonalpatternsincooperativegroupsneedstobestudied more. 28

4.3. Microbial&transmission&in&a&social&network& Ifoundnocorrelationbetweensocialcontactandsimilarityofmicrobiotawithin groups,butthisislikelybecausefamilygroupsofthisspeciesaresmall(276 individuals)andsocialconnectednesswithingroupisrelativelyhighbetweenall individuals.however,group7specificgutmicrobiotaspeakfortheimportanceof socialcontactindeterminingthemicrobiotainthisspecies.furthermore,even thebreedingpairsharedsimilargutmicrobiota,whichismostlikelyformedonly throughsocialorsexualcontact,sincetheyarenotrelatedanddonotshareearly environment(i.e.theyderivefromdifferentnatalgroups).thisisinteresting, becauseifsocialcontactcanfunctionasatransmissionrouteforgutmicrobes (Kulkarni&Heeb2007,Kortetal.2014,Tungetal.2015),thesemicrobescan carryinformationofsocialcontactaswell.inwildanimalresearch,thereisa strongbiasinthestudyofsocialbehaviortowardsdiurnalandhighlysocial species.gutmicrobiotacouldbeusedtodrawmapsofsocialnetworksalsoin asocial,nocturnalorotherwisecrypticspecies,whose(socialorsexual)behavior ishardtostudyinwild.parallellingthisidea,zohdyetal.(2012)managedto capturethepatternofsocialcontactsinwildnocturnalmouselemurs (Microcebus(rufus)bymarkingandrecapturingtheirparasites(lice).Whereas socialmicrobetransmissioninasocialspecieswouldmainlymeansexualor agonisticcontact,insocialspeciessimilarityofmicrobiotamightbeagoodproxy forthestrengthofasocialbond(montiel7castroetal.2013). Inadditiontosimilaritywithingroups,sociallytransmittedgutmicrobes mightenhancegutmicrobialdiversityasgroupsgetbigger.however,ifoundno correlationbetweengroupsizeandthegutmicrobialdiversity.thisislikelyto beduethesmallvariationingroupsize(276).inaddition,montiel7castroetal. (2013)pointedoutthatitisnotgroupsizeperse,butrathermodulargroup organizationthatisassociatedwiththebenefitsofsociallytransmittedmicrobes. Unlikeourpair7living,cooperativestudyspecies,biggerprimategroupstend havehighmodularity,leadingtopartialsocialisolationofdifferentsocial moduleswithinonegroup.thediversityofmicrobiotamighthavebeenone factordrivingtheevolutionoflargegroupsize,butselective(modular)bonding 29

patternsmayhaverisenwithaneedtobalancethetransmissionofbeneficial microbesandpathogens(montiel7castroetal.2013).indeed,socialmodularity isknowntoreduceparasitetransmission(griffin&nunn2011). Sincebondingbehaviorinprimatesservesasagoodwayformicrobial transmission,oneneedstodecidecarefullywithwhomtoaffiliate.affiliating withasmallsetofclosekinorfriendsisknowntoreducestress(wittigetal. 2008).Inadditiontothis,itmightalsoreducetheriskofinfection.Thus,asocial bondortheassociatedbondingbehaviorinhighlysocialspeciescanbe additionallyseenasamanifestationofimmunologicaltrust.inspecieswith allomaternalcare,likered7belliedlemursallindividualsaretightlybondedand seemtosharethemicrobiota,hencenomodularityisneeded. 4.4. Gut&Microbiota,&HPAKaxis&and&Individual&Differences&in&Social& Behavior& Contrarytomyprediction,bothsocialityindices(HuddleindexandGroom index)werenegativelycorrelatedwithgutmicrobialdiversitybetween individuals.thenegativecorrelationbetweensocialityandgutmicrobial diversitywassignificantandstrongbeforeinfantswereborn,notaftertheywere born.whereasgutmicrobialdiversitydecreasedfrombeforetoafterinfants wereborn,individualhuddleindicesdecreasedbutgroomindicesstayedthe same.thefactthatthenegativetrenddisappearsafterinfantsareborncouldbe explainedbydecreasingphysiologicaldissimilaritybetweenindividualsatthe timewheninfantsareborn.familymembersmostlikelyhavemoredifferent physiologicalstateswhilefemalesarepregnant.inaddition,individualscould havemoresimilarphysiologicalstatesafterinfantsarebornwhenallindividuals mightexperiencestressorothersynchronizedhormonalchangesrelatedto allomaternalcare(ziegler2000). Beforeinfantswereborn,individualsthatparticipatedmoreingrooming, groomedothersmoreandsleptinclosecontactwithothers,hadthelowestgut microbialdiversity.thisisoppositetowhatwaspredicted,assumingthat groomingfunctionsasawayofgutmicrobialtransmission.increasedmicrobial transmission,however,mightnotalwaysleadtohighermicrobialdiversity. 30