Generalized weighted composition operators on Bloch-type spaces

Similar documents
Weighted Composition Operator from Bers-Type Space to Bloch-Type Space on the Unit Ball

Research Article Approximate Riesz Algebra-Valued Derivations

Research Article Carleson Measure in Bergman-Orlicz Space of Polydisc

The random version of Dvoretzky s theorem in l n

Research Article Carleson Measure in Bergman-Orlicz Space of Polydisc

Correspondence should be addressed to Wing-Sum Cheung,

Research Article On the Strong Laws for Weighted Sums of ρ -Mixing Random Variables

Properties of Fuzzy Length on Fuzzy Set

Two Topics in Number Theory: Sum of Divisors of the Factorial and a Formula for Primes

Citation Journal of Inequalities and Applications, 2012, p. 2012: 90

Boundaries and the James theorem

Research Article Moment Inequality for ϕ-mixing Sequences and Its Applications

Definition 4.2. (a) A sequence {x n } in a Banach space X is a basis for X if. unique scalars a n (x) such that x = n. a n (x) x n. (4.

Fall 2013 MTH431/531 Real analysis Section Notes

Common Coupled Fixed Point of Mappings Satisfying Rational Inequalities in Ordered Complex Valued Generalized Metric Spaces

A NOTE ON SPECTRAL CONTINUITY. In Ho Jeon and In Hyoun Kim

PAijpam.eu ON TENSOR PRODUCT DECOMPOSITION

Complete Convergence for Asymptotically Almost Negatively Associated Random Variables

Review Article Complete Convergence for Negatively Dependent Sequences of Random Variables

A Characterization of Compact Operators by Orthogonality

Strong Convergence Theorems According. to a New Iterative Scheme with Errors for. Mapping Nonself I-Asymptotically. Quasi-Nonexpansive Types

Research Article A Note on Ergodicity of Systems with the Asymptotic Average Shadowing Property

Bounds for the Positive nth-root of Positive Integers

SOME SEQUENCE SPACES DEFINED BY ORLICZ FUNCTIONS

OFF-DIAGONAL MULTILINEAR INTERPOLATION BETWEEN ADJOINT OPERATORS

A generalization of Morley s congruence

Comparison Study of Series Approximation. and Convergence between Chebyshev. and Legendre Series

Entire Functions That Share One Value with One or Two of Their Derivatives

Math 341 Lecture #31 6.5: Power Series

Periodic solutions for a class of second-order Hamiltonian systems of prescribed energy

Concavity Solutions of Second-Order Differential Equations

Convergence of random variables. (telegram style notes) P.J.C. Spreij

MONOTONICITY OF SEQUENCES INVOLVING GEOMETRIC MEANS OF POSITIVE SEQUENCES WITH LOGARITHMICAL CONVEXITY

Korovkin type approximation theorems for weighted αβ-statistical convergence

NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE

MAXIMAL INEQUALITIES AND STRONG LAW OF LARGE NUMBERS FOR AANA SEQUENCES

A note on the p-adic gamma function and q-changhee polynomials

Asymptotic distribution of products of sums of independent random variables

HAJEK-RENYI-TYPE INEQUALITY FOR SOME NONMONOTONIC FUNCTIONS OF ASSOCIATED RANDOM VARIABLES

Local Approximation Properties for certain King type Operators

On Weak and Strong Convergence Theorems for a Finite Family of Nonself I-asymptotically Nonexpansive Mappings

The log-behavior of n p(n) and n p(n)/n

Harmonic Number Identities Via Euler s Transform

Bangi 43600, Selangor Darul Ehsan, Malaysia (Received 12 February 2010, accepted 21 April 2010)

VECTOR SEMINORMS, SPACES WITH VECTOR NORM, AND REGULAR OPERATORS

ON SOME INEQUALITIES IN NORMED LINEAR SPACES

M-Quasihyponormal Composition Operators. on Weighted Hardy Spaces

Research Article Nonexistence of Homoclinic Solutions for a Class of Discrete Hamiltonian Systems

Some Tauberian theorems for weighted means of bounded double sequences

SPECTRUM OF THE DIRECT SUM OF OPERATORS

Solutions to Tutorial 5 (Week 6)

ON THE FUZZY METRIC SPACES

REGULARIZATION OF CERTAIN DIVERGENT SERIES OF POLYNOMIALS

Lecture Notes for Analysis Class

ANSWERS TO MIDTERM EXAM # 2

On Generalized Fibonacci Numbers

Some Common Fixed Point Theorems in Cone Rectangular Metric Space under T Kannan and T Reich Contractive Conditions

HÖLDER SUMMABILITY METHOD OF FUZZY NUMBERS AND A TAUBERIAN THEOREM

On Orlicz N-frames. 1 Introduction. Renu Chugh 1,, Shashank Goel 2

IJITE Vol.2 Issue-11, (November 2014) ISSN: Impact Factor

A Hadamard-type lower bound for symmetric diagonally dominant positive matrices

Riesz-Fischer Sequences and Lower Frame Bounds

Self-normalized deviation inequalities with application to t-statistic

Convergence of Random SP Iterative Scheme

lim za n n = z lim a n n.

On Summability Factors for N, p n k

MAT1026 Calculus II Basic Convergence Tests for Series

Research Article Some E-J Generalized Hausdorff Matrices Not of Type M

An analog of the arithmetic triangle obtained by replacing the products by the least common multiples

Absolute Boundedness and Absolute Convergence in Sequence Spaces* Martin Buntinas and Naza Tanović Miller

Dirichlet s Theorem on Arithmetic Progressions

COMPLEX FACTORIZATIONS OF THE GENERALIZED FIBONACCI SEQUENCES {q n } Sang Pyo Jun

A note on the Frobenius conditional number with positive definite matrices

sin(n) + 2 cos(2n) n 3/2 3 sin(n) 2cos(2n) n 3/2 a n =

II. EXPANSION MAPPINGS WITH FIXED POINTS

PAPER : IIT-JAM 2010

Weak Laws of Large Numbers for Sequences or Arrays of Correlated Random Variables

Council for Innovative Research

Estimates of (1 + x) 1/x Involved in Carleman s Inequality and Keller s Limit

BETWEEN QUASICONVEX AND CONVEX SET-VALUED MAPPINGS. 1. Introduction. Throughout the paper we denote by X a linear space and by Y a topological linear

1. Introduction. g(x) = a 2 + a k cos kx (1.1) g(x) = lim. S n (x).

Topics. Homework Problems. MATH 301 Introduction to Analysis Chapter Four Sequences. 1. Definition of convergence of sequences.

Expected Norms of Zero-One Polynomials

n=1 a n is the sequence (s n ) n 1 n=1 a n converges to s. We write a n = s, n=1 n=1 a n

Weakly Connected Closed Geodetic Numbers of Graphs

CARLESON MEASURE, ATOMIC DECOMPOSITION AND FREE INTERPOLATION FROM BLOCH SPACE

Chapter 7 Isoperimetric problem

ON BLEIMANN, BUTZER AND HAHN TYPE GENERALIZATION OF BALÁZS OPERATORS

The value of Banach limits on a certain sequence of all rational numbers in the interval (0,1) Bao Qi Feng

Research Article A Unified Weight Formula for Calculating the Sample Variance from Weighted Successive Differences

TRIGONOMETRIC POLYNOMIALS WITH MANY REAL ZEROS AND A LITTLEWOOD-TYPE PROBLEM. Peter Borwein and Tamás Erdélyi. 1. Introduction

A REMARK ON A PROBLEM OF KLEE

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial.

UPPER ESTIMATE FOR GENERAL COMPLEX BASKAKOV SZÁSZ OPERATOR. 1. Introduction

A Note on the Kolmogorov-Feller Weak Law of Large Numbers

New Inequalities For Convex Sequences With Applications

Analytic Continuation

Seed and Sieve of Odd Composite Numbers with Applications in Factorization of Integers

APPROXIMATION BY BERNSTEIN-CHLODOWSKY POLYNOMIALS

Equivalent Banach Operator Ideal Norms 1

Transcription:

Zhu Joural of Iequalities ad Applicatios 2015) 2015:59 DOI 10.1186/s13660-015-0580-0 R E S E A R C H Ope Access Geeralized weighted compositio operators o Bloch-type spaces Xiaglig Zhu * * Correspodece: jyuzxl@163.com Faculty of Iformatio Techology, Macau Uiversity of Sciece ad Techology, Aveida Wai Log, Taipa, Macau, Chia Abstract I this paper, we give three differet characterizatios for the boudedess ad compactess of geeralized weighted compositio operators o Bloch-type spaces, especially we characterize them i terms of the sequece of Bloch-type orms of the geeralized weighted compositio operator applied to the fuctios I j z)=z j. MSC: 47B38; 30H30 Keywords: geeralized weighted compositio operators; compositio operator; differetiatio operator; Bloch-type space 1 Itroductio Let D be a ope uit dis i the complex plae C ad HD) bethespaceofaalytic fuctios o D. For0<α <, the Bloch-type space or α-bloch space) B α is the space that cosists of all aalytic fuctios f o D such that B α f )= 1 z 2 ) α f z) <. B α becomes a Baach space uder the orm f B α = f 0) + B α f ). Whe α =1,B 1 = B is the well-ow Bloch space. See [1, 2] for more iformatio o Bloch-type spaces. Throughout this paper, ϕ deotes a ocostat aalytic self-map of D. Thecompositio operator C ϕ iduced by ϕ is defied by C ϕ f = f ϕ for f HD). For a fixed u HD), defie a liear operator uc ϕ as follows: uc ϕ f = uf ϕ), f HD). The operator uc ϕ is called the weighted compositio operator. The weighted compositio operator is a geeralizatio of the compositio operator ad the multiplicatio operator defied by M u f = uf. A basic problem cocerig compositio operators o various Baach fuctio spaces is to relate the operator theoretic properties of C ϕ to the fuctio theoretic properties of the symbol ϕ, which attracted a lot of attetio recetly; the reader ca refer to [3]. The differetiatio operator D is defied by Df = f, f HD). For a oegative iteger,wedefie D 0 f ) z)=f z), D f ) z)=f ) z), 1, f HD). 2015 Zhu; licesee Spriger. This is a Ope Access article distributed uder the terms of the Creative Commos Attributio Licese http://creativecommos.org/liceses/by/4.0), which permits urestricted use, distributio, ad reproductio i ay medium, provided the origial wor is properly credited.

ZhuJoural of Iequalities ad Applicatios 2015) 2015:59 Page 2 of 9 Let ϕ be a aalytic self-map of D, u HD), ad let be a oegative iteger. Defie the liear operator D ϕ,u, called the geeralized weighted compositio operator, by see [4 6]) D ϕ,u f ) z)=uz) D f ) ϕz) ), f HD), z D. Whe =0aduz) =1,D ϕ,u is the compositio operator C ϕ.if =0,theD ϕ,u is the weighted compositio operator uc ϕ.if =1,uz) =ϕ z), the D ϕ,u = DC ϕ,whichwas studied i [7 10]. For uz)=1,d ϕ,u = C ϕd, which was studied i [7, 11 14]. For the study of the geeralized weighted compositio operator o various fuctio spaces, see, for example, [4 6, 15 19]. It is well ow that the compositio operator is bouded o the Bloch space by the Schwarz-Pic lemma. Compositio operators ad weighted compositio operators o Bloch-type spaces were studied, for example, i [20 28]. The product-type operators o or ito Bloch-type spaces have bee studied i may papers recetly, see [7 11, 13, 14, 18, 29 36] for example. I [27], Wula et al. obtaied a characterizatio for the compactess of the compositio operators actig o the Bloch space as follows. Theorem A Let ϕ be a aalytic self-map of D. The C ϕ : B B is compact if ad oly if lim ϕ j B =0. j I [14], Wu ad Wula obtaied two characterizatios for the compactess of the product of differetiatio ad compositio operators actig o the Bloch space as follows. Theorem B Let ϕ be a aalytic self-map of D, N. The the followig statemets are equivalet. a) C ϕ D : B B is compact. b) lim j C ϕ D I j B =0, where I j z)=z j. c) lim a 1 C ϕ D σ a z) B =0, where σ a z)=a z)/1 az) is the Möbius map o D. Motivated by Theorems A ad B, i this wor we show that D ϕ,u : Bα is bouded respectively, compact) if ad oly if the sequece j α 1 D ϕ,u Ij ) j= is bouded respectively, coverget to 0 as j ), where I j z)=z j. Moreover, we use two families of fuctios to characterize the boudedess ad compactess of the operator D ϕ,u. Throughout the paper, we deote by C a positive costat which may differ from oe occurrece to the ext. I additio, we say that A B if there exists a costat C such that A CB.ThesymbolA B meas that A B A. 2 Mai results ad proofs I this sectio, we give our mai results ad proofs. First we characterize the boudedess of the operator D ϕ,u : Bα. Theorem 1 Let be a positive iteger, 0<α, β <, u HD) ad ϕ be a aalytic selfmap of D. The the followig statemets are equivalet.

ZhuJoural of Iequalities ad Applicatios 2015) 2015:59 Page 3 of 9 a) The operator D ϕ,u : Bα is bouded. b) j j α 1 D ϕ,u Ij z) <, where I j z)=z j. c) u, 1 z 2 ) β uz) ϕ z) < ad D ϕ,u f a <, D ϕ,u h a <, where f a z)= 1 a 2 1 az) α ad h a z)= 1 a 2 ) 2, 1 az) α+1 z D. d) 1 z 2 ) β uz) ϕ z) 1 z 2 ) β u z) < ad <. 1 ϕz) 2 ) α+ 1 ϕz) 2 ) α+ 1 Proof a) b) This implicatio is obvious, sice for j N, the fuctio j α 1 I j is bouded i B α ad j α 1 I j B α 1. b) c) Assume that b) holds ad let Q = j j α 1 D ϕ,u Ij. For ay a D, itis easy to see that f a ad h a have bouded orms i B α.itisclearthat f a z)= 1 a 2) h a z)= 1 a 2) 2 Ɣj + α) j!ɣα) aj z j, Ɣj +1+α) j!ɣα +1) aj z j. By Stirlig s formula, we have Ɣj+α) j!ɣα) j α 1 as j. Usig liearity we get D ϕ,u f a C 1 a 2) a j j α 1 D ϕ,u Ij Q D ϕ,u h a B β C 1 a 2) 2 Therefore, by the arbitrariess of a D, ad j +1) a j j α 1 D ϕ,u I j Q. D ϕ,u f B a β <, D ϕ,u h B a β <. I additio, applyig the operator D ϕ,u to Ij with j =, +1,weobtai D ϕ,u I ) z)=u z)! ad D ϕ,u I +1) z)=u z) +1)!ϕz)+uz) +1)!ϕ z), while for j <, D ϕ,u Ij ) z) = 0. Thus, usig the boudedess of the fuctio ϕ, wehave u ad 1 z 2 ) β uz) ϕ z) <.

ZhuJoural of Iequalities ad Applicatios 2015) 2015:59 Page 4 of 9 c) d) Assume that c) holds. Let C 1 := D ϕ,u f B a β, C 2 := D ϕ,u h B a β. For w D,set g w z)= 1 w 2 1 wz) α α α + 1 w 2 ) 2, w D. 1 wz) α+1 It is easy to chec that g w B α, g w B α < for every w D.Moreover, D ϕ,u g B w β D ϕ,u f B w β + w D w D I additio, g ) ϕλ) It follows that C 1 + α α + C 2 <. α α + w D D ϕ,u h B w β ) ϕλ) =0, g +1) ) ϕλ) ϕλ) ϕλ) +1 = αα +1) α + 1) 1 ϕλ) 2 ). α+ C 1 + α α + C 2 > D ϕ,u g ϕλ) αα +1) α + 1) 1 λ 2 ) β uλ) ϕ λ) ϕλ) +1 1 ϕλ) 2 ) α+ 2.1) for ay λ D. For ay fixed r 0, 1), from 2.1)wehave 1 λ 2 ) β uλ) ϕ λ) 1 1 λ 2 ) β uλ) ϕ λ) ϕλ) +1 ϕλ) >r 1 ϕλ) 2 ) α+ ϕλ) >r r +1 1 ϕλ) 2 ) α+ C 1 + α α+ C 2 <. 2.2) r +1 αα +1) α + 1) From the assumptio that 1 z 2 ) β uz) ϕ z) <,weget 1 λ 2 ) β uλ) ϕ λ) ϕλ) r 1 λ 2 ) β uλ) ϕ λ) <. 2.3) ϕλ) r 1 ϕλ) 2 ) α+ 1 r 2 ) α+ Therefore, 2.2) ad2.3) yield the first iequality of d). Next, ote that C 1 D ϕ,u f ϕλ) B β αα +1) α + 1) 1 λ 2 ) β u λ) ϕλ) 1 ϕλ) 2 ) α+ 1 αα +1) α + ) 1 λ 2 ) β uλ) ϕ λ) ϕλ) +1 1 ϕλ) 2 ) α+

ZhuJoural of Iequalities ad Applicatios 2015) 2015:59 Page 5 of 9 for ay λ D.From2.1)weget 1 λ 2 ) β u λ) ϕλ) 1 ϕλ) 2 ) α+ 1 D ϕ,u f ϕλ) αα +1) α + 1) + α + )1 λ 2 ) β uλ) ϕ λ) ϕλ) +1 1 ϕλ) 2 ) α+ C 1 αα +1) α + 1) + α + )C 1 + αc 2 αα +1) α + 1) α + +1)C 1 + αc 2 αα +1) α + 1). By arbitrary λ D,weget 1 λ 2 ) β u λ) ϕλ) <. 2.4) λ D 1 ϕλ) 2 ) α+ 1 Combiig 2.4)withthefactthatu, similarly to the former proof, we get the secod iequality of d). d) a) For ay f B α,wehave 1 z 2 ) β D ϕ,u f ) z) = 1 z 2) β f ) ϕ)u ) z) 1 z 2) β uz) ϕ z) f +1) ϕz) ) + 1 z 2 ) β u z) f ) ϕz) ) C 1 z 2 ) β uz) ϕ z) 1 ϕz) 2 ) α+ f B α + C 1 z 2 ) β u z) 1 ϕz) 2 ) α+ 1 f B α, 2.5) where i the last iequality we used the fact that for f B α see [2]) Moreover 1 z 2 ) α f z) f 0) + + f ) 0) + 1 z 2 ) α+ f +1) z). D ϕ,u f ) 0) = f ) ϕ0) ) u0) u0) 1 ϕ0) 2 ) f α+ 1 B α. From d) we see that D ϕ,u f = D ϕ,u f ) 0) + 1 z 2 ) β D ϕ,u f ) z) <. Therefore the operator D ϕ,u : Bα is bouded. The proof is complete. ForthestudyofthecompactessofD ϕ,u : Bα, we eed the followig lemma, which ca be proved i a stadard way; see, for example, Propositio 3.11 i [3]. Lemma 2 Let be a positive iteger,0<α, β <, u HD) ad ϕ be a aalytic self-map of D. The D ϕ,u : Bα is compact if ad oly if D ϕ,u : Bα is bouded ad for ay

ZhuJoural of Iequalities ad Applicatios 2015) 2015:59 Page 6 of 9 bouded sequece f j ) j N i B α which coverges to zero uiformly o compact subsets of D, D ϕ,u f j 0 as j. Theorem 3 Let be a positive iteger, 0<α, β <, u HD) ad ϕ be a aalytic selfmap of D such that D ϕ,u : Bα is bouded. The the followig statemets are equivalet. a) D ϕ,u : Bα is compact. b) lim j j α 1 D ϕ,u Ij =0, where I j z)=z j. c) lim ϕa) 1 D ϕ,u f ϕa) =0ad lim ϕa) 1 D ϕ,u h ϕa) =0. d) 1 z 2 ) β uz) ϕ z) 1 z 2 ) β u z) lim =0 ad lim =0. ϕz) 1 1 ϕz) 2 ) +α ϕz) 1 1 ϕz) 2 ) +α 1 Proof a) b) Assume that D ϕ,u : Bα is compact. Sice the sequece {j α 1 I j } is bouded i B α ad coverges to 0 uiformly o compact subsets, by Lemma 2 it follows that j α 1 D ϕ,u Ij 0asj. b) c)supposethatb)holds.fixε >0adchooseN N such that j α 1 D ϕ,u Ij < ε for all j N. Letz D such that ϕz ) 1as. Arguig as i the proof of Theorem 1,wehave D ϕ,u f ϕz ) C 1 ϕz ) 2 ) ϕz ) j j α 1 D ϕ,u I j = C 1 ϕz ) 2 ) N 1 ϕz ) j j α 1 D ϕ,u I j + ϕz ) ) j j α 1 D ϕ,u I j CQ 1 ϕz ) N ) + Cε, j=n where Q = j j α 1 D ϕ,u Ij.Sice ϕz ) 1as,fromthelastiequalityad the arbitrariess of ε,wegetlim D ϕ,u f ϕz ) =0,i.e., lim ϕa) 1 D ϕ,u f ϕa) =0. Notice that N 1 j +1)r j = 1 rn Nr N 1 r), 0 r <1, 1 r) 2 arguigasitheproofoftheorem1,weget D ϕ,u h ϕz ) C 1 ϕz ) 2 ) 2 ϕz ) j j α D ϕ,u I j C 1 ϕz ) 2 N 1 ) 2 j +1) ϕz ) j j α 1 D ϕ,u Ij + C 1 ϕz ) 2 ) 2 j +1) ϕz ) j j α 1 D ϕ,u I j j=n C1 ϕz ) N N ϕz ) N 1 ϕz ) ) + Cε.

ZhuJoural of Iequalities ad Applicatios 2015) 2015:59 Page 7 of 9 Therefore, lim D ϕ,u h ϕz ) Cε. By the arbitrariess of ε, weobtaithedesired result. c) d) To prove d) we oly eed to show that if z ) N is a sequece i D such that ϕz ) 1as,the 1 z 2 ) β uz ) ϕ z ) 1 z 2 ) β u z ) lim =0, lim =0. 1 ϕz ) 2 ) α+ 1 ϕz ) 2 ) α+ 1 Let z ) N be such a sequece that ϕz ) 1as. Arguig as i the proof of Theorem 1,weobtai lim D ϕ,u g ϕz ) lim D ϕ,u f ϕz ) + α + α lim D ϕ,u h ϕz ) =0. Hece lim D ϕ,u g ϕz ) = 0. Similarly to the proof of Theorem 1,wehave!1 z 2 ) β uz ) ϕ z ) ϕz ) +1 D 1 ϕz ) 2 ) α+ ϕ,u g ϕz ) 0 as, which implies 1 z 2 ) β uz ) ϕ z ) 1 z 2 ) β uz ) ϕ z ) ϕz ) +1 lim = lim =0. 2.6) 1 ϕz ) 2 ) α+ 1 ϕz ) 2 ) α+ I additio, D ϕ,u f ϕz ) + + 1)!1 z 2 ) β uz ) ϕ z ) ϕz ) +1 1 ϕz ) 2 ) α+!1 z 2 ) β u z ) ϕz ) 1 ϕz ) 2 ) α+ 1. From 2.6)adtheassumptiothat D ϕ,u f ϕz ) 0as,wehave 1 z 2 ) β u z ) 1 z 2 ) β u z ) ϕz ) lim = lim =0, 1 ϕz ) 2 ) 1 ϕz ) 2 ) α+ 1 as desired. d) a) Assume that f ) N is a bouded sequece i B α covergig to 0 uiformly o compact subsets of D. By the assumptio, for ay ε >0,thereexistsδ 0, 1) such that 1 z 2 ) β ϕ z) uz) 1 ϕz) 2 ) α+ < ε ad 1 z 2 ) β u z) < ε 2.7) 1 ϕz) 2 ) α+ 1 whe δ < ϕz) <1.SupposethatD ϕ,u : Bα is bouded, by Theorem 1,wehave ad C 3 = 1 z 2 ) β u z) < 2.8) C 4 = 1 z 2 ) β uz) ϕ z) <. 2.9)

ZhuJoural of Iequalities ad Applicatios 2015) 2015:59 Page 8 of 9 Let K = {z D : ϕz) δ}.theby2.8)ad2.9)wehavethat 1 z 2 ) β D ϕ,u f ) z) i.e.,weget z K 1 z 2 ) β uz) ϕ z) f +1) ) ϕz) + 1 z 2 ) β u z) f ) ) ϕz) z K 1 z 2 ) β uz) ϕ z) + C \K C 4 z K f +1) D ϕ,u f = C 4 w δ f 1 ϕz) 2 ) α+ B α + C \K ) ϕz) + Cε f B α, ϕz) ) + C 3 z K f +1) f ) w) + C 3 w δ + Cε f B α + u0) f ) f ) w) 1 z 2 ) β u z) 1 ϕz) 2 ) α+ 1 f B α ϕ0) ). 2.10) Sice f coverges to 0 uiformly o compact subsets of D as, Cauchy s estimate gives that f ) 0as o compact subsets of D.Hece,lettig i 2.10)ad usig the fact that ε is a arbitrary positive umber, we obtai D ϕ,u f 0as. Applyig Lemma 2 the result follows. Competig iterests The author declares that they have o competig iterests. Acowledgemets The author was partially ported by the Macao Sciece ad Techology Developmet Fud No. 098/2013/A3), NSF of Guagdog Provice No. S2013010011978) ad NNSF of Chia No. 11471143). Received: 5 December 2014 Accepted: 28 Jauary 2015 Refereces 1. Zhu, K: Operator Theory i Fuctio Spaces. Deer, New Yor 1990) 2. Zhu, K: Bloch type spaces of aalytic fuctios. Rocy Mt. J. Math. 23, 1143-1177 1993) 3. Cowe, CC, MacCluer, BD: Compositio Operators o Spaces of Aalytic Fuctios. CRC Press, Boca Rato 1995) 4. Zhu, X: Products of differetiatio, compositio ad multiplicatio from Bergma type spaces to Bers type space. Itegral Trasforms Spec. Fuct. 18, 223-231 2007) 5. Zhu, X: Geeralized weighted compositio operators o weighted Bergma spaces. Numer. Fuct. Aal. Optim. 30, 881-893 2009) 6. Zhu, X: Geeralized weighted compositio operators from Bloch spaces ito Bers-type spaces. Filomat 26, 1163-1169 2012) 7. Hibschweiler, R, Portoy, N: Compositio followed by differetiatio betwee Bergma ad Hardy spaces. Rocy Mt. J. Math. 35, 843-855 2005) 8. Li, S, Stević, S: Compositio followed by differetiatio betwee Bloch type spaces. J. Comput. Aal. Appl. 9, 195-205 2007) 9. Li,S,Stević, S: Compositio followed by differetiatio betwee H ad α-bloch spaces. Houst. J. Math. 35, 327-340 2009) 10. Yag, W: Products of compositio differetiatio operators from Q K p, q) spaces to Bloch-type spaces. Abstr. Appl. Aal. 2009, Article ID 741920 2009) 11. Liag, Y, Zhou, Z: Essetial orm of the product of differetiatio ad compositio operators betwee Bloch-type space. Arch. Math. 100,347-360 2013) 12. Stević, S: Products of compositio ad differetiatio operators o the weighted Bergma space. Bull. Belg. Math. Soc. Simo Stevi 16, 623-635 2009) 13. Stević, S: Norm ad essetial orm of compositio followed by differetiatio from α-bloch spaces to H μ. Appl. Math. Comput. 207,225-229 2009) 14. Wu, Y, Wula, H: Products of differetiatio ad compositio operators o the Bloch space. Collect. Math. 63, 93-107 2012) 15. Li, H, Fu, X: A ew characterizatio of geeralized weighted compositio operators from the Bloch space ito the Zygmud space. J. Fuct. Spaces Appl. 2013, Article ID925901 2013)

ZhuJoural of Iequalities ad Applicatios 2015) 2015:59 Page 9 of 9 16. Stević, S: Weighted differetiatio compositio operators from mixed-orm spaces to weighted-type spaces. Appl. Math. Comput. 211,222-233 2009) 17. Stević, S: Weighted differetiatio compositio operators from mixed-orm spaces to the -th weighted-type space o the uit dis. Abstr. Appl. Aal. 2010, Article ID 246287 2010) 18. Stević, S: Weighted differetiatio compositio operators from H ad Bloch spaces to -th weighted-type spaces o the uit dis. Appl. Math. Comput. 216, 3634-3641 2010) 19. Yag, W, Zhu, X: Geeralized weighted compositio operators from area Nevalia spaces to Bloch-type spaces. Taiwa.J.Math.3, 869-883 2012) 20. Lou, Z: Compositio operators o Bloch type spaces. Aalysis 23, 81-95 2003) 21. Maccluer, B, Zhao, R: Essetial orm of weighted compositio operators betwee Bloch-type spaces. Rocy Mt. J. Math. 33, 1437-1458 2003) 22. Madiga, K, Matheso, A: Compact compositio operators o the Bloch space. Tras. Am. Math. Soc. 347, 2679-2687 1995) 23. Mahas, J, Zhao, R: New estimates of essetial orms of weighted compositio operators betwee Bloch type spaces. J. Math. Aal. Appl. 389, 32-47 2012) 24. Oho, S: Weighted compositio operators betwee H ad the Bloch space. Taiwa. J. Math. 5, 555-563 2001) 25. Oho, S, Stroethoff, K, Zhao, R: Weighted compositio operators betwee Bloch-type spaces. Rocy Mt. J. Math. 33, 191-215 2003) 26. Tjai, M: Compact compositio operators o some Möbius ivariat Baach space. Ph.D. dissertatio, Michiga State Uiversity 1996) 27. Wula, H, Zheg, D, Zhu, K: Compact compositio operators o BMOA ad the Bloch space. Proc. Am. Math. Soc. 137, 3861-3868 2009) 28. Zhao, R: Essetial orms of compositio operators betwee Bloch type spaces. Proc. Am. Math. Soc. 138, 2537-2546 2010) 29. Li, S, Stević, S: Weighted compositio operators from Bergma-type spaces ito Bloch spaces. Proc. Idia Acad. Sci. Math. Sci. 117, 371-385 2007) 30. Li,S,Stević, S: Weighted compositio operators from H to the Bloch space o the polydisc. Abstr. Appl. Aal. 2007, Article ID 48478 2007) 31. Li,S,Stević, S: Products of compositio ad itegral type operators from H to the Bloch space. Complex Var. Elliptic Equ. 535), 463-474 2008) 32. Li, S, Stević, S: Weighted compositio operators from Zygmud spaces ito Bloch spaces. Appl. Math. Comput. 2062), 825-831 2008) 33. Li, S, Stević, S: Products of itegral-type operators ad compositio operators betwee Bloch-type spaces. J. Math. Aal. Appl. 349, 596-610 2009) 34. Stević, S: O a ew itegral-type operator from the Bloch space to Bloch-type spaces o the uit ball. J. Math. Aal. Appl. 354, 426-434 2009) 35. Stević, S: Products of itegral-type operators ad compositio operators from the mixed orm space to Bloch-type spaces. Sib. Math. J. 504), 726-736 2009) 36. Stević, S: O a itegral operator betwee Bloch-type spaces o the uit ball. Bull. Sci. Math. 134, 329-339 2010)