Quantum optics and quantum information processing with superconducting circuits

Similar documents
Controlling the Interaction of Light and Matter...

Distributing Quantum Information with Microwave Resonators in Circuit QED

Cavity Quantum Electrodynamics with Superconducting Circuits

Superconducting Qubits Lecture 4

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Quantum Optics with Electrical Circuits: Circuit QED

Circuit Quantum Electrodynamics. Mark David Jenkins Martes cúantico, February 25th, 2014

Quantum computation and quantum optics with circuit QED

Cavity Quantum Electrodynamics (QED): Coupling a Harmonic Oscillator to a Qubit

Circuit quantum electrodynamics : beyond the linear dispersive regime

Quantum Optics with Electrical Circuits: Strong Coupling Cavity QED

Circuit QED with electrons on helium:

CIRCUIT QUANTUM ELECTRODYNAMICS WITH ELECTRONS ON HELIUM

Remote entanglement of transmon qubits

Circuit Quantum Electrodynamics

Entanglement Control of Superconducting Qubit Single Photon System

Microwave Photon Counter Based on Josephson Junctions

Superconducting Qubits

arxiv:cond-mat/ v1 [cond-mat.mes-hall] 27 Feb 2007

10.5 Circuit quantum electrodynamics

Dispersive Readout, Rabi- and Ramsey-Measurements for Superconducting Qubits

Dipole-coupling a single-electron double quantum dot to a microwave resonator

Dynamical Casimir effect in superconducting circuits

Driving Qubit Transitions in J-C Hamiltonian

Circuit QED: A promising advance towards quantum computing

Introduction to Circuit QED

10.5 Circuit quantum electrodynamics

arxiv: v2 [cond-mat.mes-hall] 19 Oct 2010

Coherent Coupling between 4300 Superconducting Flux Qubits and a Microwave Resonator

Synthesizing arbitrary photon states in a superconducting resonator

Microwave Photon Counter Based on Josephson Junctions

Multipartite Entanglement Generation Assisted by Inhomogeneous Coupling

arxiv: v3 [quant-ph] 14 Feb 2013

INTRODUCTION TO SUPERCONDUCTING QUBITS AND QUANTUM EXPERIENCE: A 5-QUBIT QUANTUM PROCESSOR IN THE CLOUD

Electrical quantum engineering with superconducting circuits

arxiv: v1 [cond-mat.supr-con] 5 May 2015

Microwaves for quantum simulation in superconducting circuits and semiconductor quantum dots

Supercondcting Qubits

Simple Scheme for Realizing the General Conditional Phase Shift Gate and a Simulation of Quantum Fourier Transform in Circuit QED

2015 AMO Summer School. Quantum Optics with Propagating Microwaves in Superconducting Circuits I. Io-Chun, Hoi

PROTECTING QUANTUM SUPERPOSITIONS IN JOSEPHSON CIRCUITS

Quantum computation and quantum information

Strong-coupling Circuit QED

Quantum Physics with Superconducting Qubits

Electrical Quantum Engineering with Superconducting Circuits

Low-loss superconducting resonant circuits using vacuum-gap-based microwave components

Condensed Matter Without Matter Quantum Simulation with Photons

Exploring parasitic Material Defects with superconducting Qubits

Superconducting Qubits Coupling Superconducting Qubits Via a Cavity Bus

Quantum Optics with Propagating Microwaves in Superconducting Circuits. Io-Chun Hoi 許耀銓

Lecture 6, March 30, 2017

Strongly Driven Semiconductor Double Quantum Dots. Jason Petta Physics Department, Princeton University

Quantum-information processing with circuit quantum electrodynamics

Quantum walks on circles in phase space via superconducting circuit quantum electrodynamics

Theory for investigating the dynamical Casimir effect in superconducting circuits

The Impact of the Pulse Phase Deviation on Probability of the Fock States Considering the Dissipation

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

arxiv: v1 [cond-mat.mes-hall] 16 Oct 2012

Implementing Quantum walks

Quantum electromechanics with dielectric oscillators

arxiv: v1 [cond-mat.supr-con] 14 Aug 2012

Andreas Wallraff (ETH Zurich)

arxiv: v3 [cond-mat.mes-hall] 25 Feb 2011

Quantum Nonlinearities in

Exploring Quantum Simulations with Superconducting Circuits

Photon shot noise dephasing in the strong-dispersive limit of circuit QED

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Interaction between surface acoustic waves and a transmon qubit

Quantum non-demolition measurements:

Lecture 10 Superconducting qubits: advanced designs, operation 1 Generic decoherence problem: Λ 0 : intended

Solid State Physics IV -Part II : Macroscopic Quantum Phenomena

arxiv: v1 [quant-ph] 31 May 2010

arxiv: v1 [quant-ph] 13 Dec 2017

John Stewart Bell Prize. Part 1: Michel Devoret, Yale University

Metastable states in an RF driven Josephson oscillator

arxiv: v1 [quant-ph] 22 Apr 2013

Thermal Excitation of Multi-Photon Dressed States in Circuit Quantum Electrodynamics

Amplification, entanglement and storage of microwave radiation using superconducting circuits

Non-linear driving and Entanglement of a quantum bit with a quantum readout

arxiv: v1 [cond-mat.supr-con] 29 Dec 2013

Single Microwave-Photon Detector based on Superconducting Quantum Circuits

Synthesising arbitrary quantum states in a superconducting resonator

Cooperative atom-light interaction in a blockaded Rydberg ensemble

Quantum optics and optomechanics

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

PART 2 : BALANCED HOMODYNE DETECTION

QIC 890/891, Module 4: Microwave Parametric Amplification in Superconducting Qubit Readout experiments

Dissipation in Transmon

Parity-Protected Josephson Qubits

Lecture 2 Version: 14/08/29. Frontiers of Condensed Matter San Sebastian, Aug , Dr. Leo DiCarlo dicarlolab.tudelft.

Superconducting Resonators and Their Applications in Quantum Engineering

Coherent superposition states as quantum rulers

4-3 New Regime of Circuit Quantum Electro Dynamics

Engineering the quantum probing atoms with light & light with atoms in a transmon circuit QED system

Exploring the quantum dynamics of atoms and photons in cavities. Serge Haroche, ENS and Collège de France, Paris

Synthesizing Arbitrary Photon States in a Superconducting Resonator John Martinis UC Santa Barbara

SUPPLEMENTARY INFORMATION

State tomography of capacitively shunted phase qubits with high fidelity. Abstract

Quantum computation with superconducting qubits

Josephson qubits. P. Bertet. SPEC, CEA Saclay (France), Quantronics group

Transcription:

Quantum optics and quantum information processing with superconducting circuits Alexandre Blais Université de Sherbrooke, Canada Sherbrooke s circuit QED theory group Félix Beaudoin, Adam B. Bolduc, Maxime Boissonneault, Jérôme Bourassa, Samuel Boutin, Andy Ferris, Kevin Lalumière, Clemens Mueller, Matt Woolley Former members: Marcus da Silva, Gabrielle Denhez

Microwave-photon antibunching without clicks Alexandre Blais Université de Sherbrooke, Canada Sherbrooke s circuit QED theory group Félix Beaudoin, Adam B. Bolduc, Maxime Boissonneault, Jérôme Bourassa, Samuel Boutin, Andy Ferris, Kevin Lalumière, Clemens Mueller, Matt Woolley Former members: Marcus da Silva, Gabrielle Denhez Quantum Device Lab, ETH Zurich Deniz Bozyigit, C. Lang, L. Steffen, J. M. Fink, M. Baur, R. Bianchetti, P. J. Leek, S. Filipp, Andreas Wallraff

Energy [a.u.] Nature s atoms 1 Good «two-level atom» approximation 2 E1 = E1 E = ~ 1 Position [a.u.] Control internal state by shining laser tuned at the transition frequency H= d E(t) with Hyperfine levels of 9Be+ have long decay and coherence times T1 a few years T2 & 1 seconds E(t) = E cos 1 t Reasonably short π-pulse time T 5 µs Low error per gates: ~.48% T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O Brien, Nature 464, 45 (21)

Q 3 Energy [a.u.] V (t) = V cos 1 t Artificial atoms: a toolkit 2 1 1 p = 1/ LC Standard toolkit Flux [a.u.] Capacitor Simple initialization to ground state Inductor 1 Resistor Wire p = 1/ LC 1 GHz.5 K Not a good «two-level» atom... 3 K 1 mk

Artificial atoms: potential shaping Energy [a.u.] 1 t Q Standard toolkit I= Capacitor Inductor Resistor Wire 2 1 1 /L p = 1/ LC Flux [a.u.] Josephson junctions V (t) = V cos 3 I = I sin(2 / I LJ ( ) = = ) 1 2 I cos(2 1 / )

V (t) = V cos 1 t Energy [a.u.] Artificial atoms: potential shaping 1 2 3 Capacitor Inductor Resistor Wire Josephson junctions Standard toolkit Flux [a.u.] I = I sin(2 / I LJ ( ) = = ) 1 2 I cos(2 1 / )

Artificial atoms: fast and coherent V (t) = V cos 1t Energy [a.u.] 1 2 3 Very short π-pulse time T 4 2 ns Big improvements in relaxation and dephasing times Error per gates of.25%, similar to trapped ion results T2 [µs] 1, 1, 1,,1,1 Flux [a.u.], 1999 2 22 26 27 211 Year 1, 1, 1,,1, T1 [µs] Short pulse: J. M Chow et al, Phys. Rev. A 82, 435(R) (21) Long coherence: H. Paik et al, arxiv:115.4652v2 (211)?

Energy [a.u.] From atomic physics to quantum optics 1 Good «two-level atom» approximation 2 E1 = E1 E = ~ 1 Position [a.u.] Control internal state by shining laser at the transition frequency d E(t) { H= with g Can the field of a single photon, or even vacuum fluctuations, have a large effect? E(t) = E cos 1 t Cavity QED 1) Work with large atoms (d) 2) Confine the field (E) Exploring the Quantum: Atoms, Cavities, and Photons, S. Haroche and J.-M. Raimond (26)

From cavity to circuit QED Artificial atoms are large ~ 3 µm V(t)

From cavity to circuit QED E-field can be tightly confined E/ p 1/ 3 3 1 1 4 Large zero-point fluctuations of the field: E.2 V/m Blais, Huang, Wallraff, Girvin & Schoelkopf, Phys. Rev. A 69, 6232 (24)

From cavity to circuit QED Atom : Transmon qubit of transition frequency ω a and long coherence time Cavity : Superconducting coplanar transmission-line resonator of fundamental mode frequency ω r g circuit /2 [ 1] GHz g cavity /2 5 khz Proposal: Blais, Huang, Wallraff, Girvin & Schoelkopf, Phys. Rev. A 69, 6232 (24) First realization: Wallraff, Schuster, Blais, Frunzio, Huang, Majer, Kumar, Girvin & Schoelkopf. Nature 431, 162 (24) Ultra-strong coupling: Bourassa, Gambetta, Abdumalikov, Astafiev, Nakamura & Blais. Phys. Rev. A 8, 3219 (29)

Quantum optics with circuit QED Signature of quantum nature of light How to characterize this single microwave-photon source? 1 2 x Δt 1 2Δt 1 3Δt 1 : : : : Counts t n1 n2 x Delay G(2) ( ) = ha (t + )a (t)a(t + )a(t)i D. F. Walls and G. J. Milburn. Quantum Optics (28)

On-demand single microwave-photon source + 1.4 b 1.2 First experimental steps towards single microwave-photon detectors 5 µm <σz> <a a> On-demand single microwave photon source 1 2 4 6 8 1 Rabi angle (rad) A. Houck et al. Nature 449, 328 (27) Y.-F. Chen et al. arxiv:111.4329 D. Bozyigit,..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics 7, 154 (211)

On-demand single microwave-photon source + 1.4 b 1.2 First experimental steps towards single microwave-photon detectors 5 µm <σz> <a a> On-demand single microwave photon source g 1 2 4 6 8 1 Rabi angle (rad) A. Houck et al. Nature 449, 328 (27) Y.-F. Chen et al. arxiv:111.4329 D. Bozyigit,..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics 7, 154 (211)

Quantum mechanics of microwave measurements â ˆb g b ˆbamp apple b Output field: ˆb(t) = p bâ(t) ˆbin (t)? Amplification: b amp (t) =g b b(t) ) [b amp (t),b amp(t)] = g 2 b C. W. Gardiner and M. J. Collett, Phys. Rev. A 31, 3761 (1985); C. M. Caves, Phys. Rev. D 26, 1817 (1982) B. Yurke and J. S. Denker, Phys. Rev. A 29, 1419 (1984); A. Clerk et al., Rev. Mod. Phys. 82, 1155 (21)

Quantum mechanics of microwave measurements I â apple b ˆb g b Q Output field: Amplification: ˆb(t) = p bâ(t) b amp (t) =g b b(t)+ with ˆbin (t) q g 2 b 1d b (t) hd b (t)d b(t )i = N T (t t ) Added noise C. W. Gardiner and M. J. Collett, Phys. Rev. A 31, 3761 (1985); C. M. Caves, Phys. Rev. D 26, 1817 (1982) B. Yurke and J. S. Denker, Phys. Rev. A 29, 1419 (1984); A. Clerk et al., Rev. Mod. Phys. 82, 1155 (21)

Quantum mechanics of microwave measurements Ib Xb / (b + b) Pb / i(b ^ b a Xb gb b Output field: b (t) = p b a (t) with ^ Pb i Qb b in (t) Amplification: bamp (t) = gb b(t) + hdb (t)db (t )i b) q gb2 = NT (t 1d b (t) Added noise t ) Beam-splitter: added vacuum noise and commuting outputs C. W. Gardiner and M. J. Collett, Phys. Rev. A 31, 3761 (1985); C. M. Caves, Phys. Rev. D 26, 1817 (1982) B. Yurke and J. S. Denker, Phys. Rev. A 29, 1419 (1984); A. Clerk et al., Rev. Mod. Phys. 82, 1155 (21)

Complex envelope â apple b ˆb g b I b ^ X b i ^ P b Q b X b / (b + b) P b / i(b b) Complex envelope: Ŝ b (t) = ˆX b (t)+i ˆP b (t) = g bˆb(t)+ ˆNb (t) = g b p bâ(t)+ ˆN b(t) Digitalized using FPGA electronics with a 1 ns time resolution 1/apple

Beam-splitter: Noise rejection X b / (b + b) P b / i(b b) â apple b ˆb g b S b (t) Complex envelope: Ŝ b (t) = ˆX b (t)+i ˆP b (t) = g bˆb(t)+ ˆNb (t) = g b p bâ(t)+ ˆN b(t) Digitalized using FPGA electronics with a 1 ns time resolution 1/apple

Beam-splitter: Noise rejection ge e b a b fˆ gf i Complex envelope: S b (t) = X b (t) + ip b (t) Se(t) Sf(t) Rejection of uncorrelated noise = gb b (t) + N b (t) p = gb b a (t) + N b (t) Digitalized using FPGA electronics with a 1 ns time resolution 1/

Same-time averages ge e b a b fˆ gf i Se(t) Sf(t) Same-time averages: Quadrature hs e (t)i ha (t)i Cross-power hs e (t)s f (t)i ha (t)a (t)i M. P. da Silva, D. Bozyigit, A. Wallraff, A. Blais. Phys. Rev. A 82, 4384 (21) D. Bozyigit,..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics 7, 154 (211)

Protocol e Repeat ~ 16-9 times 1. Cool to ground state 1i = gi i a 2i 3i Se(t) gf Sf(t) = ( gi + ei) i 3. Transfer state to resonator f i 2. Prepare arbitrary qubit state b ge = gi ( i + 1i) r = cos( r /2) = sin( r /2)ei 4. Measure quadratures, extract Se,f(t) and calculate desired quantity 5. Average results M. P. da Silva, D. Bozyigit, A. Wallraff, A. Blais. Phys. Rev. A 82, 4384 (21) D. Bozyigit,..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics 7, 154 (211)

Same-time averages Re a t 2P.5.5 Rabi angle Qr 3P 2 P 1 P Amplitude arb. 2 1 i = ( i + 1i) hs e (t)i / ha (t)i = e.1.2.3 t Ms.4.5 t/2 e / sin( r )e.5.4.3.2.1.. Amplitude arb. 1 a b f t/2 /2 ge Se(t) gf Sf(t) i.4.2..2.4 P2 P Rabi angle 3P 2 Qr 2P See also: A. A. Houck et al. Nature 449, 328 (27) M. P. da Silva, D. Bozyigit, A. Wallraff, A. Blais. Phys. Rev. A 82, 4384 (21) D. Bozyigit,..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics 7, 154 (211)

Same-time averages a t a t Rabi angle Qr 2P 3P 4.51 2 3.45 P 1 S e (t)s f (t) 1 P i = ( i + 1i) 1 2 Power arb. 4.4 4.2 4. 3.8 3.6 Power arb. = 2 e t.1.2.3 t Ms.4 + P (Nef ) Can be (mostly) subtracted away with measurements in the ground state e. 4.4 4.2 4. 3.8 3.6 3.4 a (t)a (t) + P (Nef ).5 a b f ge Se(t) gf Sf(t) i P2 P Rabi angle 3P 2 Qr 2P See also: A. A. Houck et al. Nature 449, 328 (27) M. P. da Silva, D. Bozyigit, A. Wallraff, A. Blais. Phys. Rev. A 82, 4384 (21) D. Bozyigit,..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics 7, 154 (211)

Two-time averages ge e fˆ b a b i gf Se(t) Sf(t) Two-time correlation functions: hs e (t)s f (t + )i = p ge gf (1) G (t, t + ) + N ef ( ) 2 G(1) ( ) = ha (t)a(t + )i ge gf (2) (2) + )S f (t + )S f (t)i = G (t, t + ) + Gnoise (t, t + ) 4 p h i ge gf + N ef ( )G(1) (t +, t) ()G(1) (t +, t + ) + ()G(1) (t, t) + ( )G(1) (t, t + ) 2 hs e (t)s e (t M. P. da Silva, D. Bozyigit, A. Wallraff, A. Blais. Phys. Rev. A 82, 4384 (21) D. Bozyigit,..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics 7, 154 (211) See also: Menzel et al., Phys. Rev. Lett. 15, 141 (21); Mariantoni et al., Phys. Rev. Lett. 15, 13361 (21)

Two-time correlation functions: G (2) ( ) Second order cross-correlation: hŝ e(t)ŝ e(t + )Ŝf (t + )Ŝf (t)i = g eg f 4 G(2) (t, t + )+G (2) noise (t, t + ) p ge g f h i + N ef ( )G (1) (t +,t) ()G (1) (t +,t+ )+ ()G (1) (t, t)+ ( )G (1) (t, t + ) 2 G (2) ( )=ha (t + )a (t)a(t + )a(t)i Pulsed single-microwave photon source - Pulse delay: t p = 512 ns 1/, 1/T 1 - Expected results: G 2 ( = nt p ) / sin 4 ( r /2) G 2 () = M. P. da Silva, D. Bozyigit, A. Wallraff, A. Blais. Phys. Rev. A 82, 4384 (21) D. Bozyigit,..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics 7, 154 (211)

Two-time correlation functions: G (2) ( ) 1. G 2 Τ norm..5. 1..5. 1. 1 Αr.9 G (2) () = G (2) (nt p ) / sin 4 ( r /2) 1..8.6.4.2..5 Π 2 Π. Rabi angle Θ r 2 1 1 2 3 4 Τ Μs M. P. da Silva, D. Bozyigit, A. Wallraff, A. Blais. Phys. Rev. A 82, 4384 (21) D. Bozyigit,..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics 7, 154 (211)

Two-time correlation functions: G(2)( )!" 1..5 G(2) () = G#2$ #Τ$ %norm.&.!1" 1. G(2) (ntp ) / sin4 ( r /2) 1..8.6.4.2..5.!Αr ".9" 1. Wigner function reconstruction of itinerant.5 microwave photon Π!2 Rabi angle.!2!1 1 Τ!Μs" 2 3 Π Θr 4 C. Eichler et al, Phys. Rev. Lett. 16, 2253 (211) M. P. da Silva, D. Bozyigit, A. Wallraff, A. Blais. Phys. Rev. A 82, 4384 (21) D. Bozyigit,..., M. P. da Silva, A. Blais and A. Wallraff. Nature Physics 7, 154 (211)

Summary Quantum information processing Antibunching: Quantum nature of microwave light demonstrated Correlations characterize output field Quantum mechanics on large length scales On-demand single photon source Superconducting high-q resonator Transmon qubits with long coherence times