we define ={U V Ue3, C, 4 ) i - ( x y ) that the such top Ux Y ' ( v ) = Xx V UEJ } U { Th, top spaces Ong Xi Is the coarsest projection, IJTU

Similar documents
Taylor Polynomials. The Tangent Line. (a, f (a)) and has the same slope as the curve y = f (x) at that point. It is the best

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

A L A BA M A L A W R E V IE W

Review of the Riemann Integral

SOLUTION OF SYSTEM OF LINEAR EQUATIONS. Lecture 4: (a) Jacobi's method. method (general). (b) Gauss Seidel method.

~,. :'lr. H ~ j. l' ", ...,~l. 0 '" ~ bl '!; 1'1. :<! f'~.., I,," r: t,... r':l G. t r,. 1'1 [<, ."" f'" 1n. t.1 ~- n I'>' 1:1 , I. <1 ~'..

Dear Friends. St. John the Baptist Greek Orthodox Church Sterling Heights, Michigan. Volume 25 Issue 6 June, July & August 2018

J={ Infinite. if txty EX. yet U. properties X={ Example. infinite. Def. t ±Y X. top. Example : X = Rmk : X is To but not T, yet. FZCX finite set.

FOURIER SERIES PART I: DEFINITIONS AND EXAMPLES. To a 2π-periodic function f(x) we will associate a trigonometric series. a n cos(nx) + b n sin(nx),

10.5 Power Series. In this section, we are going to start talking about power series. A power series is a series of the form

::::l<r/ L- 1-1>(=-ft\ii--r(~1J~:::: Fo. l. AG -=(0,.2,L}> M - &-c ==- < ) I) ~..-.::.1 ( \ I 0. /:rf!:,-t- f1c =- <I _,, -2...

Chapter 5. The Riemann Integral. 5.1 The Riemann integral Partitions and lower and upper integrals. Note: 1.5 lectures

Math 61CM - Solutions to homework 9

Prior distributions. July 29, 2002

I-1. rei. o & A ;l{ o v(l) o t. e 6rf, \o. afl. 6rt {'il l'i. S o S S. l"l. \o a S lrh S \ S s l'l {a ra \o r' tn $ ra S \ S SG{ $ao. \ S l"l. \ (?

Content: Essential Calculus, Early Transcendentals, James Stewart, 2007 Chapter 1: Functions and Limits., in a set B.

Problem Set 4: Solutions Math 201A: Fall 2016

The Exponential Function

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

Qtr. Bryysofx. Bsyly. &B b ,!DD)< If,( r=mff!rs ; g igk yq. p± : }y s. Any compact. disjoint. Det. space. of s. Bsgcy ;) Bry!Yj ),

fur \ \,,^N/ D7,,)d.s) 7. The champion and Runner up of the previous year shall be allowed to play directly in final Zone.

Why study large deviations? The problem of estimating buer overow frequency The performance of many systems is limited by events which have a small pr

We enclose herewith a copy of your notice of October 20, 1990 for your reference purposes.

b a 2 ((g(x))2 (f(x)) 2 dx

Chapter 2 Infinite Series Page 1 of 9

STEEL PIPE NIPPLE BLACK AND GALVANIZED

Inner Product Spaces (Chapter 5)

9.9 L1N1F_JL 19bo. G)&) art9lej11 b&bo 51JY1511JEJ11141N0fM1NW15tIr1

Citation for published version (APA): Harinck, S. (2001). Conflict issues matter : how conflict issues influence negotiation

Approximate Integration

The Weierstrass Approximation Theorem

T h e C S E T I P r o j e c t

SOME SHARP OSTROWSKI-GRÜSS TYPE INEQUALITIES

Notes 17 Sturm-Liouville Theory

Theoretical foundations of Gaussian quadrature

Časopis pro pěstování matematiky

Mv3" L7-- Art L 31. am rt. ao - M rr. a cn. art O' N. t00. to o( C7 c O. Ort. n ' C ( a ( W 0. z D0) Ln rni 90 O H N rt 0. to0) O mx rt N. W n.

necessita d'interrogare il cielo

We will begin by supplying the proof to (a).

POWER SERIES R. E. SHOWALTER

Riemann Integral and Bounded function. Ng Tze Beng

Fast Fourier Transform 1) Legendre s Interpolation 2) Vandermonde Matrix 3) Roots of Unity 4) Polynomial Evaluation

Advanced Calculus Test File Spring Test 1

MATRIX ALGEBRA, Systems Linear Equations

Vectors. Vectors in Plane ( 2

The Algebra (al-jabr) of Matrices

The Regulated and Riemann Integrals

fnm 'et Annual Meeting

MATH 104 FINAL SOLUTIONS. 1. (2 points each) Mark each of the following as True or False. No justification is required. y n = x 1 + x x n n

A Hallelujah for My Father

MA261-A Calculus III 2006 Fall Homework 7 Solutions Due 10/20/2006 8:00AM

SPACES DOMINATED BY METRIC SUBSETS

Riemann is the Mann! (But Lebesgue may besgue to differ.)

Solutions to RSPL/1. log 3. When x = 1, t = 0 and when x = 3, t = log 3 = sin(log 3) 4. Given planes are 2x + y + 2z 8 = 0, i.e.

20... Figure 9.6 Thermal efficiency of the cold air standard Diesel cycle, k = 1.4.

Definition. special name. 72 spans 5. Last time we proved that if Ju's is. t.vtts.tt turn. This subspace is se important that we give it

Limit of a function:

Math 104: Final exam solutions

LNT. R Mod. Rtdd. Stlod. next. the. two. Rtlod. fenctov of the MQR LNTH. Lectured MORP. Mar, Torre 1. exact. for. any. natural. point. claim.

TOPOLOGY HW 2. x x ± y

P a g e 5 1 of R e p o r t P B 4 / 0 9

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^

Affidavit and Revenue Certification Chimp Haven, Inc. Caddo Parish Keithville, LA

Lecture 3. Limits of Functions and Continuity

Math Solutions to homework 1

DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS

Canonical Form and Separability of PPT States on Multiple Quantum Spaces

1.3 Continuous Functions and Riemann Sums

o C *$ go ! b», S AT? g (i * ^ fc fa fa U - S 8 += C fl o.2h 2 fl 'fl O ' 0> fl l-h cvo *, &! 5 a o3 a; O g 02 QJ 01 fls g! r«'-fl O fl s- ccco

Basic Maths. Fiorella Sgallari University of Bologna, Italy Faculty of Engineering Department of Mathematics - CIRAM

Frequency-domain Characteristics of Discrete-time LTI Systems

5 Probability densities

Equations, expressions and formulae

Chapter 9. Arc Length and Surface Area

Hoeffding, Azuma, McDiarmid

DIFFERENTIAL MANIFOLDS HW Exercise Employing the summation convention, we have: [u, v] i = ui x j vj vi. x j u j

really ultimately take the view that this geometric Liveartrausfomatiousthesaelofliuearalgebrwe doing function that of what A is will

Grain Reserves, Volatility and the WTO

440-2 Geometry/Topology: Differentiable Manifolds Northwestern University Solutions of Practice Problems for Final Exam

2. Infinite Series 3. Power Series 4. Taylor Series 5. Review Questions and Exercises 6. Sequences and Series with Maple

Accumulated provision for depreciation and amortization. cs fl

RESEARCH STUDY ON ADOPTION OF SOCIAL MEDIA MARKETING IN THE ENTERPRISE (MALAYSIA CONTEXT) KEE YONG HONG LEOW XIN YI TANG XIN YI WONG SIONG MUNG

0 otherwise. sin( nx)sin( kx) 0 otherwise. cos( nx) sin( kx) dx 0 for all integers n, k.

Visit to meet more individuals who benefit from your time

.Sua. 8f fc"g. II f 8. *1 w. a -a M +» * <N H Q. o * H CO. * o M < a «* n 55 ti 55 «55 «55 Pi. u < < M C C * Ztf fc tf fctf tf tf ISO.

Tranformations. Some slides adapted from Octavia Camps

Discrete Mathematics and Probability Theory Spring 2016 Rao and Walrand Lecture 17

5.2 Exponent Properties Involving Quotients

1. (25 points) Use the limit definition of the definite integral and the sum formulas to compute. [1 x + x2

R e p u b lic o f th e P h ilip p in e s. R e g io n V II, C e n tra l V isa y a s. C ity o f T a g b ila ran

Chapter 14. Matrix Representations of Linear Transformations

Eigenfunction Expansion. For a given function on the internal a x b the eigenfunction expansion of f(x):

Week 13 Notes: 1) Riemann Sum. Aim: Compute Area Under a Graph. Suppose we want to find out the area of a graph, like the one on the right:

THIS PAGE DECLASSIFIED IAW E

Convergence rates of approximate sums of Riemann integrals

Best Approximation. Chapter The General Case

Review of Sections

Probability for mathematicians INDEPENDENCE TAU

Math 6455 Oct 10, Differential Geometry I Fall 2006, Georgia Tech

Transcription:

such T Etr ics I Topology * Product ology Recll tht for spces Y we defie product ology Y Ty o B {UV Ue3 ve Ty 2 y y C 4 i ( y Ty Y y Ty corsest tht projectis Tl Tly re ctiuous Note Ue J ( U U Y VE Jy Thi ( v V 5 { Ttjllu UEJ U { Th ( v VET is bsis Now how bout product YZ? Ty Suppose ; re spces wh s J respectively Wht product ology defie Csider i th Og product projecti It such tht Tht mes tht t Uje Jj IJTU IT j ( li corsest ology projecti d such elemets geerted product tht S µ { Ttw ; UJET ; j lejs is ctiuous for y j j It Ujj Jii bsis product

R( i lr ll Rmk If V ; ti U U Ti ( Ui I product ii E lrc lrt typicl set ( b C c d I e f HEIL! this is bo such boes become bsis to geerte product which sme s obtied by blls I geerl 2 lr IRC 23 IRL I ology Two suppose z s is Ifie fmily ologicl 7m we c defie II { ( ili ie ti Wht is product? Eve more geerlly let be empty ologicl spce for y iet T is Ide set TYTI { ( li ie tie T Wht is product Tel? Ide tjel IT i like j j product ITI corsest ology such tht j th projecti ctiuous tj ET Rmk this mes t Uje F d ll such elemets geerte i e S ( Uj ITI ietllj product { TJYU ; Uje Jj bsis Ti iet Uj Tl

Let i let El Rmk If T is Ifie set Vie Ji tie ttv ; tiiwi NOT I product ology ctully sets IT re forms IT Ui IT ie TI where C T y fie set d U ; tie be spce tiet i C ti IT T TIT Pro let Ihm il e IT T iet Ee IF lie t i e ielti tie T We bhd U U t bhd U ± U is form U TV where C T is fie sice ie T ti Uii to tie Tke YIEUII I ( z Yie i ie H suppose ± ( so UNIT ; t $ iletl# we pre IE prove tht O Yile UII ETTI IT ; IEH tht ±lil Iti lijej t bhd U bhd i y Ti ( U ti if i i so ± I;Yu ; U ; I c TH ti Vj J to je T tj

{ { 2{ Thm if f ; ; ctiuous tie T f( file IT ctiuous ( give iet lfii i Product im?k Pro elemet I form bsis TII ( Uj for some JET Uj E Tj IT f ( Uj UjT ( Ij ( Ujl HJ ( Ttj ( Vj f IT fj i tj fj ( U ; C is j sice fj ctiuous tj f is ctiuous Eh Emple i 23 { 2 B{ { i 4 S{ 3{4443 sets re? { i 2 2 2 { 2 { 2 {242 {242 { 2{442 W I Z{ 23 CZ fie il typicl set is IT { 2 TI IE iczl Rmk 0420 E lrc Prop let ie T be fmily spce product tyi i Yi C where spres Teti Y i C sme s Y C ; csidered s spce

( bsis ie bsis J y * metric ology If ( d metric spce B{ Bl e E > o is which geerte J This metric is spce wh is clled metrizble if eists metric d such tht 3 is sme s from d I this cse is Clled metric spce wh metric ( d ology E lr B{ ( b c b lr metric spce wh d( y Thm If Y is metric spce wh metric dy f Y homeomorphism is metrizble ( this mes tht metrizble ologicl property Pro d Y ( e i z d( dy ( fc flz Esy to check tht d is metric which iduces sme Thm d metric spce t IR I ( y mi { dc y El d lso metric which Iduce sme s d Pro Ic y zo o y I ( 4 I ( y d ( y s d ( z t ( z y t y ZE ( if I ( z 2 or d ( z g 2 true ; If I ( z < I d ( z y c d ( y s d ( g d( Y Z d ( y e t ( g d ( y z l 2 Whey y iduce sme ology? B{ Bdc e oyy for ( d

D D Ei bl Yill ( IR lrdp dp ( Eli i i pe d ( m{ li Yil ieie d IR ologies lr dp ph ll pb re sme IR dz Euclide metric TIR Rw hm IR be IR defie I ( b mi { I For ± IE defie D( ± g This bouded metric sup { dkili izi D metric tht iduces product Pro is metric ( 20 o D ( 7 trigle Iequly I t s DC z Dlz dyig izl izl dig dye DC I e D ( 2 D( I I 2 3 product Jz is metric ( i # IR j H U E Tz t±( ; e U let IE By ( E CU choose N lrge eough such tht µt < E clim E V IT li e IF Pro Ie V Dc < E e Idiiyi < e { ye Bgcz!R C B < E iz ee IEN El C E t VET csider bsis elemet U TIUI for ology where Ui CIR for i i N Zt product d Ui lr for tiztl e U 7 o< E < leis N such tht ie ( ii Ei C Ui ie E mi { Eili IEIEN

I Ei Clim Bp ( c C U Pro t I ( iilil ye Bp i e tdus < E ti lei EN ( i Yi < IE < Ei < I Hi il < Ei Y ; e ( i t Ei C Ui lei < N is N iinil y e ITUI ITIR Or defie metric by f ( ± sup { dciiyi izi metric f clled uiform metric LRW 2 bo is geerted by bcis * Ui where Ui CIR is ti Thm uiform is fier th product ology