Global particle-in-cell simulations of Alfvénic modes

Similar documents
Global particle-in-cell simulations of Alfvénic modes

MHD-particle simulations and collective alpha-particle transport: analysis of ITER scenarios and perspectives for integrated modelling

Effects of Alpha Particle Transport Driven by Alfvénic Instabilities on Proposed Burning Plasma Scenarios on ITER

Modelling of Alfvén waves in JET plasmas with the CASTOR-K code*

Scalable Poisson solver for gyrokinetic simulations

Simulation Study of Interaction between Energetic Ions and Alfvén Eigenmodes in LHD

L Aquila, Maggio 2002

Global gyrokinetic modeling of geodesic acoustic modes and shear Alfvén instabilities in ASDEX Upgrade.

Impact of Localized ECRH on NBI and ICRH Driven Alfven Eigenmodes in the ASDEX Upgrade Tokamak

Modeling of seed magnetic island formation

Benchmark of gyrokinetic, kinetic MHD and gyrofluid codes for the linear calculation of fast particle driven TAE dynamics

Alpha Particle Transport Induced by Alfvénic Instabilities in Proposed Burning Plasma Scenarios

Recent Developments in Theory for W7-X

Energetic Particle Physics in Tokamak Burning Plasmas

Gyrokinetic Transport Driven by Energetic Particle Modes

Experimental Study of the Stability of Alfvén Eigenmodes on JET

Particle-in-cell simulations of electron transport from plasma turbulence: recent progress in gyrokinetic particle simulations of turbulent plasmas

Active and Fast Particle Driven Alfvén Eigenmodes in Alcator C-Mod

Three Dimensional Effects in Tokamaks How Tokamaks Can Benefit From Stellarator Research

The Influence of the Load Condition upon the Radial Distribution of Electromagnetic Vibration and Noise in a Three-Phase Squirrel-Cage Induction Motor

Entropy evolution and dissipation in collisionless particle-in-cell gyrokinetic simulations

Nonlinear Energetic Particle Transport in the Presence of Multiple Alfvénic Waves in ITER

Gyrokinetics an efficient framework for studying turbulence and reconnection in magnetized plasmas

Energetic-Ion-Driven MHD Instab. & Transport: Simulation Methods, V&V and Predictions

Modelling of Frequency Sweeping with the HAGIS code

Nonperturbative Effects of Energetic Ions on Alfvén Eigenmodes

SOLVING THE KONDO PROBLEM FOR COMPLEX MESOSCOPIC SYSTEMS

A Simplified Methodology for the Synthesis of Adaptive Flight Control Systems

Wolfgang Hofle. CERN CAS Darmstadt, October W. Hofle feedback systems

Lecture 8 - SISO Loop Design

COLLISIONS AND TRANSPORT

The Influence of Landau Damping on Multi Bunch Instabilities

Turbulence in Tokamak Plasmas

Wake Field. Impedances: gz j

MHD Linear Stability Analysis Using a Full Wave Code

Digital Control System

Stability Properties of Toroidal Alfvén Modes Driven. N. N. Gorelenkov, S. Bernabei, C. Z. Cheng, K. Hill, R. Nazikian, S. Kaye

Synchrotorn Motion. A review:

Hybrid Kinetic-MHD simulations with NIMROD

Tuning of High-Power Antenna Resonances by Appropriately Reactive Sources

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Nonlinear Simulation of Energetic Particle Modes in JT-60U

Monte-Carlo finite elements gyrokinetic simulations of Alfven modes in tokamaks.

Robust Decentralized Design of H -based Frequency Stabilizer of SMES

Chapter 7. Root Locus Analysis

Verification and validation of integrated simulation of energetic particles in fusion plasmas I: linear simulations

Mechanics. Free rotational oscillations. LD Physics Leaflets P Measuring with a hand-held stop-clock. Oscillations Torsion pendulum

Infernal Alfvén Eigenmodes in Low-Shear Tokamaks. Institute for Nuclear Research, Kyiv, Ukraine

Energetic-Ion Driven Alfvén Eigenmodes in Large Helical Device Plasmas with Three-Dimensional Structure and Their Impact on Energetic Ion Transport

Bogoliubov Transformation in Classical Mechanics

NumKin, Strasbourg, October 17 th, 2016

Predictions of fusion α-particle transport due to Alfvén eigenmodes in ITER

18.03SC Final Exam = x 2 y ( ) + x This problem concerns the differential equation. dy 2

Observation of modes at frequencies above the Alfvén frequency in JET

GTC Simulation of Turbulence and Transport in Tokamak Plasmas

Predicting the shock arrival time using 1D-HD solar wind model

Satellite s Orbital Dynamic and Stable Regions near Equilibrium Points of Asteroid

Active Control of Alfvén Eigenmodes in the ASDEX Upgrade tokamak

THE EXPERIMENTAL PERFORMANCE OF A NONLINEAR DYNAMIC VIBRATION ABSORBER

Nonlinear entropy transfer via zonal flows in gyrokinetic plasma turbulent transport

Damping and drive of low frequency modes in tokamak plasmas

Quark-Gluon Plasma in Proton-Proton Scattering at the LHC?

Chapter 1 Basic Description of Laser Diode Dynamics by Spatially Averaged Rate Equations: Conditions of Validity

TURBULENT TRANSPORT THEORY

Modeling of Transport and Reaction in a Catalytic Bed Using a Catalyst Particle Model.

High-field behavior: the law of approach to saturation (Is there an equation for the magnetization at high fields?)

Introduction to Plasma Physics

Hybrid Kinetic-MHD simulations Status and Updates

0 Magnetically Confined Plasma

Introduction to Fusion Physics

Nonlinear Energetic Particle Transport in the Presence of Multiple Alfvénic Waves in ITER. Mirjam Schneller

TAE induced alpha particle and energy transport in ITER

The gyrokinetic turbulence code GENE - Numerics and applications

Towards Multiscale Gyrokinetic Simulations of ITER-like Plasmas

LTV System Modelling

NAME (pinyin/italian)... MATRICULATION NUMBER... SIGNATURE

Emittance limitations due to collective effects for the TOTEM beams

Macroscopic Stability

Stability analysis of the ideal internal kink mode in a toroidally rotating tokamak plasma with ultra flat q profile

Impact of Energetic-Ion-Driven Global Modes on Toroidal Plasma Confinements

MAE140 Linear Circuits Fall 2012 Final, December 13th

Sensorless speed control including zero speed of non salient PM synchronous drives

Annex-A: RTTOV9 Cloud validation

SMALL-SIGNAL STABILITY ASSESSMENT OF THE EUROPEAN POWER SYSTEM BASED ON ADVANCED NEURAL NETWORK METHOD

Theory of Alfvén Eigenmode Instabilities and Related Alpha Particle Transport in JET D-T Plasmas

CHAPTER 4 DESIGN OF STATE FEEDBACK CONTROLLERS AND STATE OBSERVERS USING REDUCED ORDER MODEL

Part A: Signal Processing. Professor E. Ambikairajah UNSW, Australia

Nearshore Sediment Transport Modeling: Collaborative Studies with the U. S. Naval Research Laboratory

11.2 Stability. A gain element is an active device. One potential problem with every active circuit is its stability

Global particle-in-cell simulations of Alfvénic modes. Abstract

Verification of gyrokinetic particle simulation of Alfven eigenmodes excited by external antenna and by fast ions

Coherent Resonance of Saturated Absorption in Spectroscopy of Counterpropagating Waves

Molecular Dynamics Simulations of Nonequilibrium Effects Associated with Thermally Activated Exothermic Reactions

Anomalous resistivity and heating in current-driven plasma thrusters *

PHYS 110B - HW #6 Spring 2004, Solutions by David Pace Any referenced equations are from Griffiths Problem statements are paraphrased

Chemistry You Need to Know and Ohio Science Standards. Antacids. Chpt 2-- Chpt 3-- Chpt 5-- Soap. Chpt 4-- Light. Airbags. Section 4-2.

Active MHD Control Needs in Helical Configurations

Noise Effects on Two Excitable Systems: Semiconductor Laser and Neuron Network Oscillations

Supplementary Figures

Singular perturbation theory

Transcription:

Max-Planck-Intitut für Plamaphyik, EURATOM Aociation WENDELSTEIN 7-X Global particle-in-cell imulation of Alfvénic mode Alexey Mihchenko, Axel Könie, Roman Hatzky Keyword: gyrokinetic, global particle-in-cell, Alfvén Eigenmode, fat-particle detabilization, Energetic Particle Mode Acknowledgment: J. Nührenberg, P. Helander Alexey Mihchenko IPP Greifwald, Stellaratortheorie

Max-Planck-Intitut für Plamaphyik, EURATOM Aociation Role of the fat particle Fuion born fat particle (3.5 MeV), NBI (.1 MeV), ICRH (1 MeV): characteritic time cale (e.g. tranit frequency ω t ) ω TAE effective reonant interaction/detabilization Bad new: outward tranport of fat particle non-even heat load on the wall + poible quenching of the fuion reaction Good new: weak detabilization MHD pectrocopy, alpha particle channeling (direct tranfer the energy of fuion alpha into ion without intermediate tep of lowing down on thermal electron) ALFVÉN MODE DYNAMICS IS IMPORTANT FOR FUSION Alexey Mihchenko IPP Greifwald, Stellaratortheorie

Max-Planck-Intitut für Plamaphyik, EURATOM Aociation Gyrokinetic Vlaov-Maxwell equation Linearized gyrokinetic Vlaov equation: δf t + R () δf R + δf v() = R (1) F v R F v(1) v Gyrocenter equation of motion (p -formulation): ( Ṙ = v q ) m A b + 1 b [ µ B + q ( φ v qb A )] v = 1 m [ µ B + q ( φ v A )] b The gyro-averaged potential are defined a uual: dθ dθ φ = 2π φ( R + ρ), A = 2π A ( R + ρ) Alexey Mihchenko IPP Greifwald, Stellaratortheorie

Max-Planck-Intitut für Plamaphyik, EURATOM Aociation Gyrokinetic Vlaov-Maxwell equation Gyrokinetic quaineutrality equation and parallel Ampére law (p -formulation): q 2n ρ 2 φ = q δn T =i,f =i,e,f ˆβ 2 A = µ δj =i,e,f ρ 2 =i,e,f The gyrocenter perturbed denity and current: δn = d 6 Z δf δ( R + ρ x), δj = q d 6 Z δf v δ( R + ρ x) The background denitie atify the quaineutrality equation q n = =i,e,f Alexey Mihchenko IPP Greifwald, Stellaratortheorie

Max-Planck-Intitut für Plamaphyik, EURATOM Aociation Numerical approach linear δf- particle-in-cell (PIC) method field dicretization uing B-pline phae factor tranform Fourier tranform in the direction of ymmetry mot eriou numerical problem to olve for electromagnetic calculation: cancellation problem iterative olution of Ampere law to cancel unphyical adiabatic current detailed decription: R. Hatzky, A. Könie, and A. Mihchenko, J. Comp. Phy. 255, 568 (27) Similar to Y. Chen and S. Parker approach Performance optimization: parallel efficiency 97%, 496 core, Blue Gene/P (weak caling) Alexey Mihchenko IPP Greifwald, Stellaratortheorie

Max-Planck-Intitut für Plamaphyik, EURATOM Aociation Tokamak configuration.8 q 1.85 1.8 Here, the gap i formed ω, x 1 6 rad/.7.6.5.4 PIC TAE MHD TAE 1.75.3 1.7.1.2.3.4.5.6.7.8.9 1 r / r a.2.2.4.6.8 1 Large-apect-ratio, circular cro-ection Major radiu R = 1 m, minor radiu r a = 1 m Magnetic field on the axi B = 3. T, Flat bulk-plama temperature and denity (β bulk.18%) Toroidal mode number n = 6 Alexey Mihchenko IPP Greifwald, Stellaratortheorie

Max-Planck-Intitut für Plamaphyik, EURATOM Aociation Time ignal 4e-13 2e-13 2e-2 1e-2 Re (φ) Re (A ) -2e-13-1e-2-4e-13.2.3.4.5.6 time, -2e-2.2.3.4.5.6 time, Time ignal reulting from the PIC imulation. Dominant harmonic in φ have the ame phae. Dominant harmonic in A have the oppoite phae. Thi correpond to the property E. Alexey Mihchenko IPP Greifwald, Stellaratortheorie

Max-Planck-Intitut für Plamaphyik, EURATOM Aociation WENDELSTEIN 7-X Radial tructure 1.5e-13 2.5e-2 2e-2 φ 1e-13 A 1.5e-2 5e-14 1e-2 m = 9 m = 12 5e-21 m = 9 m = 12.2.4.6.8 1.2.4.6.8 1 Radial pattern reulting from the PIC imulation (in ome particular point of time) It reemble a typical TAE tructure. Alexey Mihchenko IPP Greifwald, Stellaratortheorie

Max-Planck-Intitut für Plamaphyik, EURATOM Aociation The fat-particle profile 2 1.75 4 3 - dn f /dr - (dn f /dr) / n f n f / n f 1.5 1.25 1.75 2 1.5.2.4.6.8 1.2.4.6.8 1 Nonuniform fat-particle denity i ued to drive the mode Poition of max. d ln n f /dr coincide with the poition of the gap The fat-particle temperature i flat Alexey Mihchenko IPP Greifwald, Stellaratortheorie

Max-Planck-Intitut für Plamaphyik, EURATOM Aociation WENDELSTEIN 7-X Fat-particle denity weep ω, x 1 6 rad/.9.8.7.6.5.4.3 table TAE β fat < β bulk EPM (I) β fat > β bulk untable TAE continuum gap continuum 1e+16 1e+17 1e+18 n f [m -3 ], T f =.4 MeV γ, x 1 3 rad/ 4 3 2 1 PIC hybrid-mhd table TAE β fat < β bulk EPM (I) β fat > β bulk untable TAE continuum gap 1e+16 1e+17 1e+18 n f [m -3 ], T f =.4 MeV TAE detabilized by fat particle. It i continuouly modified into EPM a the drive increae. Hybrid-MHD calculation (CAS3D-K) overetimate the growth rate (FLR and FOW are neglected in CAS3D-K) Alexey Mihchenko IPP Greifwald, Stellaratortheorie

Max-Planck-Intitut für Plamaphyik, EURATOM Aociation Energetic Particle Mode (Type I) φ 1e-7 5e-8 m = 9 m = 12 A 4e-15 3e-15 2e-15 1e-15 m = 9 m = 12 EPM (Type I) β f 1.8% n f = 1 18 m 3 T f =.4 MeV.2.4.6.8 1.2.4.6.8 1 φ 1.5e-13 1e-13 5e-14 m = 9 m = 12 A 2.5e-2 2e-2 1.5e-2 1e-2 5e-21 m = 9 m = 12 table TAE (no fat particle) β f =.2.4.6.8 1.2.4.6.8 1 Alexey Mihchenko IPP Greifwald, Stellaratortheorie

Max-Planck-Intitut für Plamaphyik, EURATOM Aociation WENDELSTEIN 7-X Fat-particle temperature weep (I).46 reonance (v thf = v A / 3).44 3 ω (MHz).42.4.38.36 EPM (II) untable TAE gap continuum γ (khz) 2 1 continuum gap FOW tabilization k perp ρ E ~ 1.34 2e+5 4e+5 6e+5 8e+5 1e+6 1.2e+6 T f [ev] (β f kept cont) 2e+5 4e+5 6e+5 8e+5 1e+6 1.2e+6 T f [ev] (β f kept cont) Dependency on the fat-particle temperature (β f =.134% kept contant) Detabilization i mot effective near the reonance v thf v A /3 At large T f, finite-orbit-width (FOW) tabilization i een At maller T f (larger n f to keep β f contant), an EPM appear Alexey Mihchenko IPP Greifwald, Stellaratortheorie

Max-Planck-Intitut für Plamaphyik, EURATOM Aociation Untable Toroidal Alfvén Eigenmode φ 2e-11 1.5e-11 1e-11 5e-12 m = 9 m = 12.2.4.6.8 1 A 1e-18 5e-19 m = 9 m = 12.2.4.6.8 1 untable TAE β f.134% n f =.5 1 17 m 3 T f =.6 MeV φ 1.5e-13 1e-13 5e-14 m = 9 m = 12 A 2.5e-2 2e-2 1.5e-2 1e-2 5e-21 m = 9 m = 12 table TAE (no fat particle) β f =.2.4.6.8 1.2.4.6.8 1 Alexey Mihchenko IPP Greifwald, Stellaratortheorie

Max-Planck-Intitut für Plamaphyik, EURATOM Aociation Energetic Particle Mode (Type II) φ 6e-13 4e-13 2e-13 m = 9 m = 12.2.4.6.8 1 A 4e-2 3e-2 2e-2 1e-2 m = 9 m = 12.2.4.6.8 1 EPM (Type II) β f.134% n f = 6 1 17 m 3 T f =.5 MeV φ 1.5e-13 1e-13 5e-14 m = 9 m = 12 A 2.5e-2 2e-2 1.5e-2 1e-2 5e-21 m = 9 m = 12 table TAE (no fat particle) β f =.2.4.6.8 1.2.4.6.8 1 Alexey Mihchenko IPP Greifwald, Stellaratortheorie

Max-Planck-Intitut für Plamaphyik, EURATOM Aociation Energetic Particle Mode (Type II) ω, x 1 6 rad/.8.7.6.5.4 PIC TAE MHD TAE n=-6.3 EPM (II).2.2.4.6.8 1 Location and frequency of the EPM mode are determined by continuum Alexey Mihchenko IPP Greifwald, Stellaratortheorie

Max-Planck-Intitut für Plamaphyik, EURATOM Aociation Fat-particle temperature weep (II).48 5 ω, x 1 6 rad/.46.44.42.4 continuum gap γ, x 1 3 rad/ 4 3 2 1 PIC, with FLR PIC, w/o FLR hybrid-mhd.38 continuum 2e+5 4e+5 6e+5 8e+5 T f [ev], (n f fixed) 1e+5 2e+5 3e+5 4e+5 5e+5 6e+5 7e+5 8e+5 T f [ev], (n f fixed) The fat-particle denity n f =.75 1 17 m 3 i kept contant The mode frequency remain in the gap (no modification into the EPM) At larger temperature, FOW tabilization can be een Alexey Mihchenko IPP Greifwald, Stellaratortheorie

Max-Planck-Intitut für Plamaphyik, EURATOM Aociation WENDELSTEIN 7-X Fat particle. Untable Alfvén mode. Summary. Fat-particle detabilization of the TAE mode ha been modelled with PIC code A tranformation of the TAE mode into the EPM intability if the drive i large enough ha been oberved Next tep Benchmarking: ORB5, LIGKA, GENE (global), GTC (?) Numerical equilibria, maller apect ratio (more reactor-like) Alexey Mihchenko IPP Greifwald, Stellaratortheorie

Max-Planck-Intitut für Plamaphyik, EURATOM Aociation WENDELSTEIN 7-X Global particle-in-cell imulation of Alfvénic mode Alfvén-ound coupling (BAE...), Alfvén cacade Kink mode, microtearing mode Nonlinear effect nonlinear TAE/EPM phae-pace dynamic (avalanche, pontaneou hole-clump pair creation, etc) nonlinear TAE-EPM aturation Alfvén Eigenmode + fat particle in tellarator (MAE, GAE, HAE etc) Alexey Mihchenko IPP Greifwald, Stellaratortheorie