Shear in Beams 2. Reinforced Concrete Design. Shear Design Summary. Shear design summary More detail shear design. Shear span Deep beam WSD SDM

Similar documents
Lecture Note 6. Moment-Curvature (M-φ) Relation - I

Software Verification

Software Verification

The Hashemite University Department of Civil Engineering ( ) Dr. Hazim Dwairi 1

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 7 Shear Failures, Shear Transfer, and Shear Design

Horizontal Distribution of Forces to Individual Shear Walls

Software Verification

P1.2 w = 1.35g k +1.5q k = = 4.35kN/m 2 M = wl 2 /8 = /8 = 34.8kN.m V = wl /2 = /2 = 17.4kN

Software Verification

A typical reinforced concrete floor system is shown in the sketches below.

Design Manual to EC2. LinkStudPSR. Version 3.1 BS EN : Specialists in Punching Shear Reinforcement.

A typical reinforced concrete floor system is shown in the sketches below. Exterior Span Interior Span Exterior Span. Beam Span.

Masonry Beams. Ultimate Limit States: Flexure and Shear

A.1. Member capacities A.2. Limit analysis A.2.1. Tributary weight.. 7. A.2.2. Calculations. 7. A.3. Direct design 13

Torsional resistance of high-strength concrete beams

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method

Slenderness Effects for Concrete Columns in Sway Frame - Moment Magnification Method

The Design of Special Truss Moment Frames Against Progressive Collapse

FUNDAMENTAL OF CONCRETE, STEEL AND TIMBER STRUCTURE CE 2014

Two-Way Flat Slab (Concrete Floor with Drop Panels) System Analysis and Design

Purpose of reinforcement P/2 P/2 P/2 P/2

STRUNET CONCRETE DESIGN AIDS

Design of Reinforced Concrete Structures (II)

European Technical Assessment. ETA Option 1-16/0276. Min. thick. of base material. thick. of part to be fixed. min.

Software Verification

Period #8: Axial Load/Deformation in Indeterminate Members

Appendix XI Detailing Requirements of the Prestressed Concrete Girder Bridge

Design a reinforced concrete retaining wall for the following conditions. f'c = 3000 psi fy = 60 ksi

Figure 1: Representative strip. = = 3.70 m. min. per unit length of the selected strip: Own weight of slab = = 0.

Sway Column Example. PCA Notes on ACI 318

1.054/1.541 Mechanics and Design of Concrete Structures (3-0-9) Outline 10 Torsion, Shear, and Flexure

Design of Columns. Columns are divided into three types according to the way they are reinforced. Tied Columns

STRUCTURAL BEHAVIOR OF R/C DEEP BEAM WITH HEADED LONGITUDINAL REINFORCEMENTS

Residual Bearing Capabilities of Fire-Exposed Reinforced Concrete Beams

Appendix XXII Detailing Requirements of the Prestressed Concrete Girder Bridge

Details of Check for Boundary Element Requirements

Timber and Steel Design. Lecture 11. Bolted Connections

DESIGN OF STRAP (CANTILEVER) FOOTINGS Design Steps and Equations

Design of a Balanced-Cantilever Bridge

RC DEEP BEAMS ANALYSIS CONSIDERING LOCALIZATION IN COMPRESSION

Serviceability Deflection calculation

The Open Civil Engineering Journal

Two-Way Concrete Floor Slab with Beams Design and Detailing (CSA A )

Copyright Canadian Institute of Steel Construction

Dr. Hazim Dwairi 10/16/2008

CHAPTER 5 CONCRETE DESIGN

3.6 Flexural, Design Example of Negative Moment Region

Shear Stress. Horizontal Shear in Beams. Average Shear Stress Across the Width. Maximum Transverse Shear Stress. = b h

Timber and Steel Design. Lecture 7 - B E A M. Introduction to. Floor Framing System Bending Stresses Compact Sections Lateral Support of Beams

Lecture Notes: Finite Element Analysis, J.E. Akin, Rice University

3.6 Flexural, Design Example of Negative Moment Region

Lecture-08 Gravity Load Analysis of RC Structures

ε t increases from the compressioncontrolled Figure 9.15: Adjusted interaction diagram

BEAMS: SHEARING STRESS

DEVELOPMENT OF COMPONENT EXPLOSIVE DAMAGE ASSESSMENT WORKBOOK (CEDAW)

Design Beam Flexural Reinforcement

Case Study in Reinforced Concrete adapted from Simplified Design of Concrete Structures, James Ambrose, 7 th ed.

Design of AAC floor slabs according to EN 12602

Lecture-09 Introduction to Earthquake Resistant Analysis & Design of RC Structures (Part I)

Flexural Members - Strength Design. Flexural Members - Strength Design

To determine the biasing conditions needed to obtain a specific gain each stage must be considered.

FEA Solution Procedure

Interaction Diagram - Tied Reinforced Concrete Column (Using CSA A )

Flexural Members - Strength Design. Beams Behavior

UVa Course on Physics of Particle Accelerators

CALCULATION OF CRACK WIDTHS WITH THE METHOD

Types of Structures & Loads

Lecture 7 Two-Way Slabs

Dr. Hazim Dwairi. Example: Continuous beam deflection

FEA Solution Procedure

Software Verification

STATISTICAL MODEL FOR THE PREDICTION OF SHEAR STRENGTH OF HIGH STRENGTH REINFORCED CONCRETE BEAMS

Design of Beams (Unit - 8)

Unified Design Method for Flexure and Debonding in FRP Retrofitted RC Beams

STUDY ON EFFECTIVE PRESTRESS OF RC BEAM STRENGTHENING WITH PRESTRESSED FRP

Shear-Friction Strength of RC Walls with 550 MPa Bars

Lecture-03 Design of Reinforced Concrete Members for Flexure and Axial Loads

08.06 Shooting Method for Ordinary Differential Equations

This Technical Note describes how the program checks column capacity or designs reinforced concrete columns when the ACI code is selected.

Reinforced Concrete Design

Prandl established a universal velocity profile for flow parallel to the bed given by

Codal Provisions IS 1893 (Part 1) 2002

Beam Design and Deflections

Design of a Multi-Storied RC Building

8 ft. 5 k 5 k 5 k 5 k. F y = 36 ksi F t = 21 ksi F c = 10 ksi. 6 ft. 10 k 10 k

Uniaxial Concrete Material Behavior

Moment Redistribution

Appendix K Design Examples

Chapter 8. Shear and Diagonal Tension

Lecture 16. Kinetics and Mass Transfer in Crystallization

twenty four concrete construction: shear & deflection Shear in Concrete Beams ACI Shear Values ACI Shear Values

AVERAGE STRESS-STRAIN RELATIONSHIP OF STEEL BARS EMBEDDED IN CONCRETE

Reinforced Concrete Design

The Serviceability Considerations of HSC Heavily Steel Reinforced Members under Bending

Probabilistic Models for Seismic Design and Assessment of RC Structural Walls

fib Model Code 2020 Shear and punching provisions, needs for improvements with respect to new and existing structures

Min. thick. of base material. Max. thick. of part to be fixed. Min. anchor depth. t fix. h min. Anchor mechanical properties

Example 4.1 [Uni-axial Column Design] Solution. Step 1- Material Step 2-Determine the normalized axial and bending moment value

Transcription:

Reinfored Conrete Deign Shear in Beam 2 Shear deign mmary More detail hear deign Shear pan Deep beam Mongkol JIRAACHARADET S U R A N A R E E UNIERSITY OF TECHNOLOGY INSTITUTE OF ENGINEERING SCHOOL OF CIIL ENGINEERING Shear Deign Smmary WSD SDM Shear: DL + LL Shear: 1.4 DL + 1.7 LL n / φ Conrete: 0.29 f b d Steel: - Spaing: A v f d / Min. Stirrp: max A v / 0.0015 b Chk. light hear: 0.795 f bd max d/2 60 m Chk. heavy hear: 1.32 f bd max d/4 30 m Conrete: 0.53 f b d Steel: n - Spaing: A v f y d / Min. Stirrp: max A v f y / 3.5 b Chk. light hear: 1.1 f bd max d/2 60 m Chk. heavy hear: 2.1 f bd max d/4 30 m

ก ก LL fll pan DL fll pan w L 2 (ก) ก ก Max. hear @ end LL half pan DL fll pan wl L 8 ( ) ก ก Max. hear @ midpan ( ) Shear fore envelop w L 2 wl L 8 EXAMPLE 6-2 More Detailed Deign of ertial Stirrp SDM The imple beam pport a niformly ditribted ervie dead load of 2 t/m, inlding it own weight, and a niformly ditribted ervie live load of 2.5 t/m. Deign vertial tirrp for thi beam. The onrete trength i 250 k, the yield trength of the flexral reinforement i 4,000 k. DL 2 t/m LL 2.5 t/m d 64 m w 1.4(2) + 1.7(2.5) 7.05 t/m w L 1.7(2.5) 4.25 t/m L 10 m 30 m w L/2 7.05(10)/2 32.25 ton w L L/8 4.25(10)/8 5.31 ton 32.25/0.85 37.94 ton /φ Diagram : 5.31/0.85 6.25 ton Shear2_11

ame olmn width 0.40 m / φ at d 37.94 (0.84/5)(37.94 6.25) 32.62 ton Shear trength of onrete 0.53 f b d 0.53 250 (30)(64)/1,000 16.09 ton 37.94 t Critial etion 32.62 t 84 m Reqired /φ 16.09 t 0.5 8.05 t 6.25 t Spport Midpan I the ro etion large enogh? + 2.1 f b d 16.09+ 2.1 250 (30)(64)/1,000 79.84> 32.62 ton OK n,max + 1.1 f b d 16.09+ 1.1 250 (30)(64) /1,000 55.6> 32.62 ton d/ 2 60 m max Shear2_12 Minimm tirrp : (ACI 11.5.6.3) USE RB9 : A v 2(0.636) 1.27 m 2, f y 2400 k A v,min 0.2 f b f y (ACI Eq. 11-13) Rearranging give max A vfy 1.27(2,400) 32 m 0.2 f b 0.2 250 (30) bt not le than max A f 1.27(2,400) 3.5b 3.5(30) v y 29 m Ue max 29 m < [d/2 64/2 32 m] < 60 m Compte tirrp reired at d from pport A f d 1.27(2.4)(64) / φ 32.62 16.09 v y 11.8 m Ue RB9@0.11m. Change paing to 15 m where thi i aeptable, and then to the maximm paing of 29 m. Compte /φ where an be inreaed to 15 m. A vfyd 1.27(2.4)(64) + + 16.09 29.1 ton φ 15 Shear2_13

37.94 t 84 m Critial etion 32.62 t 29.1 t /φ 16.09 t 0.5 8.05 t 6.25 t Spport 500 m Midpan x 37.94 29.1 x 500 140 m from pport 37.94 6.25 Change to 29 m, ompte /φ A vfyd 1.27(2.4)(64) + + 16.09 22.82 ton φ 29 37.94 22.82 x 500 239 m from pport 37.94 6.25 Shear2_14 15 m @ x 140 m 29 m @ x 239 m RB9@0.11 RB9@0.15 RB9@0.29 20 m 11@11 m 1 m Spport 7@15 m 8@29 m 500 m Midpan RB9 @ 0.11 m : 20+1+11@11 142 m > 140 m RB9 @ 0.15 m : 142+7@15 247 m > 239 m OK OK RB9 @ 0.29 m : 247 + 8@29 479 m Shear2_15

Shear Span (a M / ) Ditane a over whih the hear i ontant a P P a Shear +P Diagram + - -P M a Moment Diagram + Shear2_16 Crak Pattern in Several Length of Beam Span Mark (m) a/d 1 0.90 1.0 2 1.15 1.5 3 1.45 2.0 4 1.70 2.5 5 1.95 3.0 6 2.35 4.0 7/1 3.10 5.0 8/1 3.60 6.0 10/1 4.70 8.0 9/1 5.80 7.0 Shear2_17

ariation in Shear Strength with a/d for retanglar beam Shear-ompreion trength Flexral moment trength Failre moment a Deep beam Shear-tenion and hear-ompreion failre Inlined raking trength, Flexral failre Diagonal tenion failre 0 1 2 3 4 5 6 7 a/d Shear2_18 DEEP BEAM Brnwik Bilding. Note the deep onrete beam at the top of the grond olmn. Thee 168-ft beam, pported on for olmn and loaded by loely paed faia olmn above, are 2 floor deep. Shear tree and failre mehanim were tdied on a mall onrete model. (Chiago, Illinoi) Shear2_19

Shear2_20 Deep Beam Deep beam are trtral element loaded a beam in whih a ignifiant amont of the load i tranferred to the pport by a ompreion thrt joining the load and the reation. When hear pan a M / to depth ratio < 2 Mehanim: Ue both horizontal and vertial may prevent rak Compreive trt If nreinfored, large rak may open at lower midpan. Shear2_21

Definition of Deep Beam ACI 10.7.1 Deep beam are member loaded on one fae and pported on the oppoite fae o that ompreion trt an develop between the load and the pport, and have either: (a) lear pan, L n, eqal to or le than for time the overall member depth; or h L n / h 4 L n (b) region with onentrated load within twie the member depth from the fae of the pport. P x h x < 2 h Shear2_22 Deign Criteria for Shear in Deep Beam Bai Shear Strength: φ n where n + Loation for Compting Fatored Shear: (a) Simply Spported Beam (Critial etion loated at ditane z from fae of pport) - z 0.15L n d for niform loading - z 0.50a d for onentrated loading (b) Contino Beam Critial etion loated at fae of pport Limitation on Nominal Shear Strength n,max 2.7 f bd Shear2_23

Shear Strength of Conrete, M d 3.5 2.5 0.50 f + 176ρ b d 1.6 f b d d M M d where 1.0 3.5 2.5 2.5 If ome minor nightly raking i not tolerated, the deigner an e Simplified method: 0.53 f bd Shear Reinforement, A v 1+ L n / d A vh 11 L n / d fyd v 12 + h 12 A v ก (. 2 ), A vh ก (. 2 ) v ก ก (.), h ก (.) Shear2_24 Minimm Shear Reinforement d maximm v 30 m 5 and d maximm h 30 m 5 minimm A vh 0.0015 b h minimm A v 0.0025 b v Shear2_25

5.6 ก ก กก ก 60 ก 3.6 ก 35. ก d 90. f 280 กก./. 2 f y 4,000 กก./. 2 1.20 m 60 t 60 t 1.20 m h 100 m d 90 m 4DB36 5 m 5 m 35@10 3.5 m 40 m 3.6 m 40 m 35 m (a) ก L n /h 360/100 3.6 < 4.0 ก Shear2_26 (b) ก กก a 1.20. 0.50a 0.5(1.20) 0.60 < [d 0.90 ] ก 0.60. ก () ก ก ก ก กก 1.7 LL 1.7(60) 102 ก ก กก ก M 102(60) d 102(90) 0.67 M ก 3.5 2.5 3.5 2.5(0.67) 1.83 < 2.5 OK d v d 1.83 0.50 f + 176 ρ ω M 4(10.18) ρ w 35(90) 0.0129 Shear2_27

v ( ) 176 0.0129 1.83 0.50 280+ 0.67 1.83[8.37 + 3.39] 21.5 กก./. 2 Upper limit: v 1.6 f 1.6 280 26.77 kg/m ก ก v b w d 21.5(35)(90)/1,000 67.8 (d) ก ก 2 Reqired n 102 φ 0.85 120 ton 2.7 f b d 2.7 280(35)(90) /1,000 n,max 142 >120 OK ก n ก > (120 > 67.8) ก ก Shear2_28 (e) ก ก L n /d 4 : Av 1 + Ln / d Avh 11 Ln / d 12 + 12 f d b 35. f y 4,000 กก./. 2 2 120 67.8 52.2 y A v 5 A 7 52.2 12 12 4.0(90) v vh + h min A v 0.0025 b v max v d/5 18. 0.145 min A vh 0.0015 b h max h d/5 18. DB12 ก h 18. min A vh 0.0015(35)(18) 0.945 2 A vh 2(1.13) 2.26 2 > 0.945 2 OK Shear2_29

A vh ก A v A v 5 2.26 7 12 + 18 12 [ ] 12 0.145 0.145 0.0732 0.172 5 ก ก DB12: A v 2(1.13) 2.26 2 ก 2.26/0.172 13.1. < [d/5 18.] min A v 0.0025(35)(18) 1.58 2 < [A v 2.26. 2 ] OK OK DB12 ก ก ก 12. DB12@0.18 90 m DB12@0.12 4DB36 30@12 3.6 m 40 m 3.6 m 40 m 35 m Shear2_30 6.1 ก ก ก ก ก ก ก ก ก ก ก ก ก 1.5 f 240 กก./. 2 f y 4,000 กก./. 2 4DB20 8DB20 7.7 m lear 65 m 4DB20 8DB20 6 m 57 m 8.0 m / 35 m a) ก กก x b 6,120d 6,120 (57) 6,120+ f 6,120 + 4,000 y 34.5 m max x 0.75 x b 0.75(34.5) 25.9 m

x 25.9. A 12.56 m 2 max A 51.9 m 2 Real A 49.28 m 2 ε 0.003 25.9 6 ε (0.003) 0.0023 > ε 0.0020 f ' f 25.9 ε y y C max C 0.85bβ 1 (max x) 0.85(0.24)(35)(0.85)(25.9) 157.2 A f y 12.56(4.0) 50.2 max T max C 157.2 + 50.2 207.4 max T 207.4 max A 51.9 m 49.28 m f 4.0 2 2 > OK y (b) ก M n ก ก ก ก β 0.85 f b 1x + A f y A f y 0.85(0.24)(35)(0.85x) + 12.56(4.0) 49.28 (4.0) x 24.2.. 24.2 6.0 ε 0.003 0.0023 > ε y ก ก 24.2 C 0.85f bβ 1 x 0.85(0.24)(35)(0.85)(24.2) 146.9 C A f y 12.56 (4.0) 50.2 T A f y 49.28(4.0) 197.1 a 1 d 57 (0.85) (24.2) 46.7 m 2 2 M n 146.9(46.7)/100 + 50.2(57-6)/100 94.2 -

1 M w M 8 2 (8) φ n 0.90(94.2) 84.8 - w 10.6 / ก ก w L 1.5w D w 1.4w D + 1.7(1.5w D ) ก ก w D 10.6/(1.4+2.55) 2.7 / ก w L 1.5(2.7) 4.0 / () ก ก 42.4 t LC of pport max. hear envelope + 6.8 t 6.8 t Midpan 8.0 m SHD with DL+LL on entire pan - 42.4 t Max. hear at pport: wl 10.6(8) 42.4 ton 2 2 Max. hear at midpan when half LL on pan: wl 10.6(8) 6.8 ton 8 8 Critial etion from fae of pport d 57 m, pport width 30 m Therefore ompte at 57+30/2 72 m (42.4 6.8) 42.4 72 36.0 ton 4(100) ( f b d) Shear trength of onrete φ φ 0.53 w 42.4 t Fae of pport Critial etion 36.0 t 0.85 0.53 240 35 57 / 1,000 13.9 ton d 72 m Reqired φ 13.9 t φ 0.5φ 6.8 t C L of pport Midpan

Reqired φ -φ 36.0-13.9 22.1 ton Min φ 0.85(3.5)(35)(57)/1,000 5.9 ton Max φ (for d / 2) 0.85 1.1 240 35 57 / 1,000 28.9 ton Sine 5.9 ton < Reqired φ < 28.9 ton, max d/2 USE DB10 tirrp: φ Av fyd 0.85 2 0.78 4.0 57 13.7 m φ 22.1 @ Critial etion USE 13 m from z 0 to 57 m from fae of pport φ φ Av fyd 0.85 2 0.78 4.0 57 23.2 ton 13 From z 57 m, et φ n 22.1 φ z 57 + (400 72) 36.0 6.8 5.1 ก ก ก (m) φ (ton) z (m) 13.7 15 20 25 28.5 (d/2) 51.2 (NG) 22.1 (Max) 20.1 15.1 12.1 10.6 5.9 (Min) 0 to 57 79 135 169 186 238 6@13m 4@15m 2@20m 8@25m 30 m 1 m

Shear Strength of Member nder Combined Bending and Axial Load Axial Compreion N Simplified method: 0.53 (1 + ) f bw d 140A where N Fatored axial ompreive load A g Gro area of the onrete etion More detailed eqation: g d (0.5 f + 176 ρw ) bw d 0.93 f ' bw d M Replae M with M m, where h/2 h N M A 4h d Mm M N 8 a/2 C d - a/2 T 7d/8 d/8 a h a [ΣM A 0] T d M N 2 2 2 N (pper limit) 0.93 f 1+ bw d 35 A g N Axial Tenion 0.53(1 + ) 35 A f b d w g v ρwd 0.50 f + 176 M 4h d Mm M N 8 m v / f ( A ) v 0.93 f 1+ N 35 g ( + N Ag) f v 0.53 1 140 0.53 ( + N Ag) f v 0.53 1 35 56.3 35.2 ( N + ), กก./. 2 ( N - ), กก./. 2

Strength - Contino Beam Simplified method: More detailed proedre: 0.53 f b d w d 0.50 f + 176ρw bw d 0.93 f bw d M Strength - Contino Beam A f d v y Minimm Shear Reinforement: min A v 0.0015 b w where d / 5 45 m min A vh 0.0025 b w 2 where 2 d / 3 45 m Limitation on Nominal Shear Strength Nominal tre v n n / (φ b w d) max Ln vn 2.1 f for d < 2 Ln Ln max vn 0.18 10 + f for 2 d d 2.1 f max v 2.7 f n