Antonio Pich. IFIC, CSIC Univ. Valencia.

Similar documents
The Standard Model. Antonio Pich. IFIC, CSIC Univ. Valencia

Lecture 12 Weak Decays of Hadrons

Theory of CP Violation

Lepton Flavor Violation

Current knowledge tells us that matter is made of fundamental particle called fermions,

Beyond Standard Model Effects in Flavour Physics: p.1

The Cabibbo-Kobayashi-Maskawa (CKM) matrix

Electroweak Theory: 2

Electroweak Theory: 5

Standard Model of Particle Physics SS 2013

Adding families: GIM mechanism and CKM matrix

Flavour Physics Lecture 1

Recent CP violation measurements

Lecture 14 Mixing and CP Violation

Shahram Rahatlou University of Rome

A. Pich. IFIC, Univ. Valencia - CSIC. arxiv:

CP VIOLATION. Thomas Mannel. Theoretical Physics I, Siegen University. Les nabis School 2011

Unitary Triangle Analysis: Past, Present, Future

Standard Model of Particle Physics SS 2012

Particle Physics II CP violation. Lecture 3. N. Tuning. (also known as Physics of Anti-matter ) Niels Tuning (1)

Problems for SM/Higgs (I)

12 Best Reasons to Like CP Violation

IoP Masterclass FLAVOUR PHYSICS. Tim Gershon, University of Warwick April 20 th 2007

Electroweak interactions of quarks. Benoit Clément, Université Joseph Fourier/LPSC Grenoble

Fundamental Symmetries - 2

Introduction to flavour physics

Recent CP violation measurements. Advanced topics in Particle Physics: LHC physics, 2011 Jeroen van Tilburg 1/38

Particle Physics. Lecture 12: Hadron Decays.!Resonances!Heavy Meson and Baryons!Decays and Quantum numbers!ckm matrix

The weak interaction Part II

Weak Interactions: towards the Standard Model of Physics

CKM Matrix and CP Violation in Standard Model

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Moriond QCD La Thuile, March 14 21, Flavour physics in the LHC era. An introduction. Clara Matteuzzi. INFN and Universita Milano-Bicocca

Flavour physics Lecture 1

PARTICLE PHYSICS Major Option

CP/ Andreas Meyer. Hamburg University. DESY Summer Student Lectures, 1+4 August 2003 (this file including slides not shown in the lecture) Part 1

May. 30 (2017) at KAIST Byeong Rok Ko (IBS/CAPP)

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

Photon Coupling with Matter, u R

arxiv: v1 [hep-ph] 30 Jun 2014

Parity violation. no left-handed ν$ are produced

S 3 Symmetry as the Origin of CKM Matrix

Elementary Particles II

Electroweak Theory, SSB, and the Higgs: Lecture 2

B Physics: Theoretical Aspects Anirban Kundu

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C4: PARTICLE PHYSICS

Discrete Transformations: Parity

IX. Electroweak unification

The simplest Extension of the Standard Model

Models of Neutrino Masses

Particle Physics: Problem Sheet 5

Lecture 18 - Beyond the Standard Model

Neutrino Mass Models

FLAVOR PHYSICS BEYOND THE STANDARD MODEL

Introduction to the SM (5)

TPP entrance examination (2012)

Electroweak Theory: 3

B-meson anomalies & Higgs physics in flavored U(1) model

Recent topics in heavy-quark flavour physics

Lecture 11. Weak interactions

Lepton-flavor violation in tau-lepton decay and the related topics

Going beyond the Standard Model with Flavour

Fermion Mixing Angles and the Connection to Non-Trivially Broken Flavor Symmetries

Physics Highlights from 12 Years at LEP

Quantum Numbers. F. Di Lodovico 1 EPP, SPA6306. Queen Mary University of London. Quantum Numbers. F. Di Lodovico. Quantum Numbers.

La Fisica dei Sapori Pesanti

Standard Model & Beyond

PHYSICS OF NEUTRINOS. Concha Gonzalez-Garcia. Nufact07 Summer Institute, July (ICREA-University of Barcelona & YITP-Stony Brook)

Standard Model of Particle Physics

Two models with extra Higgs doublets and Axions

Elementary Particles, Flavour Physics and all that...

Recent results on CKM/CPV from Belle

General scan in flavor parameter space in the models with vector quark doublets and an enhancement in B X s γ process

Particules Élémentaires, Gravitation et Cosmologie Année Le Modèle Standard et ses extensions. The Flavour Sector

RESULTS FROM B-FACTORIES

Two-Higgs-Doublet Model

Nuclear and Particle Physics 3: Particle Physics. Lecture 1: Introduction to Particle Physics February 5th 2007

Interactions... + similar terms for µ and τ Feynman rule: gauge-boson propagator: ig 2 2 γ λ(1 γ 5 ) = i(g µν k µ k ν /M 2 W ) k 2 M 2 W

CKMfitter A Mathematica based Version

Gauged Flavor Symmetries

Precision EW measurements at Run 2 and beyond

CP Violation at the LHC - workshop 2017

Hidden two-higgs doublet model

PHYSICS PARTICLE. An Introductory Course of. Palash B. Pal. CRC Press. Saha Institute of Nuclear Physics. Kolkata, India. Taylor &.

Matter, antimatter, colour and flavour in particle physics

Testing the low scale seesaw and leptogenesis

Introduction to the Standard Model New Horizons in Lattice Field Theory IIP Natal, March 2013

Particle Physics. Dr Victoria Martin, Spring Semester 2013 Lecture 17: Electroweak and Higgs

Experimental prospects for B physics and discrete symmetries at LHC and future projects

Marcello A. Giorgi. Università di Pisa & INFN Pisa La Biodola May 30, 2011 XVII SuperB Workshop and Kick off Meeting

Particle Physics Lecture 1 : Introduction Fall 2015 Seon-Hee Seo

Review of D-D Mixing

Neutrino Physics. Kam-Biu Luk. Tsinghua University and University of California, Berkeley and Lawrence Berkeley National Laboratory

B Physics Lecture 1 Steven Robertson

Status of the Cabibbo-Kobayashi-Maskawa Quark Mixing Matrix

The Future of V ub. Antonio Limosani JSPS Fellow (KEK-IPNS JAPAN) BMN BNM Tsukuba (KEK) Sep Antonio Limosani KEK Slide 1

Pair production of heavy Q = 2/3 singlets at LHC

Introduction to Neutrino Physics. TRAN Minh Tâm

CP Violation and Flavor Mixing

An Introduction to the Standard Model of Particle Physics

Transcription:

Antonio Pich IFIC, CSIC Univ. alencia Antonio.Pich@cern.ch

Fermion Masses Fermion Generations Quark Mixing Lepton Mixing Standard Model Parameters CP iolation

Quarks Leptons Bosons up down electron neutrino e e photon µ gluon charm strange muon neutrino µ Z 0 W ± τ top beauty tau neutrino τ Higgs

FERMION MASSESS Scalar Fermion Couplings allowed by Gauge Symmetry 0 ( ) ( ) ( ) ( d ) φ ( u) φ ( l) φ LY = ( qu, qd) L c ( q ) ( ) (, ) h.c. ( 0) d R + c q ( ) u R vl l L c l + + ( 0) R + φ φ φ L + + SSB = H 1+ + + v d u { m q } d q d m q q m l l l Y q q u u Fermion Masses are New Free Parameters H m f v f mq, m,,, d q m u l = c c c Couplings Fixed: ( d) ( u) ( l) v g Hf f = m v 2 f f

FERMION GENERATIONS NG = 3 Identical Copies Q = 0 Q = 1 v j u j lj d j Q Q Masses are the only difference = + 23 = 13 ( j = ) 1,, N G WHY? L φ φ φ =, + +, + h.c. ( + ) (0) ( + ) ( d) ( u) ( l) Y ( u j d j) (0) kr ( ) kr ( j j) L cjk d cjk u v l c L jk l + (0) kr jk φ φ φ L SSB H = 1+ h.c. v d + + l + { d M d u M } u u l M l Y L R L R L R Arbitrary Non-Diagonal Complex Mass Matrices ( d) ( u) ( l),,,, v d u l = c jk jk c jk c jk M M M 2

DIAGONALIZATION OF MASS MATRICES = = M H U S M S U d d d d d d d = = M S M H U S U u u u u u u u = = M M H U S S U l l l l l l l H f = H f U U = U U = 1 f f f f S S = S S = f f f f 1 µ ( 1 ) + H { d d + u u + } d u l l l L Y = M M M v M = diag ( m, m, m ) ; M = diag( m, m, m ) ; M = diag( m, m, m ) u u c t d d s b l e µ τ d S d ; u S u ; l S l L d L L u L L l L d S U d ; u S U u ; l S U l R d d R R u u R R l l R Mass Eigenstates Weak Eigenstates f f = f f ; f f = f f L L L L R R R R u d = u d ; L = S S CC CC L L L L u d QUARK MIXING NC L L L NC

L e = [ v a γ ] Z N Z C µ f γ f f f 5 2sinθW cosθw f µ Flavour Conserving Neutral Currents L CC g W µ µ u ( 1 ) d v ( 1 ) l h.c. = µ iγ γ5 ij j + l γ γ5 + 2 2 ij l Flavour Changing Charged Currents u c t d s b

L ( l ) CC g µ = W (1 ) + h.c. 2 2 ( l ) µ νi γ γ5 ij lj ij IF mν = 0 i ν lj ν i () l ij L g = ( l ) µ CC Wµ νl γ (1 γ5 ) l + h. 2 2 l c. Separate Lepton Number Conservation ν ( Minimal SM without ) R IF BUT i ν exist R and m 0 ν i Le, Lµ, L τ ( Le + Lµ + Lτ Conserved ) Br ( µ eγ) < 1.2 10 ; Br ( τ µγ) < 6.8 10 11 8 (90 % CL)

Measurements of ij Γ( ) dj uie ν e ij 2 d j ij W u i e ν e We measure decays of hadrons (no free quarks) Important QCD Uncertainties

ij CKM entry alue Source tb ud us cd cs cb ub q 2 tq 0.9740 ± 0.0005 0.9745 ± 0.0019 0.9740 ± 0.0005 0.2233 ± 0.0028 0.2208 ± 0.0034 0.2219 ± 0.0025 0.2221± 0.0016 0.224 ± 0.012 0.97 ± 0.11 0. 974 ± 0.013 0.0413 ± 0.0021 0.0416 ± 0.0010 0.0415 ± 0.0010 0.0038 ± 0.0009 0.0044 ± 0.0005 0.0043 ± 0.0005 0.97 + 0.16 0.12 Nuclear n pe v β decay K π e ve τ decays K / π µν, Lattice W + vd cx e + W cs had,, uj B b cl v * D l vl B ρ l v b ul v t bw l l l / qw cd, cb 2 2 2 ud + us + ub = 0.9980 ± 0.0017 ( 2 2 ) uj + cj = 1.999 ± 0.025 (LEP) j

QUARK MIXING MATRIX Unitary N G 2 N G N Matrix: parameters G = = 1 2 N 1 arbitrary phases: G φ i i i j e i θ j i j u e u ; d d ij ( e i θ φ j i ) ij ij Physical Parameters: 1 ( 1) G G 2 N N Moduli ; 1 ( 1) ( 2) G G phases 2 N N

N f = 2 : 1 angle, 0 phases (Cabibbo) cos θ sin θ C C = sin θc cos θ C No CP N f = 3 : 3 angles, 1 phase (CKM) c cos θ ; s sin θ ij ij ij ij = c12 c13 s12 c13 s13 e iδ iδ s c c s s e c c s s s e s c iδ iδ s s c c s e c s s c s e c c iδ 13 13 12 23 12 23 13 12 23 12 23 13 23 13 13 13 12 23 12 23 13 12 23 12 23 13 23 13 13 2 3 1 λ /2 λ Aλ ( ρ iη ) 2 2 λ 1 λ /2 A λ + 3 2 Aλ (1 ρ iη) Aλ 1 O 4 ( λ ) λ θ ρ + η 2 2 sin C 0.222 ; A 0.84 ; 0.41 δ 13 0 (η 0) CP

Standard Model Parameters QCD: αs( M Z) 1 EW Gauge / Scalar Sector: 4 g g h M M M 2,, µ, α, θw, W, M H α, GF, Z, H Yukawa Sector: m, m, m e m, m, m d s m, m, m u c t θ, θ, θ, δ 1 2 3 µ τ b 13 18 Free Parameters TOO MANY! (+ Neutrino Masses / Mixings?)

C, P : iolated maximally in weak interactions CP : Symmetry of nearly all observed phenomena 0 Slight (~ 0.2 %) CP in K decays (1964) Sizeable CP in decays (2001) Huge Matter Antimatter Asymmetry in our Universe Baryogenesis B 0 CPT Theorem: CP T Thus, CP requires: Complex Phases Interferences

Meson Antimeson Mixing B 0 B 0 0 B f 2 Interfering Amplitudes 0 B CP Signal BABAR Γ Γ 0 0 ( B J/ ψ KS) ( B J/ ψ KS) 0 0 ( B J/ ψ KS) ( B J/ ψ KS) Γ +Γ 0

* * * ud ub cd cb td tb + + = 0 * * ud ub cd * * cb td tb cd cb UT fit 1 2 η η 1 λ = 0.342 ± 0.022 2 1 2 ρ ρ 1 λ = 0.216 ± 0.036 2 α = 98.2 ± 7.7 ; β = 23.7 ± 1.4 ; γ = 57.9 ± 7.3

Complex phases in Yukawa couplings only: L Y ( + ) (0) ( d) φ ( u) φ = ( u j, d j) L cjk d (0) kr + cjk u ( ) kr + h.c. + jk φ φ SSB ( d ) ( u ) { jl cjk kr jl cjk ukr.} L 1 v Y = H + d d u h.c v 2 + + φ (0) = v/ 2 c ( q) jk diagonalization H LY = 1+ d d + u u + h.c. j j v { } jl md jr jl mu jr g µ L = Wµ u γ (1 γ ) d + h.c. CC i 5 ij j 2 2 ij The CKM matrix ij is the only source of CP

Neutrino µ τ Oscillations ν e ν µ ν ν M. Maltoni Lepton Mixing ν R, CP? NEW PHYSICS

THE STANDARD THEORY OF FUNDAMENTAL INTERACTIONS ( ) ( ) ( ) SU 3 SU 2 U 1 C L Y Electroweak + Strong Forces Gauge Symmetry Dynamics 3 Gauge Parameters: 2 ( ) α, α, θ s M Z W All Known Experimental Facts Explained Problem with Mass Scales / Mixings: - 15 Additional Parameters - Why 3 Families? - Why Left Right? m > M -Why t Z? - Does the Higgs Exist? - Flavour Mixing - CP iolation - Neutrino Masses / Oscillations

e WANTED WANTED Higgs Higgs µ GREAT GREAT REWARD REWARD STOCKHOLM τ