Does k-th Moment Exist?

Similar documents
Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation 1

The Bootstrap: Theory and Applications. Biing-Shen Kuo National Chengchi University

A MODIFICATION OF HILL S TAIL INDEX ESTIMATOR

A New Estimator for a Tail Index

Extreme Value Theory as a Theoretical Background for Power Law Behavior

arxiv: v1 [q-fin.cp] 23 Jan 2012

and Srikanth K. Iyer Department of Mathematics Indian Institute of Technology, Kanpur, India. ph:

Introduction to Algorithmic Trading Strategies Lecture 10

Tail Index Estimation: Quantile Driven Threshold Selection. Working Paper

WEIGHTED QUANTILE REGRESSION THEORY AND ITS APPLICATION. Abstract

If we want to analyze experimental or simulated data we might encounter the following tasks:

Asymptotic distribution of the sample average value-at-risk

Analysis methods of heavy-tailed data

Pareto approximation of the tail by local exponential modeling

Research Article Strong Convergence Bound of the Pareto Index Estimator under Right Censoring

Fall 2017 STAT 532 Homework Peter Hoff. 1. Let P be a probability measure on a collection of sets A.

Comparing downside risk measures for heavy tailed distributions

On the estimation of the heavy tail exponent in time series using the max spectrum. Stilian A. Stoev

A Bootstrap Test for Conditional Symmetry

Challenges in implementing worst-case analysis

Confidence intervals for kernel density estimation

CALCULATION METHOD FOR NONLINEAR DYNAMIC LEAST-ABSOLUTE DEVIATIONS ESTIMATOR

Extreme Value Theory An Introduction

Supplemental Material for KERNEL-BASED INFERENCE IN TIME-VARYING COEFFICIENT COINTEGRATING REGRESSION. September 2017

Least Absolute Value vs. Least Squares Estimation and Inference Procedures in Regression Models with Asymmetric Error Distributions

GARCH Models Estimation and Inference

11. Bootstrap Methods

Asymptotic distribution of the sample average value-at-risk in the case of heavy-tailed returns

Thomas J. Fisher. Research Statement. Preliminary Results

Simulating Uniform- and Triangular- Based Double Power Method Distributions

Department of Economics, Vanderbilt University While it is known that pseudo-out-of-sample methods are not optimal for

SYSM 6303: Quantitative Introduction to Risk and Uncertainty in Business Lecture 4: Fitting Data to Distributions

Multivariate Normal-Laplace Distribution and Processes

Bootstrap tests of multiple inequality restrictions on variance ratios

1 Random walks and data

AN ASYMPTOTICALLY UNBIASED MOMENT ESTIMATOR OF A NEGATIVE EXTREME VALUE INDEX. Departamento de Matemática. Abstract

A simple nonparametric test for structural change in joint tail probabilities SFB 823. Discussion Paper. Walter Krämer, Maarten van Kampen

Financial Econometrics and Volatility Models Extreme Value Theory

Finite-sample quantiles of the Jarque-Bera test

ECONOMICS 7200 MODERN TIME SERIES ANALYSIS Econometric Theory and Applications

A NOTE ON SECOND ORDER CONDITIONS IN EXTREME VALUE THEORY: LINKING GENERAL AND HEAVY TAIL CONDITIONS

Vector Autoregressive Model. Vector Autoregressions II. Estimation of Vector Autoregressions II. Estimation of Vector Autoregressions I.

Research Article A Nonparametric Two-Sample Wald Test of Equality of Variances

Cointegration Lecture I: Introduction

TESTING FOR NORMALITY IN THE LINEAR REGRESSION MODEL: AN EMPIRICAL LIKELIHOOD RATIO TEST

Gaussian Processes. Le Song. Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012

Statistics - Lecture One. Outline. Charlotte Wickham 1. Basic ideas about estimation

Tail Index Estimation of Heavy-tailed Distributions

NONPARAMETRIC ESTIMATION OF THE CONDITIONAL TAIL INDEX

A PRACTICAL WAY FOR ESTIMATING TAIL DEPENDENCE FUNCTIONS

STA 2201/442 Assignment 2

Research Article Optimal Portfolio Estimation for Dependent Financial Returns with Generalized Empirical Likelihood

Motivation. A Nonparametric test for the existence of moments. Purpose. Outline

Empirical likelihood and self-weighting approach for hypothesis testing of infinite variance processes and its applications

Additive functionals of infinite-variance moving averages. Wei Biao Wu The University of Chicago TECHNICAL REPORT NO. 535

Testing for a unit root in an ar(1) model using three and four moment approximations: symmetric distributions

CONTAGION VERSUS FLIGHT TO QUALITY IN FINANCIAL MARKETS

Estimation and Hypothesis Testing in LAV Regression with Autocorrelated Errors: Is Correction for Autocorrelation Helpful?

Monte Carlo Studies. The response in a Monte Carlo study is a random variable.

Comparing Forecast Accuracy of Different Models for Prices of Metal Commodities

Bootstrap Testing in Econometrics

Practical conditions on Markov chains for weak convergence of tail empirical processes

Long memory and changing persistence

Do Markov-Switching Models Capture Nonlinearities in the Data? Tests using Nonparametric Methods

Pareto approximation of the tail by local exponential modeling

COMPARISON OF THE ESTIMATORS OF THE LOCATION AND SCALE PARAMETERS UNDER THE MIXTURE AND OUTLIER MODELS VIA SIMULATION

QED. Queen s Economics Department Working Paper No. 1244

Weak convergence to the t-distribution

A comparison of four different block bootstrap methods

Stochastic volatility models: tails and memory

The Nonparametric Bootstrap

Single Equation Linear GMM with Serially Correlated Moment Conditions

Quantitative Modeling of Operational Risk: Between g-and-h and EVT

Single Equation Linear GMM with Serially Correlated Moment Conditions

Lectures on Simple Linear Regression Stat 431, Summer 2012

Estimation of the Conditional Variance in Paired Experiments

Confidence Intervals for the Autocorrelations of the Squares of GARCH Sequences

Estimation, Inference, and Hypothesis Testing

Master s Written Examination - Solution

On detection of unit roots generalizing the classic Dickey-Fuller approach

Extreme Value Analysis and Spatial Extremes

Teruko Takada Department of Economics, University of Illinois. Abstract

A Goodness-of-fit Test for Copulas

Economics 583: Econometric Theory I A Primer on Asymptotics

The Restricted Likelihood Ratio Test at the Boundary in Autoregressive Series

Parameter Estimation of the Stable GARCH(1,1)-Model

Refining the Central Limit Theorem Approximation via Extreme Value Theory

Chapter 1. Probability, Random Variables and Expectations. 1.1 Axiomatic Probability

The Analysis of Power for Some Chosen VaR Backtesting Procedures - Simulation Approach

Prof. Dr. Roland Füss Lecture Series in Applied Econometrics Summer Term Introduction to Time Series Analysis

Bootstrap prediction intervals for factor models

Understanding Regressions with Observations Collected at High Frequency over Long Span

POSTERIOR ANALYSIS OF THE MULTIPLICATIVE HETEROSCEDASTICITY MODEL

Calibration Estimation of Semiparametric Copula Models with Data Missing at Random

A nonparametric two-sample wald test of equality of variances

G. S. Maddala Kajal Lahiri. WILEY A John Wiley and Sons, Ltd., Publication

Testing Homogeneity Of A Large Data Set By Bootstrapping

Efficient Estimation of Distributional Tail Shape and the Extremal Index with Applications to Risk Management

GARCH Models Estimation and Inference. Eduardo Rossi University of Pavia

A Simple, Graphical Procedure for Comparing Multiple Treatment Effects

Transcription:

Does k-th Moment Exist? Hitomi, K. 1 and Y. Nishiyama 2 1 Kyoto Institute of Technology, Japan 2 Institute of Economic Research, Kyoto University, Japan Email: hitomi@kit.ac.jp Keywords: Existence of moments, tail index, dependent and heterogeneous data, optimal fraction EXTENDED ABSTRACT Most asymptotic distribution theory used in econometric research relies on moment conditions which carefully control outlier occurrences. It is not unusual in time series analysis to see conditions of the type let all required moments exist. However, in financial and commodity market time series the extent of outlier activity casts doubt on the suitability of such generic moment conditions. Mandelbrot (1963) provided suggestive evidence that even second moments may not exist for this type of data, and he proposed stable distributions with infinite variance as an alternative to finite-variance statistical models. Subsequent research has generally reached the conclusion that second moments of most datasets appear to be finite. In many empirical works in finance, the values of kurtosis and skewness were statistically tested even though the existence of higher-order, especially fourth or sixth, moments has been studied less extensively. This paper investigates a statistical testing method for the existence of the k-th moment for dependent, heterogeneous data using the tail index of the distribution function. Tail index estimation depends for its accuracy on a precise choice of the sample fraction, i.e., the number of extreme order statistics on which the estimation is based. Our test procedure has two steps. On the first step, we estimate optimal sample fraction that minimizes the mean squared error of Hill s estimator. Then, we test the hypothesis that the k-th moment is exist based on the Hill s estimator. Results of Monte Carlo simulations show that optimal sample fractions are chosen in average (except for heavily dependent data), size of the test is a slightly higher than a nominal rate and the test has good power for light or moderately dependent data, but the power decreases in heavily dependent case. 98

1 TAIL INDEX AND HILL S ESTIMATOR Suppose {X t } is a sequence of possibly dependent random variable having the same marginal distribution function F, where F = 1 F is regularly varying at, namely there exists an α >, such that F (tx) F (x) t α as x for all t > (1) or equivalently F (x) = x α L(x) x > (2) for some slowly varying function L(x). α is called tail index of F. Under this, it is easily seen that For k = 1, in particular, E[(ln X 1 ln b(n/m)) + ] =(m/n)α 1 and X (m+1) estimates b(n/m). Hence the Hill s estimator is essentially a method of moments estimator of α 1. Hsing (1991), in a seminal paper, proves consistency and established a general distribution limit for ˆα 1 m for strong mixing processes. The basic idea is to apply law of large numbers and central limit theorem to (ln X 1 ln b(n/m)) +. Hill (26) extends this results to functionals of near-epoch-dependent on a mixing processes. 2 CHOICE OF SAMPLE FRACTION where F (b(t)) t 1 as t b(t) = F 1 (1 t 1 ). Tail index estimation depends for its accuracy on a precise choice of the sample fraction, i.e., the number of extreme order statistics on which the estimation is based. Briefly speaking, we are assuming that the tail of F could be approximated by a Parate distribution, F (x) Cx α as x. An estimator of the tail index could be used for a moment existing test. Since if k < α, E(X k ) < and E(X k ) = for k α. It is important to be able to accurately estimate the tail index. A range of estimators has been proposed for this task. An intuitive approach to estimation the tail index was conceived by B. Hill (1975). Denoting z + = max{z, } and X (j) = X (n:j) for the j-th largest value of X 1, X 2,..., X n. Consider a sequence of integers m such that m and m/n as n. The so called Hill s estimator is defined by ˆα 1 m = 1 m = 1 m m (ln X (i) ln X (m+1) ) i=1 n (ln X t ln X (m+1) ) +. t=1 The idea behind Hill s estimator is easily understood. By dominated convergence theorem and integration by parts, the k-th moment of (ln X 1 ln b(n/m)) + is evaluated as (see also Hsing (1991), p1548) = = E[(ln X 1 ln b(n/m)) k +] = F (b(n/m)) m n P [(ln X 1 ln b(n/m)) k > u]du F (exp(u 1/k )b(n/m))du F (exp(u 1/k )b(n/m)) du F (b(n/m)) exp( αu 1/k )du = m n k! α. DuMouchel (1983) suggests that m.1 n is a good rule. But it does not work well for dependent processes. Table 1 is a result of a small Monte Carlo simulation. The sample size is 1 and {X t : t = 1, 2,..., 1} is generated by AR(1) process X t =.9X t 1 + ε t, where the ε t are i.i.d. Student-t with 2 degree of freedom. True values of α 1 are.5. m is chosen to be 5%, 1%, 15%, 2%, 25% and 3% of the sample size. This table is based on 1 simulations. The table reports means of Hill s estimator (Hill s est), standard deviations (Std hill s est), and mean squared errors (m.s.e). From the table, we see the estimator has negative bias for small m (m = 5, 1) and positive bias for large m (m = 2, 25, 3). The smallest bias and the mean squared error are achieved at m = 15. The positive biases for large m are understandable since the order of the bias is O(m/n). Little is known about the bias in small m under serially correlated data. It might be an interesting research topic. Bootstrap and adaptive selection methods for selecting m in the I.I.D. case are considered in Hall and Welsh (1985), Hall (199), Drees and Kaufmann (1997), and Danielsson, de Haan, Peng, and de Vries (21). Danielsson, de Haan, Peng, and de Vries (21) suggested the most sophisticated method for estimating mean squared error of the Hill s estimator. They use a sub sampling bootstrap method for estimating bias. Table 2 shows means, standard deviations and mean squared errors of the Hill s estimator for various m. Random variables are drawn from I.I.D. Studentt distribution with 2, 3 and 1 degrees of freedom 99

Table 1. Hill s estimate under AR(1) a=.9 A=.9 n=1 t d.f. 2 m 5 1 15 2 25 3 Hill s est.439.4623.518.594.794.8636 Std hill s est.1684.1372.1199.117.142.2272 m.s.e.376.22.147.225.635.1838 and Parate distribution with α = 3/2 and 5/2. The smallest mean squared error is marked by asterisk. The smallest mean squared error is achieved at m = 5 for the Student-t distribution with 2 and 3 degree of freedom, and at m = 15 for the Student-t distribution with 1 degree of freedom (Cauchy distribution). For Parate distribution, optimal m which minimizes the mean squared error is the largest m, since the Hill estimator that uses all data is the maximum likelihood estimator of the Parate distribution. Table 3 is a result of Danielsson, de Haan, Peng, and de Vries (21) method. It reports means of selected m, standard deviations of selected m, means of the Hill s estimator and standard deviations of the Hill s estimator. We could see that the Danielsson et al. s method choose appropriate m. If we apply their method to dependent data, it choose too small m. Table 4 reports means, standard deviations and mean squared errors of the Hill s estimator for AR(1) data generating process with Student-t errors. AR coefficients are chosen to be.6 and.9 (corresponding to a=.6 and a=.9 in the table). Compared to the I.I.D. case, we could see that the optimal m is increasing. Table 5 reports selected m by Danielsson et al s method and means of the Hill s estimator. Selected m s are too small compared to optimal m s and it generates biases to the estimator. If the data are I.I.D, Hall (1982) shows the variance of the Hill s estimator is α 2. In general dependent data case, an analytical expression of the variance is not available. The Hill s estimator is basically a moment estimator of E[(log X 1 log b(n/m)) + ], however, we could apply a block bootstrap method for estimating the variance of the Hill s estimator. For evaluating small sample bias, we should worked on more specific tail probability. Suppose the tail of the distribution function F could be approximated as F t (x) = cx α (1 + x α ). The following result is Corollary 2 in J. B. Hill (27). Assumption A {X t } satisfies (1) for some α >. For some positive measurable g : R + R +, L(λx)/L(x) 1 = O(g(x)) as x. The function g has bounded increase: there exists < D, z < and τ < such that g(λz)/g(z) Dλ τ some for λ 1 and z z. Specifically, {m n } n 1, {b mn } n 1, and g(.) satisfy mn g(b mn ), where m n, m n = o(n). 3 A MEAN SQUARED ERROR ESTIMATOR AND A TESTING PROCEDURE Our test procedure has two steps. On the first step, we estimate optimal m which minimizes the mean squared error of the Hill s estimator. Then, we test the hypothesis that k-th moment is exist based on the Hill s estimator. It is equivalent to test Assumption B {X t } is L 2 -E-NED with size 1/2 on E-Mixing Process {ɛ t }. The base {ɛ t } is E-Uniform Mixing with size r/(2(r 1)) for some r 2, or E- Strong Mixing with size r/(r 2) for some r >. Remark: See J. B. Hill (27) for definitions of L 2 -E- NED, E-Mixing and E-Uniform Mixing. Lemma Suppose H : α 1 < 1 k F t (x) = cx α (1 + x α ), α, c >, and m n = o(n 2/3 ). Under Assumptions A and B H 1 : α 1 1 k. For minimizing the mean squared error of the Hill s estimator, we need to estimate the variance and the small sample bias of the Hill s estimator. B mn E[ m n (ˆα 1 m n α 1 )] = m n α 1 1 2 b(n/m) α + o(1) = o(1). 91

Note: For small samples and any process satisfying (2), this estimator of the bias is at best a rough approximation of the true bias. Pareto random variables, for example, this estimator over-estimates the bias. b(n/m) is easily estimated by X (m+1). Our estimator of the bias is ˆB m = mˆα 1 m 1 2 X ˆαm (m+1) and the estimator of the optimal m is = min m {ˆσ2 m + ˆB m }, where ˆσ m 2 is a block bootstrap estimator of the variance of ˆα 1 m. Our test statistics is usual t-statistics that uses the Hill s estimator evaluated at, t = ˆα 1 1/k ˆσ 2. Asymptotic normality of the test statistics has not yet been proved. We only present a small Monte Carlo simulation result at this time. The samples are generated as follow. We draw random samples of I.I.D. innovations {ɛ t } from Student-t distribution 2,3 or 1 degree of freedom. It implies true α 1 =.5,.33 or 1. correspondingly. The number of sample size is fixed to 1. We simulate AR(1) processes using {ɛ t }, X t = a X t 1 + ɛ t, a {.3,.6,.9}. 5 processes are generated for each cases. Our testing hypothesis is that the variance is finite or not, H : α 1 < 1/2 H 1 : α 1 1/2. Results are summarized in Table 6. Table 6 reports means of, s.t.d of, means of ˆα 1, s.t.d of ˆα 1 and rejection rates of H based on 5% one side nominal critical value for each AR coefficient and degree of freedom of t-distribution. Compared to Table 4, we could see that appropriate m s are chosen in average. It implies the biases are not so large at least a =.3 and.6. Rejection rate of H on Student-t with 2 degree of freedom shows size of the test. It shows a tendency to over rejection (about 2-3%). The power of the test is not so bad. The rejection rate of Student-t with 1 degree of freedom is almost one for a =.3 and.6. But it decreases to 6% when a =.9. Probably, this power loss is caused by relatively large bias at a =.9. 4 CONCLUSION This paper proposes a statistical testing method for the existence of the k-th moment for dependent, heterogeneous data using the tail index of the distribution function. Our test procedure has two steps. On the first step, we estimate optimal m which minimizes the mean squared error of the Hill s estimator. Then, we test the hypothesis that the k-th moment is exist based on the Hill s estimator. The results of Monte Carlo simulations show that optimal m s are chosen in average (except for heavily dependent data), the size of the test is a slightly higher than a nominal rate and the test has good power for light or moderately dependent data but the power decreases in heavily dependent case. 5 REFERENCES DANIELSSON, J., L. DE HAAN, L. PENG, AND C. G. DE VRIES (21): Using a Bootstrap Method to Choose the Sample Fraction in Tail Index Estimation, Journal of Multivariate Analysis, 76(2), 226 248. DE HAAN, L., AND S. I. RESNICK (198): A Simple Asymptotic Estimate for the Index of a Stable Distribution, Journal of the Royal Statistical Society. Series B, 42(1), 83 87. DEKKERS, A. L. M., AND L. D. HAAN (1989): On the Estimation of the Extreme-Value Index and Large Quantile Estimation, The Annals of Statistics, 17(4), 1795 1832. DREES, H., AND E. KAUFMANN (1998): Selecting the optimal sample fraction in univariate extreme value estimation, Stochastic Processes and their Applications, 75(2), 149 172. DUMOUCHEL, W. H. (1983): Estimating the Stable Index α in Order to Measure Tail Thickness: A Critique, The Annals of Statistics, 11(4), 119 131. HALL, P. (1982): On Some Simple Estimates of an Exponent of Regular Variation, Journal of the Royal Statistical Society. Series B (Methodological), 44(1), 37 42. (199): Using the Bootstrap to Estimate Mean Squared Error and Select Smoothing Parameter in Nonparametric Problems, Journal of Multivariate Analysis, 32(1), 177 23. HALL, P., AND A. H. WELSH (1985): Adaptive Estimates of Parameters of Regular Variation, The Annals of Statistics, 13(1), 331 341. HILL, B. M. (1975): A Simple General Approach to Inference About the Tail of a Distribution, The Annals of Statistics, 3(5), 1163 1174. 911

Table 2. Mean and M.S.E. of Hill s Estimator (I.I.D.) m 5 1 15 2 25 3 4 t dist d.f. 2 mean.5431.5883.6463.7216.813.934 1.393 α 1 =.5 s.t.d.757.539.479.459.493.67.1267 m.s.e.76.17.237.512.987.192.8136 t dist d.f. 3 mean.481.4693.5377.6189.7188.8433 1.392 α 1 = 1/3 s.t.d.532.419.48.48.451.543.1188 m.s.e.84.22.434.832.156.263.9665 t dist d.f. 1 mean 1.13 1.252 1.578 1.125 1.171 1.2676 1.668 α 1 = 1 s.t.d.1475.994.824.754.694.726.1182 m.s.e.219.15.11.162.337.769.461 m 5 1 2 4 5 75 Parate mean.6672.6678.6651.6657.6664.6658 α 1 =.66 s.t.d.947.662.454.32.298.241 m.s.e.9.44.21.1.9.6 Parate mean.3998.42.3987.3994.45.3999 α 1 =.4 s.t.d.567.384.28.23.184.147 m.s.e.32.15.8.4.3.2 Table 3. Danielson et al. (21) Method Student-t Parate d.f. 2 d.f. 3 d.f. 1 α 1 =.66 α 1 =.4 m 54.68 33.69 119.372 864.68 874.876 s.t.d of m 43.162 28.3625 92.72 183.7278 184.248 mean of Hill s est.5187.3673 1.579.6623.3966 s.t.d of Hill s est.119.87.8353.46.191 Table 4. Mean and M.S.E. of Hill s Estimator (AR(1)) M 5 1 15 2 25 3 4 t d.f. 2 a=.6 mean.4816.5285.58.6569.7516.8764 1.3661 s.t.d.16.699.6.62.6.859.2388 m.s.e.15.57.15.283.675.1491.871 a=.9 mean.439.4623.518.594.794.8636 1.3237 s.t.d.1684.1372.1199.117.142.2272.6311 m.s.e.376.22.147.225.635.1838 1.769 t d.f. 3 a=.6 mean.3514.414.4846.569.669.834 1.2892 s.t.d.597.453.467.483.62.83.2346 m.s.e.39.8.25.541.1163.2274.9686 a=.9 mean.2838.3494.4263.5179.637.774 1.2714 s.t.d.92.745.749.865.1175.174.611 m.s.e.16.58.142.415.16.2245 1.2533 t d.f. 1 a=.6 mean.9655 1.3 1.354 1.894 1.1697 1.2765 1.7133 s.t.d.2581.1955.1688.1423.1271.1335.2658 m.s.e.678.382.297.282.449.943.5794 a=.9 mean.851.9286.989 1.771 1.181 1.2952 1.695 s.t.d.3671.3413.2985.392.286.3171.7698 m.s.e.1728.1216.892.115.1115.1877.9641 912

Table 5. Danielsson et al. s method (AR(1)) t d.f. 2 t d.f. 3 t d.f. 1 a=.6 m 5.6 31.8 15.8 mean of Hill s.44.31 1. a=.9 m 46.79 3.71 78.37 mean of Hill s.35.22.73 Table 6. Finiteness of variance test AR coef a=.3 a=.6 a=.9 t dist d.f. 2 mean of 68.3 93.8 115.9 s.t.d of 24.11 31.36 58.56 mean of ˆα 1.5162.591.4579 s.t.d of ˆα 1.699.827.1625 rejection rate of H.82.7.62 t dist d.f. 3 mean of 59.5 79.2 87.2 s.t.d of 19.63 79.2 45.6 mean of ˆα 1.3913.3747.3197 s.t.d of ˆα 1.519.3747.177 rejection rate of H...8 t dist d.f. 1 mean of 84.9 11.2 136.8 s.t.d of 32.85 53.4 88.33 mean of ˆα 1.9767.9627.8755 s.t.d of ˆα 1.159.1943.3386 rejection rate of H.99.98.596 HILL, J. B. (26): On Tail Index Estimation for Dependent, Heterogenous Data, mimeo. (27): Kernel Methods for Small Sample and Asymptotic Tail Inference of Dependent, Heterogeneous Data, mimeo. HSING, T. (1991): On Tail Index Estimation Using Dependent Data, The Annals of Statistics, 19(3), 1547 1569. KEARNS, P., AND A. PAGAN (1997): Estimating the density Tail Index for Financial Time Series, Review of Economics and Statistics, 79(2), 171 175. LORETAN, M., AND P. C. PHILLIPS (1994): Testing the covariance stationarity of heavy-tailed time series, Journal of Empirical Finance, 1(2), 211 248. MANDELBROT, B. (1963): The Variation of Certain Speculative Prices, The Journal of Business, 36(4), 394 419. PICKANDS, J. (1975): Statistical Inference Using Extreme Order Statistics, The Annals of Statistics, 3(1), 119 131. 913