Evolution of a Powerful Radio Loud Quasar 3C 186 and its Impact on the Cluster Environment at z=1

Similar documents
The Case of the 300 kpc Long X-ray Jet in PKS at z=1.18

The Radio/X-ray Interaction in Abell 2029

arxiv:astro-ph/ v1 6 May 2004

Proper motion and apparent contraction in the J

Part 2. Hot gas halos and SMBHs in optically faint ellipticals. Part 3. After Chandra?

Chandra discovery of the intracluster medium around UM425 at redshift 1.47

TEMA 6. Continuum Emission

LeMMINGs the emerlin radio legacy survey of nearby galaxies Ranieri D. Baldi

Massive Outflows from Radio-Loud Quasars. Alan Stockton Hai Fu Institute for Astronomy University of Hawaii


Introduction to AGN. General Characteristics History Components of AGN The AGN Zoo

Osservatorio Astronomico di Bologna, 27 Ottobre 2011

PoS(IX EVN Symposium)007

A Shock Model for the the Outburst from the Supermassive Black Hole in M87 Bill Forman - SAO/CfA

Dichotomy in the population of young AGNs: optical, radio and X-ray properties

Radio emission in clusters of galaxies. An observational perspective

Galaxies with Active Nuclei. Active Galactic Nuclei Seyfert Galaxies Radio Galaxies Quasars Supermassive Black Holes

X-ray Detection of the Inner Jet in the Radio Galaxy 3C 129

arxiv:astro-ph/ v1 27 Jul 2002

Active galactic nuclei (AGN)

Quasars ASTR 2120 Sarazin. Quintuple Gravitational Lens Quasar

Radio Properties Of X-Ray Selected AGN

AGN FEEDBACK IN GALAXY GROUPS

Active galaxies. Some History Classification scheme Building blocks Some important results

A zoo of transient sources. (c)2017 van Putten 1

Observational Evidence of AGN Feedback

Active Galactic Nuclei - Zoology

A caleidoscopic view of Active Galactic Nuclei

Broadband X-ray emission from radio-quiet Active Galactic Nuclei

The History of Active Galaxies A.Barger, P. Capak, L. Cowie, RFM, A. Steffen, and Y. Yang

A Multi-wavelength View of the Archetypal CSS Radio Galaxy 3C303.1: Evidence for Shocks and Induced Star Formation

A Unified Model for AGN. Ryan Yamada Astro 671 March 27, 2006

Black Holes in the Early Universe Accretion and Feedback

Active Galactic Nuclei

VLBI observations of AGNs

Black Holes and Active Galactic Nuclei

Observing the Formation of Dense Stellar Nuclei at Low and High Redshift (?) Roderik Overzier Max-Planck-Institute for Astrophysics

Connections between Radio and High Energy Emission in AGN

Vera Genten. AGN (Active Galactic Nuclei)

High Redshift Universe

Multi-wavelength Astronomy

Multi-wavelength Surveys for AGN & AGN Variability. Vicki Sarajedini University of Florida

Constraining the energy budget of radio galaxies with LOFAR

THE ENIGMATIC X-RAY JET OF 3C120

AGN Feedback in the Hot Halo of NGC 4649

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk

Active Galactic Nuclei OIII

arxiv: v1 [astro-ph.he] 9 Jan 2009

Hubble Space Telescope ultraviolet spectroscopy of blazars: emission lines properties and black hole masses. E. Pian, R. Falomo, A.

Feeding the Beast. Chris Impey (University of Arizona)

Publ. Astron. Obs. Belgrade No. 86 (2009), TURKISH NATIONAL OBSERVATORY (TUG) VIEW OF CLUSTERS OF GALAXIES

MASSIVE BLACK HOLES AMY REINES IN NEARBY DWARF GALAXIES HUBBLE FELLOW NATIONAL OPTICAL ASTRONOMY OBSERVATROY

Resolving the Steep Spectrum Emission in the Central Radio Source in ZwCl

Investigation of Radio Structures of High-z QSOs by VLBI Observation

arxiv:astro-ph/ v1 17 Dec 2001

Dark Matter ASTR 2120 Sarazin. Bullet Cluster of Galaxies - Dark Matter Lab

A Supermassive Black Hole in the Dwarf Starburst Galaxy Henize Amy Reines Einstein Fellow National Radio Astronomy Observatory

arxiv:astro-ph/ v2 25 Jun 2006

The highest redshift radio quasar as seen with

Studying Merger Driven BH Growth with Observations of Dual AGN

THE LAST SURVEY OF THE OLD WSRT: TOOLS AND RESULTS FOR THE FUTURE HI ABSORPTION SURVEYS

X-ray data analysis. Andrea Marinucci. Università degli Studi Roma Tre

GMRT observations of radio halo clusters

AGN in hierarchical galaxy formation models

Observations of diffuse radio emission in cool-core clusters

Massive molecular gas flows and AGN feedback in galaxy clusters

Astrophysical Quantities

Orianne ROOS CEA-Saclay Collaborators : F. Bournaud, J. Gabor, S. Juneau

Active Galaxies & Emission Line Diagnostics

Observations of jet dissipation. Robert Laing (ESO/Oxford)

Luminous radio-loud AGN: triggering and (positive?) feedback

VLBI Observations of HI in Compact Symmetric Objects: the case of B

Multi-frequency radio observations of BAL quasar

Snowballs in hell! X-ray galactic coronae in galaxy! clusters and the need for sub-arcsecond resolution! Simona Giacintucci (NRL)!

New Results on the AGN Content of Galaxy Clusters

Dark Energy: Measuring the Invisible with X-Ray Telescopes

AGN Feedback In an Isolated Elliptical Galaxy

Active Galactic Alexander David M Nuclei

ASCA Observations of Radio-Loud AGNs

AGN and Radio Galaxy Studies with LOFAR and SKA

Chapter 17. Active Galaxies and Supermassive Black Holes

Investigating Ultraluminous X-ray Sources through multi-wavelength variability, broadband spectra, and theoretical modelling

Quasars and Active Galactic Nuclei (AGN)

Chandra X-Ray Detection of the Radio Hot Spots of 3C 295

The Jet/ISM Interaction in Three Nearby Radio Galaxies as seen with Chandra

The physical state of radio-mode, low- luminosity AGN

arxiv:astro-ph/ v1 9 Dec 2000

Astr 2320 Thurs. April 27, 2017 Today s Topics. Chapter 21: Active Galaxies and Quasars

Binary systems with accretion onto compact object

Extreme high-energy variability of Markarian 421

Feedback from growth of supermassive black holes

Quasars and AGN. What are quasars and how do they differ from galaxies? What powers AGN s. Jets and outflows from QSOs and AGNs

Lecture 11: SDSS Sources at Other Wavelengths: From X rays to radio. Astr 598: Astronomy with SDSS

Galaxies. Galaxy Diversity. Galaxies, AGN and Quasars. Physics 113 Goderya

ACTIVE GALACTIC NUCLEI: optical spectroscopy. From AGN classification to Black Hole mass estimation

Demographics of radio galaxies nearby and at z~0.55. Are radio galaxies signposts to black-hole mergers?

The Turmoil in IC1262

Molecular Gas and the Host Galaxies of Infrared-Excess Quasi-Stellar Objects

Galaxy formation and evolution. Astro 850

AGN Central Engines. Supermassive Black Holes (SMBHs) Masses and Accretion Rates SMBH Mass Determinations Accretion Disks

Transcription:

SLAC-PUB-12763 astro-ph/0708.1265 Extragalactic Jets: Theory and Observation from Radio to Gamma Ray ASP Conference Series, Vol. **VOLUME**, **YEAR OF PUBLICATION** T. A. Rector and D. S. De Young (eds.) Evolution of a Powerful Radio Loud Quasar 3C 186 and its Impact on the Cluster Environment at z=1 Aneta Siemiginowska, Thomas L. Aldcroft, Doug Burke Center for Astrophysics, 60 Garden St., Cambridge, MA 02138 Jill Bechtold Steward Observatory, University of Arizona, Tucson, AZ C.C.Cheung 1 KIPAC, Stanford University, Stanford CA 94305 Stephanie LaMassa Johns Hopkins University, Baltimore, MD Diana M. Worrall Department of Physics, University of Bristol, Tyndall Ave., Bristol, UK Abstract. X-ray cluster emission has been observed mainly in clusters with inactive cd galaxies (L bol 10 40 10 43 erg sec 1 ), which do not show signs of accretion onto a SMBH. Our recent Chandra discovery of >100 kpc scale diffuse X-ray emission revealed the presence of an X-ray cluster associated with the radio loud quasar 3C 186 at redshift z=1.1 and suggests interactions between the quasar and the cluster. In contrast to the majority of X-ray clusters the 3C 186 cluster contains a quasar in the center whose radiative power alone exceeds that which would be needed to quench the cluster cooling. We present the Chandra X-ray data and new deep radio and optical images of this cluster. The 3C 186 quasar is a powerful Compact Steep Spectrum radio source expanding into the cluster medium. The 2 arcsec radio jet is unresolved in the Chandra observation, but its direction is orthogonal to the elliptical surface brightness of the cluster. The radio data show the possible presence of old radio lobes on 10 arcsec scale in the direction of the radio jet. We discuss the nature of this source in the context of intermittent radio activity and the interaction of the young expanding radio source with the cluster medium. 1. Introduction We present an X-ray cluster at redshift z=1.1 associated with the radio loud quasar 3C 186. Diffuse X-ray emission surrounding a luminous quasar has only 1 Jansky Postdoctoral Fellow of the National Radio Astronomy Observatory Contributed to International Meeting on Extragalactic Jets: Theory and Observation from Radio to Gamma Ray, 05/21/2007--5/24/2007, Girdwood, Alaska Work supported in part by US Department of Energy contract DE-AC02-76SF00515

2 Siemiginowska et al. Figure 1. Smoothed Chandra ACIS-S (0.3-7 kev) image of 3C 186 The diffuse cluster emission extends to 120 kpc from the central quasar. The 10 arcsec (82 kpc) size is marked. The direction of an unresolved 2 arcsec radio jet is also marked; it is orthogonal to the elliptical distribution of the cluster X-ray emission. been detected around a handful of low-redshift (z < 0.4) radio-loud quasars (Siemiginowska et al. (2005), Stockton et al. (2006)) and around a few z > 0.5 radio galaxies (Belsole et al. 2006). 3C 186 cluster is at high redshift. Its X-ray surface brightness is high enough to allow for measuring the cluster redshift and constraining the properties of the cluster at z 1. This paper discusses the properties of the quasar, the cluster and their interactions. 2. 3C186: Quasar 3C 186 is a very luminous quasar (L bol 10 47 erg sec 1 ). It has a strong big blue bump (BBB) in the optical-uv band and broad optical emission lines. The quasar SED is shown in Fig. 2. The strong big-blue bump emission is generally interpreted as thermal emission from an accretion disk surrounding the SMBH. The total luminosity of the 3C 186 BBB is equal to 5.7 10 46 erg s 1. Assuming accretion at the Eddington limit we obtain a black hole mass of 4.5 10 8 M. Using the measurement of CIV FWHM from Kuraszkiewicz et al. (2002) and the scaling from reverberation mapping (Vestergaard 2002) the estimated mass of black hole is larger and equal to 3.2 10 9 M. Thus the central SMBH is large and given the required accretion rate of 10M yr 1 to power this system it is still growing.

3C 186 3 Figure 2. Spectral energy distribution of the 3C 186 quasar. The Chandra data are plotted with the 1σ bow-tie regions. The radio and optical photometric data points are taken from NED. The solid line represents the average radio-loud quasar SED from Elvis et al. (1994) normalized at log ν = 14.5. The quasar is extremely radio loud (radio loudness equal to Log(F 5GHz /M B ) = 4.3) as shown in Fig.2. where the average radio-loud quasars SED from Elvis et al. (1994) is drawn for a comparison. The radio morphology in Fig. 3 shows two components separated by 2 and a jet connecting the core and NW component. Murgia et al. (1999) estimated the age of the source to be of the order of 10 5 years based on the spectral age of the radio source. 3. 3C186: Cluster 3.1. X-ray Cluster Chandra detected 740 source counts in a diffuse emission surrounding the quasar. We fitted the X-ray spectrum and determined a cluster redshift of z = 1.1 ± 0.1 and estimated the X-ray cluster parameters (see Siemiginowska et al. (2005)). The temperature of 5.2 +1.3 0.9 kev and gas mass fraction of 10% are typical of other clusters at this high redshift (Vikhlinin et al. 2002). Modeling of the cluster surface brightness gives a normal value of β=0.64 +0.11 0.07, but a relatively small core radius of 45±12 kpc. The cluster luminosity, L (0.5 2keV ) = 6 10 44 erg sec 1 is typical for the measured cluster temperature. Diffuse X-ray cluster emission is detected out to 15 arcsec ( 120 kpc, Fig. 1.). The X-ray cluster emission is non-symmetric and elongated in the NE- SW direction. This structure is orthogonal to the 2 arcsec radio jet unresolved in the Chandra observation. The hardness ratios indicate possible spectral differences within the NE-SW sectors with the harder emission towards the NE. Fitting a thermal model shows temperature variations between 3.7 kev and 4.9 kev, but with large errors ±1.5-2 kev.

4 Siemiginowska et al. Figure 3. Left: VLA 1.5 GHz image of 3C 186 from reprocessing of the archival datasets published in van Breugel et al. (1992). The restoring beam is 1.62 1.44 at position angle 42.7 degrees shown at bottom left. The image peak is 565 mjy/bm and contour levels begin at 0.5 mjy/beam (2σ) and increase by factors of 2. Some extended radio emission is apparent, though not at the angular scale of the observed extended X-rays. North is up East is left. Right: High resolution (0.15 ) VLA 15 GHz image of 3C 186 showing two lobes and a jet connecting the core with the Northern Lobe. This structure is entirely located within a 2 arcsec ( 16 kpc) region. The image peak is 21.6 mjy/beam, and contours begin at 0.65 mjy/beam increasing by factors of 2. 3.2. Optical Cluster Quasars are usually observed to be offset from the optical peak emission in rich clusters at high redshift (Barr et al. 2003) suggesting loosely bound systems such as groups or proto-clusters, in the process of forming and undergoing mergers. The optical image (GEMINI, GN=2007A-Q-110) of the cluster taken in February 2007 is overlayed with the Chandra X-ray contours and is presented in Fig.4. There are many faint candidate cluster members in the field and their distribution will provide information about the structures formed in this cluster. We currently have a program to measure redshifts of the galaxies in the cluster field. 4. Quasar-Cluster Interaction The 3C 186 radio jet and two hot spots are not resolved in the Chandra X- ray image. The hot spots are separated by 16 kpc and located outside the host galaxy. Thus the jet is moving within the cluster medium. There are two aspects of the possible quasar cluster interaction: (1) cluster impact on the jet motion and (2) a transfer of the jet power to the cluster medium. The presence of the

3C 186 5 Figure 4. The Chandra contours of the X-ray cluster emission superimposed on the Gemini-GMOS r -band image. The bright object in the center is the quasar, and numerous faint candidate cluster members are visible around it. cluster allows us also to look for the signature of past quasar activity in the form of a relic radio source. 4.1. Jet Progress Based on the cluster central density and temperature, we estimate a thermal pressure of 5 10 11 dyn cm 2. If this pressure is higher than the pressure within the expanding radio components then the cluster gas may be responsible for confining the radio source and its small size. Taking the radio spectral index to be 1, and approximating each component as a homogeneous spheroid, we estimate the minimum pressure in each radio component to be 10 8 dyn cm 2. Thus the radio source is highly overpressured by about 2-3 orders of magnitude with respect to the thermal cluster medium and its expansion has not been affected by the medium. The jet might also interact and be stopped by a clumpy cold medium of the host galaxy (Carvalho et al 1998, De Young 1991) and clouds with densities of 1-30 cm 3 are required to confine a jet. To estimate the total size of the clumpy medium we can use the limit to the total X-ray absorbing column density intrinsic to the quasar. The X-ray absorption limit of N H < 9 10 20 cm 2 gives the size of any clumpy medium along the line of sight of order 10-100 pc compared with the 16 kpc diameter of the radio source. Any such region cannot significantly limit the expansion of the radio source (see also discussion in Guainazzi et al. (2004)). 4.2. Cluster Heating The radio components are overpressured with respect to the thermal cluster gas. Thus the expansion of these components into the cluster medium could potentially heat the center of this cluster. The energy dissipated into the cluster by the expanding radio components has been widely discussed in the context of

6 Siemiginowska et al. Figure 5. VLA contours (1.4 GHz, C-configuration, July 2005) overlayed on the smoothed ACIS-S image of 3C 186. The radio image is super-resolved with a 3 arcse beam. The radio contours start at 0.35 (this is mjy/beam - corresponds to 3*rms) and continue at 0.7,1,2,3,4,10, 100, 500. low redshift clusters, where there is evidence for repetitive outbursts of an AGN. However, the details of the dissipation process are undecided. We estimate the energy content of the hot cluster gas assuming a total emitting volume of 2.3 10 71 cm 3 and kt 5 kev, to be of the order of 3 2 ktnv 2 10 61 ergs. Using the 151 MHz flux density of 5.9 10 24 erg sec 1 cm 2 Hz 1 Hales et al. (1993)Willott et al. (1999) scaling which accounts for the total radio emission from the jet and hot spots, the jet kinetic power is of order L jet 10 46 erg sec 1. If the expanding radio source dissipated this jet energy into the cluster s central 120 kpc region, then the heating time would be 10 8 years. We can also estimate the amount of mechanical work done by the jet and radio components during the expansion to the current radio size (2 0.3 2.3 10 66 cm 3 ) as pdv 10 56 ergs. If the expansion velocity is of the order of 0.1c then the radio source has been expanding for about 5 10 5 years with an average power of 6 10 42 erg sec 1. The estimated jet power is 3 orders of magnitude higher. 4.3. Relic? Large scale radio emission can indicate quasar radio activity in the past. We obtained a deep VLA image of 3C 186 in July 2005 to look for any emission associated with the discovered X-ray cluster. In Fig. 5 we show the smoothed ACIS-S image overlayed with 1.4 GHz radio contours from our observation.

3C 186 7 Extended emission is visible in N-S direction in the radio contours. Note that the elongation is slightly different than the elongation of X-ray emission, so the northern radio lobe points to a location of lower surface brightness in the cluster. We estimated a negative signal ( bubble ) in the X-ray data at the location of the northern radio lobe by comparing a number of counts in a circular region (r=2.5 ) centered on this lobe to the background counts in an annulus at the same distance from the quasar. We detect a deficit of -13.9 counts (1.5σ) at that location. 5. Summary We detect a powerful radio loud quasar in an X-ray cluster at redshift z = 1.1. Based on radio and X-ray observations we conclude that the radio source has not been confined by the cluster gas. The source is at an early stage of expansion. Possible relic activity reflected in the X-ray and radio emission will be confirmed with the future Chandra and VLA observations. Optical spectroscopy is needed to determine redshifts of the galaxies and the cluster members. Acknowledgments. This research is funded in part by NASA contract NAS8-39073 and the Chandra grants GO-01164X, GO2-3148A and GO-6113X. The VLA is a facility of the National Radio Astronomy Observatory is operated by Associated Universities, Inc. under a cooperative agreement with the National Science Foundation. References Barr, J. M., Bremer, M. N., Baker, J. C., & Lehnert, M. D. 2003, MNRAS, 346, 229 Belsole, E., Worrall, D. M., & Hardcastle, M. J. 2006, astro-ph/0610124, and MNRAS submitted Carvalho, J. C. 1998, A&A, 329, 845 De Young, D. S. 1991, ApJ, 371, 69 Elvis, M., Fiore, F., Wilkes, B., McDowell, J., & Bechtold, J. 1994, ApJ, 422, 60 Guainazzi, M. et al. 2004, A&A, 421, 461 Hales, S. E. G., Baldwin, J. E., & Warner, P. J. 1993, MNRAS, 263, 25 Kuraszkiewicz, J. K. et al. 2002, ApJS, 143, 257 Martini, P. et al. 2006, ApJ, 644, 116 Murgia, M. et al. 1999, A&A, 345, 769 Siemiginowska, A. et al. 2005, ApJ, 632, 110 Stockton, A., Fu, H., Henry, J. P., & Canalizo, G. 2006, ApJ, 638, 635 Vestergaard, M. 2002, ApJ, 571, 733 Vikhlinin, A. et al. 2002, ApJ, 578, L107 Willott, C. J., Rawlings, S., Blundell, K. M., & Lacy, M. 1999, MNRAS, 309, 1017