Using PMaxSat Techniques to Solve the Maximum Clique Problem

Similar documents
Worst Case Instances for Maximum Clique Algorithms and How to Avoid Them

A Clause Tableau Calculus for MinSAT

MiniMaxSat: : A new Weighted Solver. Federico Heras Javier Larrosa Albert Oliveras

Solving (Weighted) Partial MaxSAT with ILP

ahmaxsat: Description and Evaluation of a Branch and Bound Max-SAT Solver

Pruning Search Space for Weighted First Order Horn Clause Satisfiability

Introduction to Solving Combinatorial Problems with SAT

A Method for Generating All the Prime Implicants of Binary CNF Formulas

Inference Rules in Local Search for Max-SAT

uncorrected proof An efficient solver for weighted Max-SAT Teresa Alsinet Felip Manyà Jordi Planes

Algorithms for Satisfiability beyond Resolution.

New Inference Rules for Efficient Max-SAT Solving

Practical SAT Solving

Foundations of Artificial Intelligence

arxiv: v1 [cs.lo] 8 Jun 2018

Relaxation Search: A Simple Way of Managing Optional Clauses

Branching. Teppo Niinimäki. Helsinki October 14, 2011 Seminar: Exact Exponential Algorithms UNIVERSITY OF HELSINKI Department of Computer Science

An instance of SAT is defined as (X, S)

Variable Objective Search

A SEQUENTIAL ELIMINATION ALGORITHM FOR COMPUTING BOUNDS ON THE CLIQUE NUMBER OF A GRAPH

CSE 3500 Algorithms and Complexity Fall 2016 Lecture 25: November 29, 2016

From Abstract Models to Executable Models for Multi-Agent Path Finding on Real Robots

Minimal Model Generation with respect to an Atom Set

Resolution-based lower bounds in MaxSAT

A New Approach to Proving Upper Bounds for MAX-2-SAT

New Inference Rules for Max-SAT

MaxSAT Resolution with the Dual Rail Encoding

Introduction to Computational Complexity

A reactive framework for Ant Colony Optimization

Tracing Data Errors Using View-Conditioned Causality

Improving Unsatisfiability-based Algorithms for Boolean Optimization

NP-Complete Reductions 1

From SAT To SMT: Part 1. Vijay Ganesh MIT

Solvers for the Problem of Boolean Satisfiability (SAT) Will Klieber Aug 31, 2011

New Lower Bounds on the Stability Number of a Graph

Interleaved Alldifferent Constraints: CSP vs. SAT Approaches

Satisfiability and SAT Solvers. CS 270 Math Foundations of CS Jeremy Johnson

NP and Computational Intractability

Lecture 2 Propositional Logic & SAT

Enumerating Prime Implicants of Propositional Formulae in Conjunctive Normal Form

Comp487/587 - Boolean Formulas

Algorithms and Complexity Theory. Chapter 8: Introduction to Complexity. Computer Science - Durban - September 2005

Multiobjective Optimization

Tutorial 1: Modern SMT Solvers and Verification

Solving Max SAT and #SAT on structured CNF formulas

Improvements to Core-Guided Binary Search for MaxSAT

Decision Procedures for Satisfiability and Validity in Propositional Logic

A Comparison of Methods for Solving MAX-SAT. Problems. Steve Joy, John E. Mitchell.

Computational Complexity and Intractability: An Introduction to the Theory of NP. Chapter 9

NP-Complete Problems. More reductions

NP-Complete Reductions 2

Lecture 10: Lovász Local Lemma. Lovász Local Lemma

NP Completeness. CS 374: Algorithms & Models of Computation, Spring Lecture 23. November 19, 2015

Theory of Computation CS3102 Spring 2014 A tale of computers, math, problem solving, life, love and tragic death

Polynomial-Time Reductions

On a Polynomial Fractional Formulation for Independence Number of a Graph

COMP219: Artificial Intelligence. Lecture 20: Propositional Reasoning

Introduction to Artificial Intelligence Propositional Logic & SAT Solving. UIUC CS 440 / ECE 448 Professor: Eyal Amir Spring Semester 2010

Non-Deterministic Time

Lecture 9: Search 8. Victor R. Lesser. CMPSCI 683 Fall 2010

The Potential and Challenges of CAD with Equational Constraints for SC-Square

Artificial Intelligence

Boolean decision diagrams and SAT-based representations

Approximation Preserving Reductions

Introduction. Pvs.NPExample

Part II Strong lift-and-project cutting planes. Vienna, January 2012

Phase Transition and Network Structure in Realistic SAT Problems

Design and Analysis of Algorithms

Propositional Resolution

Foundations of Artificial Intelligence

Lecture 9: The Splitting Method for SAT

Conjunctive Normal Form and SAT

Worst-Case Upper Bound for (1, 2)-QSAT

Technische Universität Ilmenau Institut für Mathematik

Incremental Deterministic Planning

Keywords. Approximation Complexity Theory: historical remarks. What s PCP?

Symmetry Breaking for Relational Weighted Model Finding

Conjunctive Normal Form and SAT

Generating SAT Instances with Community Structure

3130CIT Theory of Computation

APPROXIMATION ALGORITHMS RESOLUTION OF SELECTED PROBLEMS 1

Harvard CS 121 and CSCI E-121 Lecture 22: The P vs. NP Question and NP-completeness

2 COLORING. Given G, nd the minimum number of colors to color G. Given graph G and positive integer k, is X(G) k?

NP-completeness. Chapter 34. Sergey Bereg

Nogood Recording from Restarts

NP-Hardness reductions

Foundations of Artificial Intelligence

Algorithms. NP -Complete Problems. Dong Kyue Kim Hanyang University

An empirical complexity study for a 2CPA solver

Computing the Density of States of Boolean Formulas

A New Upper Bound for Max-2-SAT: A Graph-Theoretic Approach

The Sum-Product Theorem: A Foundation for Learning Tractable Models (Supplementary Material)

NP-Completeness. Andreas Klappenecker. [based on slides by Prof. Welch]

Good representations via complete clause-learning

Introduction Algorithms Applications MINISAT. Niklas Sörensson Chalmers University of Technology and Göteborg University

Theory of Computation Time Complexity

1. Introduction Recap

CS21 Decidability and Tractability

An improved DSATUR-based Branch and Bound for the Vertex Coloring Problem

6.045: Automata, Computability, and Complexity (GITCS) Class 15 Nancy Lynch

Transcription:

Using PMaxSat Techniques to Solve the Maximum Clique Problem Alexandre Prusch Züge Renato Carmo Ricardo Tavares de Oliveira Fabiano Silva Universidade Federal do Paraná Programa de Pós-Graduação em Informática Grupo de Pesquisa em Algoritmos November 10, 2016 Alexandre Prusch Züge (ARG-UFPR) November 10, 2016 1 / 18

Introduction Introduction Maximum Clique Problem (MC) Input : Simple graph G. Output: Maximum clique in G. Maximum clique: {2, 3, 5}. 1 2 3 5 4 6 Clique: set of vertices inducing a complete subgraph. Alexandre Prusch Züge (ARG-UFPR) November 10, 2016 2 / 18

Branch and Bound Scheme for MC Branch and Bound Scheme for MC Generating cliques via backtracking. clique candidates +v v clique {v} candidates Γ(v) clique candidates {v} Alexandre Prusch Züge (ARG-UFPR) November 10, 2016 3 / 18

Previous Work Previous Work In Li and Quan (2010a), a reduction from MC to Partial Maximum Satisfiability problem (PMaxSat) was proposed. The authors stated that using a solver was not competitive against dedicated algorithms for MC, but were able to borrow some techniques from a PMaxSat solver and improve a dedicated algorithm. This work is explained in ZÜGE, A.P.; CARMO, R. Maximum Clique via MaxSat and Back Again. Matemática Contemporânea. Vol. 44. 2015. Alexandre Prusch Züge (ARG-UFPR) November 10, 2016 4 / 18

Previous Work Previous Work Li and Quan (2010b) Li, Fang, and Xu (2013) Li, Jiang, and Xu (2015) Segundo, Nikolaev, and Batsyn (2015) Alexandre Prusch Züge (ARG-UFPR) November 10, 2016 5 / 18

Relation to Partial MaxSat Relation to Partial MaxSat Definitions literal: a boolean variable or its negation clause: disjunction of literals assignment: set of literals where no variable can be repeated Partial Maximum Satisfiability (PMaxSat) Input : Set of variables, set of hard clauses and set of soft clauses. Output: Assignment of the variables satisfying all hard clauses and the maximum number of soft clauses. Alexandre Prusch Züge (ARG-UFPR) November 10, 2016 6 / 18

Branch and Bound Scheme for Partial MaxSat Branch and Bound Scheme for PMaxSat Generating assignments via backtracking. assignment candidates x x assignment {x} candidates {x, x} assignment { x} candidates {x, x} Alexandre Prusch Züge (ARG-UFPR) November 10, 2016 7 / 18

Branch and Bound Scheme for Partial MaxSat MC Partial MaxSat: Usual Reduction A variable x for each vertex v V (G). Hard clauses: {( x i x j ) : {v i, v j } E(G)} Soft clauses: {(x i ) : v i V (G)} Alexandre Prusch Züge (ARG-UFPR) November 10, 2016 8 / 18

Branch and Bound Scheme for Partial MaxSat MC Partial MaxSat: Usual Reduction A variable x for each vertex v V (G). Hard clauses: {( x i x j ) : {v i, v j } E(G)} Soft clauses: {(x i ) : v i V (G)} 3 1 2 4 5 Hard clauses: {( 1 3), ( 1 4), ( 1 5), ( 3 4), ( 4 5)} Soft clauses: {(1), (2), (3), (4), (5)} Alexandre Prusch Züge (ARG-UFPR) November 10, 2016 8 / 18

Branch and Bound Scheme for Partial MaxSat MC Partial MaxSat: Li and Quan (2010a) Reduction A variable x for each vertex v V (G). Hard clauses: {( x i x j ): {v i, v j } E(G)} Soft clauses: { x i C x i : C γ(g)} Computes a coloring γ(g). One soft clause for each color. Alexandre Prusch Züge (ARG-UFPR) November 10, 2016 9 / 18

Branch and Bound Scheme for Partial MaxSat MC Partial MaxSat: Li and Quan (2010a) Reduction A variable x for each vertex v V (G). Hard clauses: {( x i x j ): {v i, v j } E(G)} Soft clauses: { x i C x i : C γ(g)} Computes a coloring γ(g). One soft clause for each color. 3 1 2 4 5 Hard clauses: {( 1 3), ( 1 4), ( 1 5), ( 3 4), ( 4 5)} Soft clauses: {(1 4), (2), (3), (5)} Alexandre Prusch Züge (ARG-UFPR) November 10, 2016 9 / 18

This Work This Work Using both reductions, experimentally compare current PMaxSat solvers and branch and bound algorithms for MC. Identify parallel between the decision making of PMaxSat solvers and branching for MC. Alexandre Prusch Züge (ARG-UFPR) November 10, 2016 10 / 18

This Work Experiments Dedicated algorithm: MCQD (Konc and Janežič, 2007) (available at http://insilab.org/maxclique/) PMaxSat solvers: MiniMaxSat (Heras, Larrosa, and Oliveras, 2008) AhMaxSat (Abrame and Habet, 2015) (available at http://www.lsis.org/habetd/djamal Habet/MaxSAT.html) Instances from the Second DIMACS Implementation Challenge and random graphs in the GNP model. Alexandre Prusch Züge (ARG-UFPR) November 10, 2016 11 / 18

This Work Experimental Results DIMACS MCQD MiniMaxSat MiniMaxSat (color) Instance Tree size Time (s) Tree size Time (s) Tree size Time (s) MANN a9 99 0.0002 390 0.00 182 0.02 brock200 1 235172 0.8043 2783359 17.75 2794161 16.89 brock200 2 3622 0.0099 58747 0.41 67982 0.44 brock200 3 12706 0.0470 196971 1.41 169383 1.16 brock200 4 46755 0.1346 581646 3.78 456447 2.86 c-fat200-1 212 0.0005 402 0.71 229 0.05 c-fat200-2 238 0.0006 407 0.42 325 0.05 c-fat200-5 307 0.0013 391 0.04 391 0.05 c-fat500-1 513 0.0021 1024 0.38 267 0.40 c-fat500-5 618 0.0047 969 0.35 415 0.32 hamming6-2 62 0.0002 65 0.00 33 0.03 hamming6-4 123 0.0001 826 0.69 629 0.03 hamming8-2 371 0.0088 613 0.03 129 0.40 hamming8-4 12704 0.0543 2207385 14.06 1065844 6.40 hamming10-2 2863 2.5956 8423 0.42 513 0.06 johnson8-2-4 50 0.0001 182 0.02 213 0.02 johnson8-4-4 216 0.0006 2920 0.03 3902 0.02 johnson16-2-4 583334 0.5403 5021662 10.72 8733582 16.28 keller4 7711 0.0198 763074 2.90 279042 2.76 p hat300-1 2129 0.0074 22576 0.30 18631 0.24 p hat300-2 7459 0.0307 77678 0.96 55125 0.73 p hat300-3 629203 3.8099 5143557 50.28 4106223 39.45 p hat500-1 10956 0.0290 167942 3.67 154397 3.15 p hat500-2 193480 1.2548 1036800 27.25 887731 22.60 Alexandre Prusch Züge (ARG-UFPR) November 10, 2016 12 / 18

This Work Experimental Results DIMACS MCQD MiniMaxSat MiniMaxSat (color) Instance Tree size Time (s) Tree size Time (s) Tree size Time (s) p hat300-1 2129 0.0074 22576 0.30 18631 0.24 p hat300-2 7459 0.0307 77678 0.96 55125 0.73 p hat300-3 629203 3.8099 5143557 50.28 4106223 39.45 p hat500-1 10956 0.0290 167942 3.67 154397 3.15 p hat500-2 193480 1.2548 1036800 27.25 887731 22.60 san200 0.7 1 1138 0.0058 529637137 1572.80 410473000 1174.73 san200 0.9 1 11031 0.0798 84871 0.91 240361 1.43 san200 0.9 2 49351 0.4439 2400718 22.81 671891 5.97 san200 0.9 3 332964 2.6274 9116566 104.40 482754 5.81 san400 0.9 1 628188 19.9002 601647032 2781.66 84159929 713.46 sanr200 0.7 106744 0.3240 1269259 12.05 1198260 11.71 sanr200 0.9 6361069 41.0665 49717078 491.60 41300741 376.94 sanr400 0.5 242343 0.6782 4100323 77.55 3902503 61.51 SUM 9483731 74.48 1216050993 5200.36 561225215 2465.97 Ratio of McqDYN 128.22 59.18 Alexandre Prusch Züge (ARG-UFPR) November 10, 2016 13 / 18

This Work Experimental Results DIMACS MCQD AhMaxSat AhMaxSat (color) Instance Tree size Time (s) Tree size Time (s) Tree size Time (s) MANN a9 99 0.0002 93 0.01 92 0.00 brock200 1 235172 0.8043 145224 58.75 122104 46.06 brock200 2 3622 0.0099 9506 2.85 7216 2.02 brock200 3 12706 0.0470 24190 7.42 25025 6.82 brock200 4 46755 0.1346 59145 18.27 29683 9.55 c-fat200-1 212 0.0005 203 1.13 209 0.35 c-fat200-2 238 0.0006 214 0.92 220 0.33 c-fat200-5 307 0.0013 198 0.43 143 0.30 c-fat500-1 513 0.0021 559 16.94 624 45.27 c-fat500-5 618 0.0047 515 13.02 561 9.18 hamming6-2 62 0.0002 36 0.00 36 0.03 hamming6-4 123 0.0001 174 0.70 133 0.03 hamming8-2 371 0.0088 203 0.49 180 0.83 hamming8-4 12704 0.0543 65269 26.64 29698 12.74 hamming10-2 2863 2.5956 1188 61.11 1287 61.61 johnson8-2-4 50 0.0001 49 0.00 39 0.00 johnson8-4-4 216 0.0006 162 0.03 132 0.01 johnson16-2-4 583334 0.5403 400506 16.70 206492 6.59 keller4 7711 0.0198 34695 5.24 13536 3.51 p hat300-1 2129 0.0074 5169 7.23 3185 5.91 p hat300-2 7459 0.0307 17797 21.27 5700 6.16 p hat300-3 629203 3.8099 343461 467.91 508717 580.55 p hat500-1 10956 0.0290 36577 58.47 23753 39.74 p hat500-2 193480 1.2548 496326 896.25 153383 224.98 Alexandre Prusch Züge (ARG-UFPR) November 10, 2016 14 / 18

This Work Experimental Results DIMACS MCQD AhMaxSat AhMaxSat (color) Instance Tree size Time (s) Tree size Time (s) Tree size Time (s) san200 0.7 1 1138 0.0058 2193 2.06 1224 1.15 san200 0.9 1 11031 0.0798 383 0.25 419 0.17 san200 0.9 2 49351 0.4439 307 0.41 1042 1.48 san200 0.9 3 332964 2.6274 62251 83.24 13231 17.35 san400 0.9 1 628188 19.9002 327389 909.62 65113 209.90 sanr200 0.7 106744 0.3240 77541 47.00 59213 34.48 sanr200 0.9 6361069 41.0665 143283 232.76 138638 198.53 sanr400 0.5 242343 0.6782 373764 274.76 346190 256.11 SUM 9483731 74.48 2628570 3231.88 1757218 1781.74 Ratio of McqDYN 0.28 0.19 Alexandre Prusch Züge (ARG-UFPR) November 10, 2016 15 / 18

Conclusions Conclusions The time using a PMaxSat solver is really not competitive. Trees generated by AhMaxSat are smaller than by the dedicate algorithm. Experiments in random graphs (not shown here) showed similar results, except that MiniMaxSat presented better times than AhMaxSat. There is still some potential for improvements in dedicated algorithms by adapting PMaxSat techniques. One particular difference: the PMaxSat solver might consider the negation of a variable first, whereas all dedicated algorithms always insert a vertex in the clique first. Alexandre Prusch Züge (ARG-UFPR) November 10, 2016 16 / 18

References References Andre Abrame and Djamal Habet. Ahmaxsat: Description and evaluation of a branch and bound max-sat solver. Journal on Satisfiability, Boolean Modeling and Computation, 9:89 128, 2015. Federico Heras, Javier Larrosa, and Albert Oliveras. Minimaxsat: An efficient weighted max-sat solver. J. Artif. Intell. Res.(JAIR), 31:1 32, 2008. Janez Konc and Dušanka Janežič. An improved branch and bound algorithm for the maximum clique problem. MATCH Communications in Mathematical and in Computer Chemistry, June 2007. URL http://www.sicmm.org/konc/articles/match2007.pdf. Chu-Min Li and Zhe Quan. An efficient branch-and-bound algorithm based on MaxSAT for the maximum clique problem. In Twenty-Fourth AAAI Conference on Artificial Intelligence, pages 128 133, 2010a. URL http://www.aaai.org/ocs/index.php/aaai/aaai10/paper/view/1611. Chu-Min Li and Zhe Quan. Combining graph structure exploitation and propositional reasoning for the maximum clique problem. In 2010 22nd IEEE International Conference on Tools with Artificial Intelligence, volume 1, pages 344 351. IEEE, 2010b. doi: 10.1109/ictai.2010.57. URL http://dx.doi.org/10.1109/ictai.2010.57. Chu-Min Li, Zhiwen Fang, and Ke Xu. Combining MaxSAT reasoning and incremental upper bound for the maximum clique problem. In ICTAI, pages 939 946. IEEE, 2013. URL http://ieeexplore.ieee.org/xpl/mostrecentissue.jsp?punumber=6734837. Chu-Min Li, Hua Jiang, and Ru-Chu Xu. Incremental maxsat reasoning to reduce branches in a branch-and-bound algorithm for maxclique. In International Conference on Learning and Intelligent Optimization, pages 268 274. Springer, 2015. Pablo San Segundo, Alexey Nikolaev, and Mikhail Batsyn. Infra-chromatic bound for exact maximum clique search. Computers & Operations Research, 64:293 303, 2015. ISSN 0305-0548. doi: http://dx.doi.org/10.1016/j.cor.2015.06.009. URL http://www.sciencedirect.com/science/article/pii/s0305054815001549. Alexandre Prusch Züge (ARG-UFPR) November 10, 2016 17 / 18

Thank you! Alexandre Prusch Züge alexandrezuge@ufpr.br Alexandre Prusch Züge (ARG-UFPR) November 10, 2016 18 / 18