CONGRUENCES CONCERNING LEGENDRE POLYNOMIALS III

Similar documents
GENERALIZED LEGENDRE POLYNOMIALS AND RELATED SUPERCONGRUENCES

Super congruences concerning Bernoulli polynomials. Zhi-Hong Sun

Legendre polynomials and Jacobsthal sums

arxiv: v57 [math.nt] 24 Aug 2011

CONGRUENCES CONCERNING LUCAS SEQUENCES ZHI-HONG SUN

ON SUPERSINGULAR ELLIPTIC CURVES AND HYPERGEOMETRIC FUNCTIONS

arxiv: v1 [math.nt] 28 Apr 2014

On Divisibility concerning Binomial Coefficients

Proof of a conjecture of Amdeberhan and Moll on a divisibility property of binomial coefficients

ON MONOTONICITY OF SOME COMBINATORIAL SEQUENCES

A generalization of Morley s congruence

PERIODS OF FIBONACCI SEQUENCES MODULO m. 1. Preliminaries Definition 1. A generalized Fibonacci sequence is an infinite complex sequence (g n ) n Z

Equations and Inequalities Involving v p (n!)

On Cesáro means for Fox-Wright functions

Proc. Amer. Math. Soc. 139(2011), no. 5, BINOMIAL COEFFICIENTS AND THE RING OF p-adic INTEGERS

PROBLEM SET 5 SOLUTIONS. Solution. We prove that the given congruence equation has no solutions. Suppose for contradiction that. (x 2) 2 1 (mod 7).

Some Extensions of the Prabhu-Srivastava Theorem Involving the (p, q)-gamma Function

An analog of the arithmetic triangle obtained by replacing the products by the least common multiples

[ 47 ] then T ( m ) is true for all n a. 2. The greatest integer function : [ ] is defined by selling [ x]

On Some Identities and Generating Functions for Mersenne Numbers and Polynomials

Approximation properties of (p, q)-bernstein type operators

VIETA-LIKE PRODUCTS OF NESTED RADICALS

Some identities involving Fibonacci, Lucas polynomials and their applications

CERTAIN CONGRUENCES FOR HARMONIC NUMBERS Kotor, Montenegro

Ramanujan s Famous Partition Congruences

YALE UNIVERSITY DEPARTMENT OF COMPUTER SCIENCE

Some p-adic congruences for p q -Catalan numbers

Harmonic Number Identities Via Euler s Transform

APPROXIMATION OF CONTIONUOUS FUNCTIONS BY VALLEE-POUSSIN S SUMS

arxiv: v1 [math.co] 3 Feb 2013

Fibonacci numbers and orthogonal polynomials

Formulas for the Approximation of the Complete Elliptic Integrals

The log-behavior of n p(n) and n p(n)/n

A Note on Bilharz s Example Regarding Nonexistence of Natural Density

THE GREATEST ORDER OF THE DIVISOR FUNCTION WITH INCREASING DIMENSION

In number theory we will generally be working with integers, though occasionally fractions and irrationals will come into play.

The Asymptotic Expansions of Certain Sums Involving Inverse of Binomial Coefficient 1

A q-analogue of some binomial coefficient identities of Y. Sun

Factors of sums and alternating sums involving binomial coefficients and powers of integers

SOME TRIBONACCI IDENTITIES

A New Sifting function J ( ) n+ 1. prime distribution. Chun-Xuan Jiang P. O. Box 3924, Beijing , P. R. China

Prime Number Theorem Steven Finch. April 27, 2007

Chapter 8. Euler s Gamma function

x 2 a mod m. has a solution. Theorem 13.2 (Euler s Criterion). Let p be an odd prime. The congruence x 2 1 mod p,

On the distribution of coefficients of powers of positive polynomials

Sketch of Dirichlet s Theorem on Arithmetic Progressions

Weil Conjecture I. Yichao Tian. Morningside Center of Mathematics, AMSS, CAS

Q-BINOMIALS AND THE GREATEST COMMON DIVISOR. Keith R. Slavin 8474 SW Chevy Place, Beaverton, Oregon 97008, USA.

[ 11 ] z of degree 2 as both degree 2 each. The degree of a polynomial in n variables is the maximum of the degrees of its terms.

arxiv: v5 [math.nt] 22 Aug 2013

Bijective Proofs of Gould s and Rothe s Identities

FLOOR AND ROOF FUNCTION ANALOGS OF THE BELL NUMBERS. H. W. Gould Department of Mathematics, West Virginia University, Morgantown, WV 26506, USA

Chapter 8. Euler s Gamma function

(6), (7) and (8) we have easily, if the C's are cancellable elements of S,

EISENSTEIN S CRITERION, FERMAT S LAST THEOREM, AND A CONJECTURE ON POWERFUL NUMBERS arxiv: v6 [math.ho] 13 Feb 2018

Journal of Ramanujan Mathematical Society, Vol. 24, No. 2 (2009)

CSE 1400 Applied Discrete Mathematics Number Theory and Proofs

Series with Central Binomial Coefficients, Catalan Numbers, and Harmonic Numbers

MAT1026 Calculus II Basic Convergence Tests for Series

GENERATING IDENTITIES FOR FIBONACCI AND LUCAS TRIPLES

Quadratic Transformations of Hypergeometric Function and Series with Harmonic Numbers

k-generalized FIBONACCI NUMBERS CLOSE TO THE FORM 2 a + 3 b + 5 c 1. Introduction

The Structure of Z p when p is Prime

MDIV. Multiple divisor functions

Math 4400/6400 Homework #7 solutions

BINOMIAL PREDICTORS. + 2 j 1. Then n + 1 = The row of the binomial coefficients { ( n

A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS - II 1. INTRODUCTION

MATH 304: MIDTERM EXAM SOLUTIONS

Solutions to Problem Set 7

Math 609/597: Cryptography 1

k-equitable mean labeling

A REFINEMENT OF JENSEN S INEQUALITY WITH APPLICATIONS. S. S. Dragomir 1. INTRODUCTION

Problem 4: Evaluate ( k ) by negating (actually un-negating) its upper index. Binomial coefficient

A GENERALIZATION OF THE SYMMETRY BETWEEN COMPLETE AND ELEMENTARY SYMMETRIC FUNCTIONS. Mircea Merca

GENERALIZED HARMONIC NUMBER IDENTITIES AND A RELATED MATRIX REPRESENTATION

Proof of Fermat s Last Theorem by Algebra Identities and Linear Algebra

TRIGONOMETRIC POLYNOMIALS WITH MANY REAL ZEROS AND A LITTLEWOOD-TYPE PROBLEM. Peter Borwein and Tamás Erdélyi. 1. Introduction

and each factor on the right is clearly greater than 1. which is a contradiction, so n must be prime.

A Note on Sums of Independent Random Variables

Elliptic Curves Spring 2017 Problem Set #1

arxiv: v1 [math.nt] 10 Dec 2014

An operator equality involving a continuous field of operators and its norm inequalities

Interesting Series Associated with Central Binomial Coefficients, Catalan Numbers and Harmonic Numbers

EVALUATION OF SUMS INVOLVING PRODUCTS OF GAUSSIAN q-binomial COEFFICIENTS WITH APPLICATIONS

DIVISIBILITY PROPERTIES OF GENERALIZED FIBONACCI POLYNOMIALS

An Elementary and Simple Proof of Fermat s Last Theorem

Factors of alternating sums of products of binomial and q-binomial coefficients

On the Inverse of a Certain Matrix Involving Binomial Coefficients

Chapter 2. Periodic points of toral. automorphisms. 2.1 General introduction

Weak and Strong Convergence Theorems of New Iterations with Errors for Nonexpansive Nonself-Mappings

The log-concavity and log-convexity properties associated to hyperpell and hyperpell-lucas sequences

Math 4400/6400 Homework #8 solutions. 1. Let P be an odd integer (not necessarily prime). Show that modulo 2,

Shivley s Polynomials of Two Variables

6 Integers Modulo n. integer k can be written as k = qn + r, with q,r, 0 r b. So any integer.

Sequences of Definite Integrals, Factorials and Double Factorials

(2) F j+2 = F J+1 + F., F ^ = 0, F Q = 1 (j = -1, 0, 1, 2, ). Editorial notes This is not our standard Fibonacci sequence.

Fermat s Little Theorem. mod 13 = 0, = }{{} mod 13 = 0. = a a a }{{} mod 13 = a 12 mod 13 = 1, mod 13 = a 13 mod 13 = a.

AN ALMOST LINEAR RECURRENCE. Donald E. Knuth Calif. Institute of Technology, Pasadena, Calif.

The Sumudu transform and its application to fractional differential equations

Curve Sketching Handout #5 Topic Interpretation Rational Functions

Transcription:

rerit: October 1, 01 CONGRUENCES CONCERNING LEGENDRE POLYNOMIALS III Zhi-Hog Su arxiv:101.v [math.nt] 5 Oct 01 School of Mathematical Scieces, Huaiyi Normal Uiversity, Huaia, Jiagsu 001, PR Chia Email: zhihogsu@yahoo.com Homeage: htt://www.hytc.edu.c/xsjl/szh Abstract. Let > be a rime, ad let R be the set of ratioal umbers whose deomiator is corime to. Let {P x} be the Legedre olyomials. I this aer we maily show that for m,,t R with m 0 mod, ]t 1 x x+t mod, 1 x +mx+ m [/] m +7 mod, 1 m where a is the Legedre symbol ad [x] is the greatest iteger fuctio. As a alicatio we solve some cojectures of Z.W. Su ad the author cocerig 1 /m mod, where m is a iteger ot divisible by. MSC: Primary 11A07, Secodary C5, 11E5, 11L10, 05A10 Keywords: Cogruece; Legedre olyomial; character sum; biary quadratic form; ellitic curve 1. Itroductio. Let {P x} be the Legedre olyomials give by P 0 x 1, P 1 x x, +1P +1 x +1xP x P 1 x 1. It is well ow that see [B,. 151], [G,.1-.1] 1.1 P x 1 From 1.1 we see that [/] 1 x 1! d dx x 1. 1. P x 1 P x, P m+1 0 0 ad P m 0 1m m We also have the followig formula due to Murhy [G,.15]: + x 1 + x 1. 1. P x 1 m. m

+ We remar that +. Let Z be the set of itegers, ad for a rime let R be the set of ratioal umbers whose deomiator is corime to. Let [x] be the greatest iteger ot exceedig x, ad let a be the Legedre symbol. I [S-S] the author showed that for ay rime > ad t R, 1. 1.5 1. P 1t ] t ] t 1 1 x t +x+tt 9 mod, x t+5 1 x+9t+7 mod, x +t 5x+t 1t+11 mod. I the aer, by usig elemetary ad straightforward argumets we rove that 1.7 ] t 1 x x+t mod. Moreover, for m, R with m 0 mod we have 1.8 ad 1 1 x +mx+ x +mx+ m m 1 m+1 m [/] m ] m ] m mod if 1 mod, m mod if mod m +7 1 m mod. It is well ow that see for examle [S,.1-] the umber of oits o the curve y x +mx+ over the field F with elemets is give by 1 x #E x +mx+ +mx+ +1+. For ositive itegers a,b ad, if ax +by for some itegers x ad y, we briefly say that ax + by. Recetly the author s brother Zhi-Wei Su[Su1,Su] ad the author[s] osed some cojectures for 1 /m modulo, where > is a rime ad m Z with m. For examle, Zhi-Wei Su cojectured that [Su, Cojecture.8] for ay rime >, 1.9 1 9 { 0 mod if 19 1, x mod if 19 1 ad so x +19y.

Usig 1.8 ad ow character sums we determie ] x mod for 11 values of x see Corollaries.1-.11, ad 1 /m mod for m 00, 580, 90, 9, 15,0,,55,5000, 188000. Thus we solve some cojectures i [Su1,Su] ad [S]. For examle, we cofirm 1.9 i the case 19 1 ad rove 1.9 whe 19 1 ad the modulus is relaced by. Let > be a rime. I the aer we also determie 1 /8 mod ad establish the geeral cogruece 1.10 1 x1 x 1 x mod, ad ose some cojectures o suercogrueces.. Cogrueces for ] x mod. Lemma.1. Let be a odd rime. The i ii iii 1 mod for 0,1,..., 1, mod for 0,1,..., [ ], [ ]+ 1 7 1 1 mod for ad 0,1,..., [ ]. Proof. For {0,1,..., 1 1 } we have holds. Now suose {0,1,...,[ 1 ]}. It is clear that 1 mod. Thus i 1 1 1!! +1+ 1!! +1+!!!! mod. Thus ii is true. iii was give by the author i [S, the roof of Lemma.]. The roof is ow comlete. Lemma.. Let > be a rime ad {0,1,...,[ 1 ]}. The [ ] [ ] [ ] 1 [ 1 ] +1 + [ ] [ ] + 1 mod.

Proof. Usig Lemma.1i we see that [ ] [ ] [ [ ] ]! [![ ]![ ]! ] [ [ ] ] 1 [ ] [ [ ] ] 1 1 [ ] [ ] [ ] If 1 mod, usig Lemma.1i we see that 1 1 1 + 1 1 + 1 + 1! [ mod. ]![+1 ]+! 1 + 1 1! 1 1 1! 1 mod.! Thus, from the above ad Lemma.1 we deduce that [ ] [ ] [ ] 1 1 1 + [ ] + 1! 1! 1! 1 +! 1 [ ]+ 1 [ ]+ / / 7 7 [ ] 1 [ ] [ ] mod. If mod, usig Lemma.1i we see that 1 +1 1 + +1 + 1 +1 5 +1 + +1 +1 1 +! +1 +1 5!! 1 1! +1 5! mod.! Thus, from the above ad Lemma.1 we deduce that [ ] [ ] [ ] 1 +1 + [ ] + 1!! +1 1! +! 1 [ ]+ [ ]+ / / 7 This comletes the roof. + 7 [ ] 1 [ ] +1 [ ] mod.

Theorem.1. Let > be a rime ad m, R with m 0 mod. The 1 x +mx+ m 1 m ] m mod if 1 mod, +1 m m m m mod if mod. ] Proof. For ay ositive iteger it is well ow that see [IR, Lemma,.5] 1 { 1 mod if 1, x 0 mod if 1. For,r Z with 0 r 1 we have 0 +r 1. Thus, ad therefore.1 1 { 1 mod if 1 r, x +r 0 mod if 1 r 1 x +mx+ 1 1 1 1/ r0 1 1 1/ 1/ 1/ r 1/ 1/ 1/ r0 1 1 r 1/ x +mx 1 r0 x r mx r 1 r m r 1 r 1/ 1 r 1 r r 1/ 1 r 1 r r 1 x +r m 1 r r 1 m 1 r r 1 mod. If 0 mod, from the above we deduce that { 1 x 1 +mx+ 1 1 x +mx+ 1 1 m mod if 1, 0 mod if. Thus alyig 1. ad Lemma. with [ 1 ] we get ] 0 { 1 [ [ 1 ] ] [ 1 [ 1 ] 1 ] 1 1 1 1 1 1 mod if 1, 0 if. 5

Hece the result is true for 0 mod. Now we assume 0 mod. From.1 we see that 1 x +mx+ 1 x +mx+ 1 1/ r O the other had, where ] m m [ [ 1 ] [ ] ] [ 1 ] 1 [ 1 r 1 ] [ ] 1 [ ] m [ m [ [ 1 ] [ ] ] [ 1 ] m [ ] m [ 1 [ 1 ] [ 1 ] [ ] ] [ ] m [ ] m δm, 1 [ 1 [ 1 ] 1 ] [ ] δm, Hece, by the above ad Lemma. we get δm, ] m m 1 [ 1 ] [ ] [ ] 1 r r 1 r m + [ ] + 1 m mod. [ ] 1 1 ] [ ] 7 [ 1 ] m 7 [ m 7 [ m m 1 if 1 mod, m +1 m if mod. ] 1 ] mod, Sice [ 1 ] 1 1 [ ] +1 [ ] [ ] 1 [ 1 ] [ ] 1 [ ] +1 1 [ ] 1 ]+[ [ 7 ] + + 1 [ ] [ ] [ ] [ ]+1 / 1 [ ] 1 ]+[ 7 [ ] mod. m 1 [ 1 ]+[ ] 1 1 [+1 ] 1 [ 1 ] 1 mod, 1 1

from the above we deduce that m δm, ] m This comletes the roof. [ 1 ] 1 1 + [ ] [ ] + 1 m x +mx+ mod. Remar.1 The cogruece.1 has bee give by the author i [S]. Corollary.1. Let,,11 be a rime. The { 1 1 ] a mod if 1, a +b ad a 1, 11 0 mod if mod.. Proof. By [S5, Corollary.1 ad.] we have 1 x 11x+1 { 1 x x 1 + a if 1, a +b ad a 1, 0 if mod. Thus, taig m 11 ad 1 i Theorem.1 we obtai the result. Corollary.. Let > 5 be a rime. The 7 10 ] 5 1 d 5 5 1 c mod if 8 1, c +d ad c 1, 5 5 d 10 mod if 8, c +d ad d 1, 0 mod if 5,7 mod 8. Proof. Usig [S, Lemma.] we see that 1 x 0x+5 1 x 0 x+5 1 0 if 5,7 mod 8. 1 x 0x 5 1 +7 8 c if 1 mod 8, c +d ad c 1, 1 8 c if mod 8, c +d ad c 1, By [S,.117] we have { c 1 1 [ ] 8 1 1 8 +d mod if c +d 1 mod 8, 1 c 1 d 8 c 1 d 8 c mod if c +d mod 8 with c d. Now taig m 0 ad 5 i Theorem.1 ad alyig the above we deduce the result. 7

Corollary.. Let > 5 be a rime. The 11 5 ] 5 5 1 5 A mod if 1 1, A +B ad A 1, 5 5 A 5 mod if 1 7, A +B ad A 1, 0 mod if mod. Proof. By [S, Lemma.] or [S5, Corollary.1 with t 5/ ad.] we have 1 x. 15x+ { A if 1, A +B ad A 1, 0 if mod. Thus, taig m 15 ad i Theorem.1 we obtai the result. Corollary.. Let > 5 be a rime. The 1010 1 L mod 5 10 ] 800 if 1 1, L +7M ad L 1, 10 10 L 10 mod if 1 7, L +7M ad L 1, 0 mod if mod. Proof. From [S, Corollary.] we ow that 1 x 10x+50 {. L if 1, L +7M ad L 1, 0 if mod. Thus taig m 10 ad 50 i Theorem.1 we deduce the result. Corollary.5. Let > 7 be a rime. The 15 15 1 C mod 105 ] 5 if 1,9,5 mod 8, C +7D ad C 1, 15 15 D 105 mod if 11,15, mod 8, C +7D ad D 1, 0 mod if,5, mod 7. Proof. Sice x 7 5 x 7+98 x +1x +11x, from [R1,R] we see that 1 x 5x+98 1 1 1 x +1x +11x.5 { 1 +1 C 7 C if 1,, mod 7 ad C +7D, 0 if,5, mod 7. Suose 1,, mod 7 ad so C +7D. By [S,.117] we have { C. 7 [ ] mod if 1,9,5 mod 8 ad C 1 mod, 7 C 7 D C mod if 11,15, mod 8 ad D 1 mod. Now taig m 5 ad 98 i Theorem.1 ad alyig all the above we deduce the result. 8

Corollary.. Let be a rime such that,,5,7,17. i If,5, mod 7, the ] 171 1785 85 0 mod. ii If 1,, mod 7 ad so C +7D for some C,D Z, the { 171 1785 55 55 1 C mod if 1 ad C 1, ] 85 5555 D 1785 mod if ad D 1. Proof. From [W,.9] we ow that 1 x +x+x +1x { C 7 C if 1,, mod 7 ad C +7D, if,5, mod 7. As x +x+x +1x x +/x+10/x +/x, we see that 1 x +x+x +1x 1 +/x+10/x +/x 1 +x+10x +x x1 x1 1 +8x+0x +x 1 x + 51 x +17x+ 1 x1 ad 1 x + 51 x +17x+ 1 x 17 1 + 51 x 595 1 x + 558 17 x +17x 17 + 1 1 x 595x+558 x 595 558 1 x+ Now combiig all the above we deduce.7 { 1 x 595x+558 1 +1 C C 7 if C +7D 1,, mod 7, 0 if,5, mod 7. Taig m 595 ad 558 i Theorem.1 ad the alyig.7 ad. we deduce the result. 9.

Corollary.7. Let,,11 be a rime. i If,,7,8,10 mod 11, the ] 7 0 mod. ii If 1,,,5,9 mod 11 ad hece u +11v for some u,v Z, the 1 u mod if 1 ad u 1, 7 ] 1 u mod if 1 ad 8 u, v mod if ad v 1, v mod if ad 8 v. Proof. It is ow that see [RP] ad [JM] 1 x 9 11x+11 11 {.8 u 11 u if 11 1 ad u +11v, 0 if 11 1. Thus alyig Theorem.1 we deduce ] 7 1 u 11 u mod if 11 1, 1 ad u +11v, u 11 u mod if 11 1, ad u +11v, 0 mod if 11 1. Now assume 11 1 ad so u +11v. If u v 1 mod, by [S, Theorem.] we have { u 11 [ ] mod if 1 mod, 11 u 11 v u mod if mod. If u v 0 mod, by [S, Corollary.] we have { u 11 [ ] 11 mod if 1 mod ad 8 u, u 11 v mod if mod ad 8 v. u Now combiig all the above we derive the result. From [RPR], [JM] ad [PV] we ow that for ay rime >,.9 1 x 8 19x+ 19 { u 19 u if 19 1 ad u +19v, 0 if 19 1, 1 x 80 x+ { u u if 1 ad u +v, 0 if 1, 1 x 0 7x+ 7 { u 7 u if 7 1 ad u +7v, 0 if 7 1, 1 x 80 9 1x+1 11 19 17 1 { u 1 u if 1 1 ad u +1v, 0 if 1 1. 10

Thus, usigthemethoditheroofofcorollary.7oecasimilarlydetermie ] 5 100, P [ ] 51 9800 110, P[ ] 5570 80 10815 mod. Lemma.. Let be a rime greater tha, ad let x be a variable. The ] x [/] 1 x mod. 8 Proof. Suose that r {1,5} is give by r mod. The clearly [ ]+ r + r + 1 r +1! + r+ r +r! 1 r r r rr+ +r! Hece.10 1! 9 15! 1!!!!!! mod.!! [ ] [ ]+ [ ]+ This together with 1. yields the result. mod. Theorem.. Let > be a rime ad m, R with m 0 mod. The ] 11, ] m [/] m 1 m m 1 x m x+ mod. Proof. Relacig m by m i Theorem.1 ad the alyig Lemma. we deduce the result. For ositive itegers a 1,a,a,a let q 1 q a1 1 q a 1 q a 1 q a 1 ca 1,a,a,a ;q q < 1. For a 1,a,a,a 1,1,11,11,,,10,10,1,,5,15,1,,7,1 ad,,8,8 it is ow that see [MO, Theorem 1] are weight ewforms. fz 1 ca 1,a,a,a ;q q e πiz 1 11

Corollary.8. Let be a odd rime. The 19 [/] c1,1,11,11; ] 1 1 8 5 mod. Proof. It is easy to see that the result holds for,11. Now assume,11. By the well ow wor of Eichler i 195, we have Sice we obtai {x,y F F : y +y x x } c1,1,11,11;. {x,y F F : y +y x x } { x,y F F : y + 1 x x + 1 { x,y F F : y x x + 1 } 1 + 1 + x x + 1 1 + x 1 19 x+ 108 + + 1 x 1x+8, } x+ 1 x+ 1 + 1 1 x 1 x + 19 108.11 c1,1,11,11; 1 x 1x+8. Usig Theorem. we see that c1,1,11,11; 1 x 1x+8 From 1. ad Lemma. we have 19 ] 1 [ ] P 8 [ ] 1 1 [/] 19 1 1 8 mod. 5 [/] 19 ] mod. 8 1+19/8 8 Thus the result follows. 1

Cojecture.1. Let > be a rime. The c,,10,10; 1 x 1x 11, c,,,1; 1 x 9x 70, c1,,5,15; 1 x x, c1,,7,1; 1 x 75x 50, c,,8,8; 1 x 99x 78. If > is a rime of the form +, from Cojecture.1 ad [S, Theorem.8] we deduce that +1 c,,10,10; 1 x 1x 11 +1+ #E x 1x 11 { N 1 δ if 7 mod 1, N + 7+ +δ if 11 mod 1, where N is the umber of a {0,1,..., 1} such that x x +x a mod is solvable, ad 0 if 7, mod 0, δ 1 if,7,1,9 mod 0, if 11,19 mod 0. Hece.1 c,,10,10; 5+1 N +δ for mod. Theorem.. Let > be a rime, ad let t be a variable. The.1 ] t 1 x x+t 1 mod. Proof. Taig m 1 ad t i Theorem. we see that.1 is true for t 0,1,..., 1. Sice both sides of.1 are olyomials i t with degree less tha 1/, alyig Lagrage s theorem we see that.1 holds whe t is a variable. 1

Theorem.. Let > be a rime ad let t be a variable. i If t + 0 mod, the t + P 1t ] t t 1 t +1 t + ii If t+5 0 mod, the t+10 1 t + mod if 1 mod, ] tt 9 ] tt 9 t + t + mod if mod. ] 9t+7 t+10 t+10 +1 t+10 ] 9t+7 t+10 t+5 mod if 1 mod, t+5 mod if mod. Proof. Sice both sides are olyomials of t with degree at most. It suffices to show that the cogrueces are true for t R. Now combiig 1.-1.5 with Theorem.1 we deduce the result. Corollary.9. Let > be a rime ad m R with m 0 mod. The ad P 1m m m m m ] m [/] m 5 m ] m 1/ m m 9m m+18 mod 8m m ] m [/] [/] m 19 m+1m mod. 8m Proof. Taig t m i Theorem.i ad the alyig [S,.] ad Lemma. we deduce the first cogruece. Taig t m 5/ i Theorem.ii ad the alyig [S5, Theorem.1ii] ad Lemma. we deduce the secod cogruece. Theorem.5. Let > be a rime ad let t be a variable. The ] t 5 t 1 ] t 1t+11 5 t 5 t mod if 1 mod, +1 5 t 5 t t ] 1t+11 5 t 5 t mod if mod. Proof. Sice both sides are olyomials i t with degree at most. It suffices to show that the cogruece is true for all t R with t 5 mod. Set m t 5 ad t 1t+11. The m m t 1t+11 5 t 5 t. 1

Thus, by 1. ad Theorem.1 we have ] t 1 x +mx+ 1 95t t ] 1t+11 5 t 5 t mod if 1, 95t +1 95 t ] t 1t+11 5 t 5 t mod if. For 1 mod we have 9 1 1 mod, For mod we have 9 +1 1 1 mod. Thus the result follows. Corollary.10. Let > be a rime ad m R with m 0 mod. The 5 m m m +18m 7 ] P [ ] 8m m [/] [/] m 1 1 m+1 m mod. 8 m Proof. Taig t 5 m i Theorem.5 ad the alyig [S, Lemma.] ad Lemma. we deduce the result. Corollary.11. Let > be a rime. The 7± { ] a ± 1 mod if 1 mod ad a +b with a 1 mod, 0 mod if mod. Proof. Set t 7± /. The t 1t+11 0. Thus, from Theorem.5 ad the cogruece for ] 0 i the roof of Theorem.1 we deduce { 7± 1 9 ] ± 1 1 1 mod if 1 mod, 0 mod if mod. It is well ow that 1 1 a mod for 1 mod see [BEW,.9]. Thus the corollary is roved. Theorem.. Let > be a rime ad m, R with m 0 mod. The 1 x +mx+ { 1 m m +1 m [/1] [ 1 ] [/1] [ [ 5 1 ] m +7 m mod if 1, 1 ] [ 5 1 ] m +7 mod if. m 15

Proof. Let P α,β x be the Jacobi olyomial defied by +α P α,β x 1 It is ow that see [AAR,.15] +β x+1 x 1..1 P x P 0, 1 x 1 ad P +1 x xp 0,1 x 1. From [B,.170] we ow that Thus, P α,β x.15 P 0,β x +α +α+β +1 1 x α+1! +α α β 1 x 1. 1 α Hece, if 1 mod, the [ ] [ 1 ] ad so m ] P 0, 1 m [ 1 ] 7 1 m [ 1 ] [ 1 ] 1 β 1 1 x. [ 1 ] [ 1 ] [ 1 ] m +7 m 1 [ 1 ] [ 1 ] [ 5 1 ] m +7 mod ; m if mod, the [ ] [ ]+1 ad so 1 m ] m P 0,1 m m m m m m m m [ 1 ]+1 [ 1 ] [ 1 ] [ 1 ] [ 1 ] [ 1 ] 7 1 m [ 1 ] 1 7 m [ 1 ] m +7 m 1 7 m [ 1 ] [ 1 ] [ 5 1 ] m +7 mod. m Now combiig the above with Theorem.1 we deduce the result. 1

. A geeral cogruece modulo. Lemma.1. For ay oegative iteger we have Proof. Let m be a oegative iteger. For {0,1,...,m} set F 1 m, m, m m m F m,. m m For {0,1,...,m+1} set G 1 m, 18 m+m+1 +1 G m, 1 m m +19m +11 m + m +1 m +1. m +1 m +1 For i 1, ad {0,1,...,m}, it is easy to chec that.1. +1 m, m+ m+ F i m+, m+18m +5m+1F i m+1, +07m+1m+1m+5F i m, G i m,+1 G i m,. Set S i F i, for 0,1,,... The m+ S i m+ F i m+,m+ F i m+,m+1 m+18m +5m+1S i m+1 F i m+1,m+1 +07m+1m+1m+5S i m m m m+ F i m+, m+18m +5m+1 F i m+1, +07m+1m+1m+5 m F i m, m G i m, +1 G i m, G i m,m+1 G i m,0 G i m,m+1. Thus, for i 1, ad m 0,1,,...,. m+ S i m+ m+18m +5m+1S i m+1 +07m+1m+1m+5S i m G i m,m+1+m+ F i m+,m++f i m+,m+1 m+18m +5m+1F i m+1,m+1 0. Sice S 1 0 1 S 0 ad S 1 1 10 S 1, from. we deduce S 1 S for all 0,1,,... This comletes the roof. For give rime ad iteger, if α but α+1, we say that α. 17

Lemma.. Let be a odd rime ad,r {0,1,..., 1} with +r. The r r r r 0 mod. Proof. If > 5, the 5!,!,! ad so!!!! 0 mod. If < 5, the <, < 5,!,!,! ad so!!!! 0 mod. If < <, the < <, < <,!,!,! ad so!!!! 0 mod. If <, the < <,!,!,! ad! so!!! 0 mod. If < <, the < < ad so!!!! 0 mod. From the above we see that for >. Therefore, if > ad r >, the r r r r 0 mod. If r < 5, the r > ad so by the above. If <, the r > 5 ad so r r r r by the above. Now uttig all the above together we rove the lemma. Theorem.1. Let be a odd rime ad let x be a variable. The 1 x1 x 1 x mod. Proof. It is clear that 1 1 1 m0 x1 x mi{m, 1} x m x r0 x r r m. m Suose m ad 0 1. If, the <,,!,! ad so!!! 0 mod. If < <, the <, >,! ad! ad so! 0 mod. If!! <, the m > ad so m 0. Thus, from the above ad Lemma.1 18

we deduce that 1 1 m0 1 m0 1 1 1 1 x m m x m m x1 x x 1 m m m m m m m m m m m 1 x r0 x 1 r0 r r r r 1 x By Lemma. we have Thus 1 r r r r r r r x 1 r x r x r 1 r 1 x x m r r r r r r r x r r r x r mod. r for 0 1 ad r 1. r r r r Now combiig all the above we obtai the result. x r 0 mod. Corollary.1. Let be a rime greater tha ad m R with m 0 mod. The 1 m 1 1 1 178/m mod. 8 Proof. Taig x 1 1 178/m 8 i Theorem.1 we deduce the result. Lemma.. Let be a rime of the form + 1 ad a + b a,b Z with a 1 mod. The 1 a if 1 mod 1 ad a, ] 0 [ 1 ] a if 1 mod 1 ad a, b if 5 mod 1 ad a b. Proof. By Lemma.1i ad the roof of Theorem.1 we have 1 [ ] 0 ] 1 1 [ 1 ] [ 1 ] [ 1 ] 1 1 19 mod.

By Gauss cogruece [BEW,.9], 1 a mod. By [S1, Theorem.], 1 1 mod if 1 mod 1 ad a, 1 1 mod if 1 mod 1 ad a, b a a b mod if 5 mod 1 ad b a mod. Thus the result follows. Let > be a rime. By the wor of Morteso[M] ad Zhi-Wei Su[Su],. 1 { a mod if a +b 1 mod ad a, 178 0 mod if mod. I [Su1] Zhi-Wei Su cojectured that 1 0 mod if 7,11 mod 1, 1 [a 8 ] a a mod if 1 1, a +b ad a 1, ab b b mod if 1 5, a +b ad a 1. I [Su], Zhi-Wei Su cofirmed the cojecture i the case mod. Now we rove the above cojecture for rimes 1 mod. Theorem.. Let be a rime of the form +1 ad so a +b with a,b Z ad a 1. The 1 a a mod if 1 mod 1 ad a, a+ 8 a mod if 1 mod 1 ad a, b b mod if 5 mod 1 ad a b. Proof. From Lemma. we have ] 0 r mod, where a if 1 mod 1 ad a, r a if 1 mod 1 ad a, b if 5 mod 1 ad a b. By the roof of Lemma. we have for > >. Thus, alyig Lemma. ad the above we get Set 1 1 1 8 [/] 8 ] 0 r mod. r +q. Usig Corollary.1 we see that 8 178 1 r +q 8 r +rq mod. Thus, alyig. we obtai a r + rq mod. Hece q 1 r mod ad the roof is comlete. 0

. Cogrueces for 1 /m. Theorem.1. Let > be a rime, m R, m 0 mod ad t 1 178/m. The 1 1 P m [ ] t x x+t 1 mod. Moreover, if ] t 0 mod or 1 x x+t 1 0 mod, the.1 1 0 mod. m Proof. Sice 1 t 1 t 8 1 8 1 m, by Theorem.1 we have 1 t 1 m 1 8 mod. From the roof of Lemma. we ow that for [ ] < <. Thus, usig Lemma. ad Theorem. we see that 1 1 t P[ 8 ] t 1 x x+t 1 mod. This together with.1 yields the result. Theorem.. Let > be a rime ad m, R with m 0 mod. The x +mx+ m 1 Moreover, if 1 +mx+ x 1 m 1 [/] 0, the m +7 Proof. By the roof of Lemma. we have m +7 0 mod. As x +mx+ x m 1 x +mx+ 1 x m x+ 1 t t0 m +7 1 m m +7 1 m 0 mod. m m m 1 1 m mod. for < <. We first assume x+ m mod we see that x m 1 m mod. x m

Sice m 0 mod we have 0 mod ad so 1 +mx+ m 0. x Thus the result holds i this case. Now we assume m +7 0 mod. Set t m m ad m 1 178 m m +7. The t 1 178 m 1. From Theorems.1 ad.1 we have 1 x +mx+ 1 m P[ ] t If 1 +mx+ x so 1 m 1 m 1 mod. 0, usig Theorems.1 ad.1 we see that ] t 0 mod ad 0 mod. This comletes the roof. m 1 Theorem. [Su, Cojecture.7]. Let,11 be a rime. The 1 { 0 mod if 11 1, x mod if 11 1 ad so x +11y. Proof. Taig m 9 11 ad 11 11 i Theorem. ad the alyig.8 we deduce the result. Theorem. [Su, Cojecture.8]. Let,,19 be a rime. The 1 9 { 0 mod if 19 1, x mod if 19 1 ad so x +19y. Proof. Taig m 8 19 ad 19 i Theorem. ad the alyig.9 we deduce the result. Theorem.5 [Su, Cojecture.9]. Let,,5, be a rime. The 1 90 { 0 mod if 1, 15 x mod if 1 ad so x +y. Proof. Taig m 80 ad i Theorem. ad the alyig.9 we deduce the result. Theorem. [Su, Cojecture.9]. Let be a rime such that,,5,11,7. The { 1 0 mod if 7 1, 580 0 x mod if 7 1 ad so x +7y. Proof. Taig m 0 7 ad 7 i Theorem. ad the alyig.9 we deduce the result.

Theorem.7 [Su, Cojecture.10]. Let be a rime with,,5,,9,1. The 1 { 0 mod 00 if 1 1, 10005 x mod if 1 1 ad so x +1y. Proof. Taig m 80 9 1 ad 1 11 19 17 1 i Theorem. ad the alyig.9 we deduce the result. Theorem.8 [S, Cojecture.8]. Let > 7 be a rime. The 1 15 { 0 mod if,5, mod 7, 15 C mod if C +7D 1,, mod 7. Proof. Taig m 5 ad 98 i Theorem. ad the alyig.5 we deduce the result. Theorem.9 [S, Cojecture.9]. Let > 7 be a rime ad 17. The 1 { 0 mod if,5, mod 7, 55 55 C mod if C +7D 1,, mod 7. Proof. Taig m 595 ad 558 i Theorem. ad the alyig.7 we deduce the result. Theorem.10 [S, Cojecture.]. Let be a rime such that,,11. The 1 { 0 mod if mod, a mod if a +b 1 mod ad a. Proof. Taig m 11 ad 1 i Theorem. ad the alyig. we deduce the result. Theorem.11 [S, Cojecture.5]. Let > 5 be a rime. The 1 { 0 mod if 5,7 mod 8, 0 5 c mod if c +d 1, mod 8. Proof. Taig m 0 ad 5 i Theorem. ad the alyig the result i the roof of Corollary. we deduce the result. Theorem.1 [S, Cojecture.]. Let > 5 be a rime. The 1 5000 { 0 mod if mod, 5 A mod if A +B 1 mod. Proof. Taig m 15 ad i Theorem. ad the alyig. we deduce the result.

Theorem.1 [S, Cojecture.7]. Let > 5 be a rime. The 1 188000 { 0 mod if, 10 L mod if 1 ad so L +7M. Proof. Taig m 10 ad 50 i Theorem. ad the alyig. we deduce the result. Remar.1 From [O] we ow that the oly j-ivariats of ellitic curves over ratioal field Q with comlex multilicatio are give by 0,1, 15,0,, 0,, 9, 10,55, 90, 580, 00, coicidig with the values of m i. ad Theorems.-.1. 5. Some cojectures o suercogrueces. Cojecture 5.1. Let > 5 be a rime. The 1 1 1 1 1 1 +8 15 1 +8 55 8 + 0 +5 11 +1 5000 50+1 188000 15 8 mod, 55 8 mod for 17, 5 mod, 5 mod for 11, 15 mod, 0 1 mod. Cojecture 5.1 is similar to some cojectures i [Su1].

Cojecture 5.. Let > be a rime. The 1 0 1 0 1 0 1 0 1 0 1 0 1 0 9+ 5 5+ 1 9+ 50 5+1 9 +1 0 90+1 89 10+11 1000 mod 5 for > 5, mod, 1 mod for 5, mod, mod for 5, 15 1 mod 7 for 7, 11 mod for 5,1. 9 Cojecture 5.. Let > be a rime. The 1 0 1 0 1 0 1 0 1 0 1 0 +1 1 15+ 9 9+ 11 99+17 00 855+109 70 585+58 0 1 mod, mod for 7, mod 7 for 7, 1 17 mod, 1 109 mod for 1, 1 58 mod for 7,1. For a iteger m ad odd rime with m let 5

1 Z m 0 m. The we have the followig cojectures cocerig Z m modulo. Cojecture 5.. Let be a odd rime. The x mod if x +y 1 mod 1 with y, x mod if x +y 1 mod 1 with x, Z 1 xy xy mod if x +y 5 mod 1, 0 mod if mod. Cojecture 5.5. Let be a odd rime. The Z 9 { x mod if x +y 1, mod 8, 0 mod if 5,7 mod 8. Cojecture 5.. Let > 5 be a rime. The { x mod if x +y 1 mod, Z Z 50 0 mod if mod. Cojecture 5.7. Let > 5 be a rime. The x mod if 1,9 mod 0 ad so x +5y, Z 1 x mod if,7 mod 0 ad so x +5y, 0 mod if 11,1,17,19 mod 0. Cojecture 5.8. Let > be a rime. The x mod if 1,7 mod ad so x +y, Z 8x mod if 5,11 mod ad so x +y, 0 mod if 1,17,19, mod. Cojecture 5.9. Let > 7 be a rime. The x mod if x +15y 1,19 mod 0, Z 5 Z 9 1x mod if x +5y 17, mod 0, 0 mod if 7,11,1,9 mod 0.

Cojecture 5.10. Let b {7,11,19,1,59} ad let fb 11, 00, 70, 0, 1100 accordig as b 7,11,19,1,59. If is a rime with,,b ad fb, the x mod if x +by, 1x mod if x +by, Z fb x mod if x +by, x mod if x +by, 0 mod if b 1. Cojecture 5.11. Let b {5,7,1,17} ad fb 0,89,1000,900 accordig as b 5,7,1,17. If is a rime with,,b ad fb, the x mod if x +by, 8x mod if x +by, Z fb 1x mod if x +by, x mod if x +by, 0 mod if b 1. Refereces [AAR] G. Adrews, R. Asey, R. Roy, Secial Fuctios,, Ecycloedia Math. Al., vol. 71, Cambridge Uiv. Press, Cambridge, 1999. [B] H. Batema, Higher Trascedetal Fuctios Vol. I, McGraw-Hill Boo Com. Ic., US, 195. [BEW] B.C. Berdt, R.J. Evas ad K.S. Williams, Gauss ad Jacobi Sums, Joh Wiley & Sos, New Yor, 1998. [G] H.W. Gould, Combiatorial Idetities, A Stadardized Set of Tables Listig 500 Biomial Coefficiet Summatios, Morgatow, W. Va., 197. [IR] K. Irelad ad M. Rose, A Classical Itroductio to Moder Number Theory d editio, Grad. Texts i Math. 8, Sriger, New Yor, 1990. [JM] A. Joux et F. Morai, Sur les sommes de caractères liées aux courbes ellitiques à multilicatio comlexe, J. Number Theory 55 1995, 108-18. [MO] Y. Marti ad K. Oo, Eta-quotiets ad ellitic curves, Proc. Amer. Math. Soc. 15 1997, 19-17. [M] E. Morteso, Suercogrueces for trucated +1 F hyergeometric series with alicatios to certai weight three ewforms, Proc. Amer. Math. Soc. 1 005, 1-0. [PV] R. Padma ad S. Veatarama, Ellitic curves with comlex multilicatio ad a character sum, J. Number Theory 1 199, 7-8. [RP] A.R. Rajwade ad J.C. Parami, A ew cubic character sum, Acta Arith. 0 198, 7-5. [R1] A.R. Rajwade, The Diohatie equatio y xx + 1Dx + 11D ad the cojectures of Birch ad Swierto-Dyer, J. Austral. Math. Soc. Ser. A 1977, 8-95. [R] A.R. Rajwade, O a cojecture of Williams, Bull. Soc. Math. Belg. Ser. B 198, 1-. [RPR] D.B. Rishi, J.C. Parami ad A.R. Rajwade, Evaluatio of a cubic character sum usig the 19 divisio oits of the curve y x 19x + 19, J. Number Theory 19 198, 18-19. [S1] Z.H. Su, Sulemets to the theory of quartic residues, Acta Arith. 97 001, 1-77. [S] Z.H. Su, O the umber of icogruet residues of x +ax +bx modulo, J. Number Theory 119 00, 10-1. [S] Z.H. Su, O the quadratic character of quadratic uits, J. Number Theory 18 008, 195-15. 7

[S] Z.H. Su, Cogrueces cocerig Legedre olyomials, Proc. Amer. Math. Soc. 19 011, 1915-199. [S5] Z.H. Su, Cogrueces cocerig Legedre olyomials II, arxiv:101.898v. htt://arxiv.org/ abs/101.898. [S] Z.H. Su, Cogrueces ivolvig, J. Number Theory, to aear, htt://arxiv.org/ abs/110.789. [Su1] Z.W. Su, Oe cojectures o cogrueces, arxiv:0911.55v59. htt://arxiv.org/abs/0911.55. [Su] Z.W. Su, Suer cogruecesad elliticcurvesover F, rerit, arxiv:1011.7. htt://arxiv. org/abs/1011.7. [Su] Z.W. Su, O sums ivolvig roducts of three biomial coefficiets, rerit, arxiv:101.11. htt://arxiv.org/abs/101.11. [Su] Z.W. Su, Cojectures ad results o x mod with x + dy, Proceedigs of Number Theory ad Related Fields, to aear, arxiv:110.5v7. htt://arxiv. org/abs/110.5. [W] K.S. Williams, Evaluatio of character sums coected with ellitic curves, Proc. Amer. Math. Soc. 7 1979, 91-99. 8