High-Temperature Precision Hall-Effect Switch

Similar documents
Precision Hall-Effect Switch for Consumer and Industrial Applications

APS12205, APS12215, and APS12235 High-Temperature Hall-Effect Latches for Low Voltage Applications

APS13290 and APS13291 Precision Hall-Effect Latches for Consumer and Industrial Applications

Hall-Effect Latch / Bipolar Switch

A1245. Chopper-Stabilized, Two Wire Hall-Effect Latch PACKAGES

A1126. Chopper-Stabilized Omnipolar Hall-Effect Switch DESCRIPTION FEATURES AND BENEFITS. PACKAGES: Not to scale. Functional Block Diagram

Chopper-Stabilized Precision Hall-Effect Latches

A1244 Chopper-Stabilized, Two Wire Hall-Effect Latch

Discontinued Product

Continuous-Time Switch Family

Chopper-Stabilized, Two Wire Hall-Effect Switches

Continuous-Time Switch Family

Continuous-Time Switch Family

Chopper-Stabilized, Two Wire Hall-Effect Switches

A4480 Wide Input 5 V, 50 ma, Automotive Regulator with Output Short-to-Battery Protection and Power OK

Chopper-Stabilized, Two-Wire Hall-Effect Switches

Isolated Current Sensor with Common Mode Field Rejection

ATS177. General Description. Features. Applications. Ordering Information SINGLE OUTPUT HALL EFFECT LATCH ATS177 - P L - X - X

3.3V Power Supply Isolated Current Sensor with Common Mode Field Rejection

A1321, A1322, and A1323

Isolated Current Sensor with Common Mode Field Rejection

HAL501...HAL506, HAL508 Hall Effect Sensor ICs MICRONAS INTERMETALL MICRONAS. Edition May 5, DS

RP mA, Ultra-Low Noise, Ultra-Fast CMOS LDO Regulator. General Description. Features. Applications. Ordering Information. Marking Information

TLE Data Sheet. Automotive Power. Low Dropout Fixed Voltage Regulator TLE42644G. Rev. 1.1,

UNISONIC TECHNOLOGIES CO., LTD

5-V Low Drop Fixed Voltage Regulator TLE

HIGH VOLTAGE HALL EFFECT LATCH General Description. Features. Applications

MT3451 Series BiCMOS, Latch, Hall-Effect Magnetic Position Sensors

ATS276 X - P X - B - X. Lead Free L : Lead Free G : Green

UNISONIC TECHNOLOGIES CO., LTD

TLF80511TF. Data Sheet. Automotive Power. Low Dropout Linear Fixed Voltage Regulator TLF80511TFV50 TLF80511TFV33. Rev. 1.

S-57P1 S Series FOR AUTOMOTIVE 150 C OPERATION HIGH-WITHSTAND VOLTAGE HIGH-SPEED BIPOLAR HALL EFFECT LATCH IC. Features. Applications.

UNISONIC TECHNOLOGIES CO., LTD

Hall Effect Linear Current Sensor with Overcurrent Fault Output for <100 V Isolation Applications

TLF80511EJ. Data Sheet. Automotive Power. Low Dropout Linear Fixed Voltage Regulator TLF80511EJV50 TLF80511EJV33. Rev. 1.

S-57K1 A Series FOR AUTOMOTIVE 125 C OPERATION HIGH-WITHSTAND VOLTAGE HIGH-SPEED BIPOLAR HALL EFFECT LATCH IC. Features. Applications.

5-V Low Drop Fixed Voltage Regulator TLE 4275

5-V Low Drop Voltage Regulator TLE 4290

S-5743 A Series 125 C OPERATION HIGH-WITHSTAND VOLTAGE HIGH-SPEED BIPOLAR HALL EFFECT LATCH IC. Features. Applications. Package.

IX4340NE. Automotive Grade 5-Ampere, Dual Low-Side MOSFET Driver INTEGRATED CIRCUITS DIVISION. Features. Description. Applications

SGM800 Low-Power, SOT µp Reset Circuit with Capacitor-Adjustable Reset Timeout Delay

UNISONIC TECHNOLOGIES CO., LTD

PT5108. High-PSRR 500mA LDO GENERAL DESCRIPTION FEATURES APPLICATIONS TYPICAL APPLICATIONS. Ripple Rejection vs Frequency. Ripple Rejection (db)

ACS725. Automotive-Grade, Galvanically Isolated Current Sensor IC With Common-Mode Field Rejection in a Small Footprint SOIC8 Package ACS725

RT9166B. 600mA, Ultra-Fast Transient Response Linear Regulator. General Description. Features. Ordering Information. Applications. Pin Configurations

5-V Low Drop Fixed Voltage Regulator TLE 4279

SOT-563 Q 1 Q 2 BOTTOM VIEW. Characteristic Symbol Value Unit Drain Source Voltage V DSS 20 V Gate-Source Voltage V GSS ±8 V T A = 25 C T A = 85 C

SGM802 Low-Power, SC70/SOT µp Reset Circuit with Capacitor-Adjustable Reset Timeout Delay

FAN ma, Low-IQ, Low-Noise, LDO Regulator

UNISONIC TECHNOLOGIES CO., LTD

CA3086. General Purpose NPN Transistor Array. Applications. Pinout. Ordering Information. Data Sheet August 2003 FN483.5

74HC86. Quad 2 Input Exclusive OR Gate. High Performance Silicon Gate CMOS

PRODUCTION DATA SHEET

UNISONIC TECHNOLOGIES CO., LTD

Schmitt-Trigger Inverter/ CMOS Logic Level Shifter

2 Input NAND Gate L74VHC1G00

IFX8117. Data Sheet. Standard Power. 1A Low-Dropout Linear Voltage Regulator IFX8117MEV IFX8117MEV33 IFX8117MEV50. Rev. 1.

AME. High PSRR, Low Noise, 600mA CMOS Regulator AME8855. n General Description. n Typical Application. n Features. n Functional Block Diagram

RT9403. I 2 C Programmable High Precision Reference Voltage Generator. Features. General Description. Ordering Information.

5-V Low Drop Fixed Voltage Regulator TLE

Low-Voltage Analog Temperature Sensors in SC70 and SOT23 Packages

Low Drop Voltage Regulator TLE 4295

FPF1003A / FPF1004 IntelliMAX Advanced Load Management Products

LT R1. Quad Matched Resistor Network. Applications. Typical Application

TLE Data Sheet. Automotive Power. 5-V Low Dropout Voltage Regulator TLE7274-2E TLE7274-2D TLE7274-2G. Rev. 1.01,

Detection of S pole Detection of N pole Active "L" Active "H" Nch open-drain output Nch driver built-in pull-up resistor. f C = 250 khz typ.

1-A Dual-HBD (Dual-Half-Bridge Driver) TLE4207G

Data Sheet, Rev. 1.0, June 2007 BTM7700G. TrilithIC. Automotive Power

DG211. Features. SPST 4-Channel Analog Switch. Part Number Information. Functional Block Diagrams. Pinout. Data Sheet December 21, 2005 FN3118.

Dual Low-Drop Voltage Regulator TLE 4470


with Current-Limiting Switch

ACS724. Automotive-Grade, Galvanically Isolated Current Sensor IC With Common-Mode Field Rejection in a Small-Footprint SOIC8 Package ACS724

-202mA. Pin 1 D1. Diode. Part Number Case Packaging DMC21D1UDA-7B X2-DFN ,000/Tape & Reel

AME. High PSRR, Low Noise, 600mA CMOS Regulator AME8855. General Description. Typical Application. Features. Functional Block Diagram.

SC1462. High Output Current Charge Pump Doubler. POWER MANAGEMENT Description. Features. Applications. Typical Application Circuit

S-5841 Series TEMPERATURE SWITCH IC (THERMOSTAT IC) Features. Applications. Packages. Seiko Instruments Inc. 1.

MAS Output LDO Voltage Regulator IC

PART. Maxim Integrated Products 1

Data Sheet, Rev. 1.1, February 2008 TLE4294GV50. Low Drop Out Voltage Regulator. Automotive Power

PI4GTL bit bidirectional low voltage translator

Datasheet, Rev. 1.0, July 2008 BTM7710GP. TrilithIC. Automotive Power

High Current Density Surface-Mount Trench MOS Barrier Schottky Rectifier

Low Drop Voltage Regulator TLE 4296

Low Drop Voltage Regulator TLE

High-Supply-Voltage, Precision Voltage Reference in SOT23 MAX6035

Surface Mount ESD Capability Rectifiers

TLE42344G. Data Sheet. Automotive Power. Low Dropout Linear Voltage Regulator. Rev. 1.0,

SOT-363 Q 1 Q 2 TOP VIEW. Characteristic Symbol Value Unit I D. Characteristic Symbol Value Unit Drain Source Voltage V DSS -20 V

The IK642B is a bi-polar integrated circuit designed for the wiper application in the automotive market. It includes wipe, wash and internal mode.

RT9166/A. 300/600mA, Ultra-Fast Transient Response LDO Regulator. General Description. Features. Applications. Ordering Information

Data Sheet, Rev. 1.0, May 2007 BTM7740G. TrilithIC. Automotive Power

NPN/PNP transistor pair connected as push-pull driver in a SOT457 (SC-74) Surface-Mounted Device (SMD) plastic package.

Block Diagram 1 REG. VCC 2 Hall Plate Amp B 3 GND 4 Pin Assignment 277 (276) Front View 1 : VCC 2 : 3 : B :GND Name P/I/O Pin # Desc

High Reliability Hallogic Hall- Effect Sensors OMH090, OMH3019, OMH3020, OMH3040, OMH3075, OMH3131 (B, S versions)

Ultra-Low-Power Precision Series Voltage Reference MAX6029. Features. General Description. Ordering Information. Applications.

Features. Pinout. PART NUMBER PART MARKING TAPE & REEL PKG PKG. DWG. # EL7156CNZ (Note) (No longer available, recommended replacement: EL7156CSZ)

MT1101 Series CMOS, Uni-polar, Hall-Effect

S-57M1 Series HIGH-SPEED BIPOLAR HALL EFFECT LATCH. Features. Applications. Package. ABLIC Inc., Rev.1.

Package Type. IXDD614PI 8-Pin DIP Tube 50 OUT 8-Lead Power SOIC with Exposed Metal Back Tube 100

Transcription:

- FEATURES AND BENEFITS Unipolar switchpoints ASIL A functional safety compliance Automotive-grade ruggedness and fault tolerance Extended AEC-Q qualification Reverse-battery and 4 V load dump protection Operation from 4 C to 175 C junction temperature High EMC immunity, ± kv HBM ESD Output short-circuit and overvoltage protection Superior temperature stability Resistant to physical stress Operation from unregulated supplies,.8 to 4 V Chopper stabilization Solid-state reliability Industry-standard packages and pinouts PACKAGES: Not to scale 3-pin SIP (suffix UA) DESCRIPTION The APS is a three-wire, planar Hall-effect sensor integrated circuit (IC). This device was developed in accordance with ISO 66 and supports a functional safety level of ASIL A. This Hall-effect switch IC features extended AEC-Q qualification and is ideal for high-temperature operation up to 175 C junction temperatures. In addition, the APS includes a number of features designed specifically to maximize system robustness such as reverse-battery protection, output current limiter, overvoltage, and EMC protection. The single silicon chip includes: a voltage regulator, a Hall plate, small signal amplifier, chopper stabilization, Schmitt trigger, and a short-circuit-protected open-drain output. A south pole of sufficient strength turns the output on. Removal of the magnetic field or a north pole turns the output off. The devices include on-board transient protection for all pins, permitting operation directly from a vehicle battery or regulator with supply voltages from.8 to 4 V. Two package styles provide a choice of through-hole or surface mounting. Package type LH is a modified SOT3W, surfacemount package, while UA is a three-lead ultra-mini SIP for through-hole mounting. Both packages are lead (Pb) free and RoHs compliant with % matte-tin leadframe plating. 3-pin SOT3W (suffix LH) Functional Block Diagram VCC REGULATOR TO ALL SUBCIRCUITS Hall Element DYNAMIC OFFSET CANCELLATION HALL AMP. SAMPLE, HOLD & AVERAGING LOW-PASS FILTER SCHMITT TRIGGER CONTROL CURRENT LIMIT VOUT GND APS-DS MCO-381 February 3, 18

SELECTION GUIDE Part Number Packing [1] Mounting Branding Ambient, T A (Typ.) Switchpoints APSLLHALX 13-in. reel, pieces/reel 3-pin SOT3W surface mount A1 APSLLHALT [] 7-in. reel, 3 pieces/reel 3-pin SOT3W surface mount A1 APSLUAA Bulk, 5 pieces/bag 3-pin SIP through hole A B OP B RP 4 C to 15 C 35 G G [1] Contact Allegro for additional packing options. [] Available through authorized Allegro distributors only. RoHS COMPLIANT ABSOLUTE MAXIMUM RATINGS Characteristic Symbol Notes Rating Units Forward Supply Voltage [1] V CC 3 V Reverse Supply Voltage [1] V RCC 18 V Output Off Voltage [1] V OUT 3 V Output Current [] I OUT 6 ma Reverse Output Current I ROUT 5 ma Magnetic Flux Density [3] B Unlimited Maximum Junction Temperature T J (max) 165 C For 5 hours 175 C Storage Temperature T stg 65 to 17 C ESD Voltage [4] V ESD(CDM) AEC-Q, Charged Device Model ±1 kv V ESD(HBM) AEC-Q, Human Body Model ± kv V ESD(SYS) ISO 65, System Level ±15 kv [1] This rating does not apply to extremely short voltage transients such as load dump and/or ESD. Those events have individual ratings, specific to the respective transient voltage event. [] Through short-circuit current limiting device. [3] Guaranteed by design. [4] System level ESD performance based on use with the application circuit shown in Figure 4 and the kω / 33 pf ESD discharge network.

PINOUT DIAGRAMS AND TERMINAL LIST 3 1 1 3 VCC VOUT VCC GND VOUT GND 3-pin SOT3W (suffix LH) 3-pin SIP (suffix UA) Terminal List Name Description LH Number UA VCC Connects power supply to chip 1 1 VOUT Output from circuit 3 GND Ground 3 V SUPPLY APS R LOAD = 1 kω 1 VCC VOUT V OUT C BYP =.1 µf GND 3 Figure 1: Typical Application Circuit 3

ELECTRICAL CHARACTERISTICS: Valid over full operating voltage, ambient temperature range T A = 4 C to 15 C, and with C BYP =.1 µf, unless otherwise specified Characteristics Symbol Test Conditions Min. Typ. [1] Max. Unit [] ELECTRICAL CHARACTERISTICS Forward Supply Voltage V CC Operating, T J < 175 C.8 4 V Supply Current I CC 1 3 ma Output Leakage Current I OUTOFF V OUTOFF = 4 V, B < B RP µa Output Saturation Voltage V OUT(SAT) I OUT = ma, B > B OP 5 mv Output Off Voltage V OUTOFF B < B RP 4 V Power-On Time t ON V CC V CC (min), B < B RP (min) G, B > B OP (max) + G µs Power-On State, Output [3] POS V CC V CC (min), t < t ON Low Chopping Frequency f C 8 khz Output Rise Time [4] t r R LOAD = 1 kω, C L = pf. µs Output Fall Time [4] t f R LOAD = 1 kω, C L = pf.1 µs TRANSIENT PROTECTION CHARACTERISTICS Output Short-Circuit Current Limit I OM 3 6 ma Output Zener Clamp Voltage V Zoutput I OUTOFF = 3 ma; T A = C, Output Off 3 V Reverse Battery Current I RCC V RCC = 18 V, T A = C 5 ma Supply Zener Clamp Voltage V Z I CC = I CC (max) + 3 ma, T A = C 3 V MAGNETIC CHARACTERISTICS Operate Point B OP 35 5 G Release Point B RP 5 G Hysteresis B HYS (B OP B RP ) 7 G [1] Typical data are at T A = C and V CC = V. [] 1 G (gauss) =.1 mt (millitesla). [3] Guaranteed by device design and characterization. [4] C L = oscilloscope probe capacitance. 4

THERMAL CHARACTERISTICS: May require derating at maximum conditions; see application information Characteristic Symbol Test Conditions Value Units Package LH, 1-layer PCB with copper limited to solder pads 8 C/W Package Thermal Resistance R θja Package LH, -layer PCB with.463 in. of copper area each side connected by thermal vias 1 C/W Package UA, 1-layer PCB with copper limited to solder pads 165 C/W Maximum Allowable 4 3 1 19 18 17 16 15 14 13 11 9 8 7 6 5 4 3 Power Derating Curve T J(max) = 175 C; I CC = I CC(max), I OUT = ma (Output Off) Package LH, -layer PCB (R θja = 1 C/W) Package UA, 1-layer PCB (R θja = 165 C/W) Package LH, 1-layer PCB (R θja = 8 C/W) 45 65 85 5 1 145 165 185 Temperature ( C) T J (max) V CC(max) V CC(min) Power Dissipation versus Ambient Temperature Power Dissipation, P D (mw) 19 18 17 16 15 14 13 1 9 8 7 6 5 4 3 Package LH, 1-layer PCB (R θja = 8 C/W) Package LH, -layer PCB (R θja = 1 C/W) Package UA, 1-layer PCB (R θja = 165 C/W) 45 65 85 5 1 145 165 185 Temperature ( C) 5

CHARACTERISTIC PERFORMANCE DATA Average Supply Current versus Supply Voltage Average Supply Current versus Ambient Temperature 4. 4. 3.5 3.5 I CC (ma) 3..5. 1.5 1. -4 15 I CC (ma) 3..5. 1.5 1..8 4.5.5. 6 14 18 6. -6-4 - 4 6 8 14 16 V OUT(SAT) (mv) Average Low Output Voltage versus Supply Voltage for I OUT = ma 5 45 4 35 3 15 5 6 14 18 6-4 15 V OUT(SAT) (mv) Average Low Output Voltage versus Ambient Temperature for I OUT = ma 5 45 4 35 3 15 5-6 -4-4 6 8 14 16.8 4 6

CHARACTERISTIC PERFORMANCE DATA (continued) B OP (G) 5 45 4 35 3 15 5 Average Operate Point versus Supply Voltage 6 14 18 6-4 15 B OP (G) Average Operate Point versus Ambient Temperature 5 45 4 35 3 15 5-6 -4-4 6 8 14 16.8 4 B RP (G) 5 45 4 35 3 15 5 Average Release Point versus Supply Voltage 6 14 18 6-4 15 B RP (G) Average Release Point versus Ambient Temperature 5 45 4 35 3 15 5-6 -4-4 6 8 14 16.8 4 Average Switchpoint Hysteresis versus Supply Voltage Average Switchpoint Hysteresis versus Ambient Temperature B HYS (G) 18 16 14 8 6 4 6 14 18 6-4 15 B HYS (G) 18 16 14 8 6 4-6 -4-4 6 8 14 16.8 4 7

FUNCTIONAL DESCRIPTION OPERATION The output of the APS switches low (turns on) when a south-polarity magnetic field perpendicular to the Hall element exceeds the operate point threshold, B OP (see Figure ). After turn-on, the output voltage is V OUT(SAT). The output transistor is capable of continuously sinking up to 3 ma. When the magnetic field is reduced below the release point, B RP, the device output goes high (turns off) to V OUTOFF. V+ VOUT Switch to High BRP B HYS Switch to Low BOP B+ (south) V OUTOFF V OUT(SAT) POWER-ON BEHAVIOR Device power-on occurs once t ON has elapsed. During the time prior to t ON, and after V CC V CC (min), the output state is V OUT(SAT). After t ON has elapsed, the output will correspond with the applied magnetic field for B > B OP or B < B RP. See Figure 3 for an example. Powering-on the device in the hysteresis range (less than B OP and higher than B RP ) will give an output state of V OUTOFF. The correct state is attained after the first excursion beyond B OP or B RP. VOUT V VOUT(OFF) VOUT (SAT) V Output State Undefined for VCC< VCC(min) POS Key POS B > BOP B < BRP, BRP< B < BOP t Figure : Device Switching Behavior On the horizontal axis, the B+ direction indicates increasing south polarity magnetic field strength. The difference in the magnetic operate and release points is the hysteresis, B HYS, of the device. This built-in hysteresis allows clean switching of the output even in the presence of external mechanical vibration and electrical noise. VCC VCC(min) t ON Figure 3: Power-On Sequence and Timing t 8

Functional Safety The APS was designed in accordance with the international standard for automotive functional safety, ISO 66. This product achieves an ASIL (Automotive Safety Integrity Level) rating of ASIL A according to the standard. The APS is classified as a SEooC (Safety Element out of Context) and can be easily integrated into safety-critical systems requiring higher ASIL ratings that incorporate external diagnostics or use measures such as redundancy. Safety documentation will be provided to support and guide the integration process. For further information, contact your local Allegro field applications engineer or sales representative. Applications It is strongly recommended that an external bypass capacitor be connected (in close proximity to the Hall element) between the supply and ground of the device to guarantee correct performance under harsh environmental conditions and to reduce noise from internal circuitry. As is shown in Figure 1: Typical Application Circuit, a.1 µf capacitor is required. In applications where maximum robustness is required, such as in an automobile, additional measures may be taken. In Figure 4: Enhanced Protection Circuit, a resistor in series with the VCC pin and a capacitor on the VOUT pin enhance the EMC immunity of the device. It is up to the user to fully qualify the Allegro sensor IC in their end system to ensure they achieve their system requirements. These devices are sensitive in the direction perpendicular to the branded package face, and may be configured to sense magnetic - V SUPPLY A A R S = Ω C BYP =.1 µf APS 1 VCC GND 3 R S and C OUT are recommended for maximum robustness in an automotive environment. VOUT fields in a variety of orientations, such as the ones shown in Figure 5. Extensive applications information for Hall-effect devices is available in: Hall-Effect IC Applications Guide, AN771, Hall-Effect Devices: Guidelines for Designing Subassemblies Using Hall-Effect Devices AN773.1 Soldering Methods for Allegro s Products SMD and Through-Hole, AN69 All are provided on the Allegro website: www.allegromicro.com V PULL-UP Figure 4: Enhanced Protection Circuit R LOAD = 1 kω A V OUT C OUT = 4.7 nf N S N S PCB Figure 5: Sensing Configurations 9

CHOPPER STABILIZATION A limiting factor for switchpoint accuracy when using Hall-effect technology is the small-signal voltage developed across the Hall plate. This voltage is proportionally small relative to the offset that can be produced at the output of the Hall sensor. This makes it difficult to process the signal and maintain an accurate, reliable output over the specified temperature and voltage range. Chopper stabilization is a proven approach used to minimize Hall offset. The Allegro technique, dynamic quadrature offset cancellation, removes key sources of the output drift induced by temperature and package stress. This offset reduction technique is based on a signal modulation-demodulation process. Figure 6: Model of Chopper Stabilization Circuit (Dynamic Offset Cancellation) illustrates how it is implemented. The undesired offset signal is separated from the magnetically induced signal in the frequency domain through modulation. The subsequent demodulation acts as a modulation process for the offset causing the magnetically induced signal to recover its original spectrum at baseband while the DC offset becomes a high-frequency signal. Then, using a low-pass filter, the signal passes while the modulated DC offset is suppressed. Allegro s innovative chopper stabilization technique uses a high-frequency clock. The high-frequency operation allows a greater sampling rate that produces higher accuracy, reduced jitter, and faster signal processing. Additionally, filtering is more effective and results in a lower noise analog signal at the sensor output. Devices such as the APS that use this approach have an extremely stable quiescent Hall output voltage, are immune to thermal stress, and have precise recoverability after temperature cycling. This technique is made possible through the use of a BiCMOS process which allows the use of low-offset and low-noise amplifiers in combination with high-density logic and sample-and-hold circuits. Regulator Clock/Logic Hall Element Amp Sample and Hold Low-Pass Filter Figure 6: Model of Chopper Stabilization Circuit (Dynamic Offset Cancellation)

POWER DERATING The device must be operated below the maximum junction temperature of the device, T J (max). Under certain combinations of peak conditions, reliable operation may require derating supplied power or improving the heat dissipation properties of the application. This section presents a procedure for correlating factors affecting operating T J. (Thermal data is also available on the Allegro MicroSystems website.) The Package Thermal Resistance, R θja, is a figure of merit summarizing the ability of the application and the device to dissipate heat from the junction (die), through all paths to the ambient air. Its primary component is the Effective Thermal Conductivity, K, of the printed circuit board, including adjacent devices and traces. Radiation from the die through the device case, R θjc, is relatively small component of R θja. Ambient air temperature, T A, and air motion are significant external factors, damped by overmolding. The resulting power dissipation capability directly reflects upon the ability of the device to withstand extreme operating conditions. The junction temperature mission profile specified in the Absolute Maximum Ratings table designates a total operating life capability based on qualification for the most extreme conditions, where T J may reach 175 C. The silicon IC is heated internally when current is flowing into the VCC terminal. When the output is on, current sinking into the VOUT terminal generates additional heat. This may increase the junction temperature, T J, above the surrounding ambient temperature. The APS is permitted to operate up to T J = 175 C. As mentioned above, an operating device will increase T J according to equations 1,, and 3 below. This allows an estimation of the maximum ambient operating temperature. P D = V IN I IN (1) ΔT = P D R θja () T J = T A + ΔT (3) For example, given common conditions such as: T A = C, V CC = V, I CC = ma, V OUT = 185 mv, I OUT = ma (output on), and R θja = 165 C/W, then: P D = (V CC I CC ) + (V OUT I OUT ) = ( V ma) + (185 mv ma) = 4 mw + 3.7 mw = 7.7 mw ΔT = P D R θja = 7.7 mw 165 C/W = 4.6 C T J = T A + ΔT = C + 4.6 C = 9.6 C A worst-case estimate, P D (max), represents the maximum allowable power level (V CC (max), I CC (max)), without exceeding T J (max), at a selected R θja. For example, given the conditions R θja = 8 C/W, T J (max) = 175 C, V CC (max) = 4 V, I CC (max) = 4 ma, V OUT = 5 mv, and I OUT = ma (output on), the maximum allowable operating ambient temperature can be determined. The power dissipation required for the output is shown below: P D (V OUT ) = V OUT I OUT = 5 mv ma =.5 mw The power dissipation required for the IC supply is shown below: P D (V CC ) = V CC I CC = 4 V 4 ma = 96 mw Next, by inverting using equation : ΔT = P D R θja = [P D (V OUT ) + P D (V CC )] 8 C/W = (.5 mw + 96 mw) 8 C/W = 8.5 mw 8 C/W = 4.7 C Finally, by inverting equation 3 with respect to voltage: T A (est) = T J (max) ΔT = 175 C 4.7 C = 15.3 C In the above case, there is sufficient power dissipation capability to operate up to T A (est).the example indicates that T A (max) can be as high as 15.3 C without exceeding T J (max). However, the T A (max) rating of the device is 15 C; the APS performance is not guaranteed above T A = 15 C. 11

Package LH, 3-Pin (SOT-3W).98 +..8 3 1.49 D A 4 ±4.18 +..53.96 D.9 +.. D 1.91 +.19.6. MIN.7.4 1. 1.55 REF. BSC Seating Plane Gauge Plane B.95 PCB Layout Reference View 8X REF Branded Face 1. ±.13 C Standard Branding Reference View.95 BSC.4 ±..5 +..5 1 A1 For Reference Only; not for tooling use (reference dwg. 884) Dimensions in millimeters Dimensions exclusive of mold flash, gate burrs, and dambar protrusions Exact case and lead configuration at supplier discretion within limits shown A Active Area Depth,.8 mm REF B C Reference land pattern layout All pads a minimum of. mm from all adjacent pads; adjust as necessary to meet application process requirements and PCB layout tolerances Branding scale and appearance at supplier discretion D Hall element, not to scale

Package UA, 3-Pin SIP 4.9 +.8.5 45 B E.4 C 1.5 ±.5 3. +.8.5 E 1.44 E Mold Ejector Pin Indent Branded Face 45 1. MAX A.79 REF A 1 1 3 D Standard Branding Reference View 14.99 ±..41 +.3.6 For Reference Only; not for tooling use (reference DWG-965) Dimensions in millimeters Dimensions exclusive of mold flash, gate burrs, and dambar protrusions Exact case and lead configuration at supplier discretion within limits shown.43 +.5.7 A Dambar removal protrusion (6X) B C D E Gate and tie bar burr area Active Area Depth,.5 mm REF Branding scale and appearance at supplier discretion Hall element (not to scale) 1.7 NOM 13

Revision History Number Date Description February 3, 18 Initial release Copyright 18, reserves the right to make, from time to time, such departures from the detail specifications as may be required to permit improvements in the performance, reliability, or manufacturability of its products. Before placing an order, the user is cautioned to verify that the information being relied upon is current. Allegro s products are not to be used in any devices or systems, including but not limited to life support devices or systems, in which a failure of Allegro s product can reasonably be expected to cause bodily harm. The information included herein is believed to be accurate and reliable. However, assumes no responsibility for its use; nor for any infringement of patents or other rights of third parties which may result from its use. For the latest version of this document, visit our website: www.allegromicro.com 14