Časopis pro pěstování matematiky

Similar documents
Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky

Aplikace matematiky. Jiří Neuberg Some limit properties of the best determined terms method. Terms of use:

Czechoslovak Mathematical Journal

Commentationes Mathematicae Universitatis Carolinae

Czechoslovak Mathematical Journal

Aplikace matematiky. Gene Howard Golub Numerical methods for solving linear least squares problems

Časopis pro pěstování matematiky a fysiky

WSAA 14. A. K. Kwaśniewski Algebraic properties of the 3-state vector Potts model. Terms of use:

Matematický časopis. Bedřich Pondělíček A Note on Classes of Regularity in Semigroups. Terms of use: Persistent URL:

Časopis pro pěstování matematiky

Commentationes Mathematicae Universitatis Carolinae

Časopis pro pěstování matematiky a fysiky

Časopis pro pěstování matematiky

EQUADIFF 1. Milan Práger; Emil Vitásek Stability of numerical processes. Terms of use:

Toposym Kanpur. T. Soundararajan Weakly Hausdorff spaces and the cardinality of topological spaces

Archivum Mathematicum

Archivum Mathematicum

Commentationes Mathematicae Universitatis Carolinae

Mathematica Bohemica

Commentationes Mathematicae Universitatis Carolinae

2 Statement of the problem and assumptions

Mathematica Slovaca. Antonín Dvořák; David Jedelský; Juraj Kostra The fields of degree seven over rationals with a normal basis generated by a unit

Toposym 2. Zdeněk Hedrlín; Aleš Pultr; Věra Trnková Concerning a categorial approach to topological and algebraic theories

Časopis pro pěstování matematiky

EQUADIFF 1. Rudolf Výborný On a certain extension of the maximum principle. Terms of use:

Czechoslovak Mathematical Journal

Czechoslovak Mathematical Journal

Časopis pro pěstování matematiky a fysiky

Czechoslovak Mathematical Journal

Archivum Mathematicum

Mathematica Bohemica

(c1) k characteristic roots of the constant matrix A have negative real

Mathematica Slovaca. Jaroslav Hančl; Péter Kiss On reciprocal sums of terms of linear recurrences. Terms of use:

Mathematica Slovaca. Ján Jakubík On the α-completeness of pseudo MV-algebras. Terms of use: Persistent URL:

Kybernetika. Jan Havrda; František Charvát Quantification method of classification processes. Concept of structural a-entropy

Aplikace matematiky. Gene Howard Golub Least squares, singular values and matrix approximations. Terms of use:

Acta Mathematica et Informatica Universitatis Ostraviensis

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Archivum Mathematicum

ON THE REPRESENTATION THEOREM BY THE LAPLACE TRANSFORMATION OF VECTOR-VALUED FUNCTIONS. ISAO MlYADERA. (Received February 18, 1956)

Czechoslovak Mathematical Journal

OPERATOR THEORY ON HILBERT SPACE. Class notes. John Petrovic

Matematický časopis. Robert Šulka The Maximal Semilattice Decomposition of a Semigroup, Radicals and Nilpotency

Czechoslovak Mathematical Journal

Acta Mathematica Universitatis Ostraviensis

Analysis Qualifying Exam

Applications of Mathematics

CONTROLLABILITY OF NONLINEAR SYSTEMS WITH DELAYS IN BOTH STATE AND CONTROL VARIABLES

Acta Universitatis Carolinae. Mathematica et Physica

Engg. Math. I. Unit-I. Differential Calculus

this chapter, we introduce some of the most basic techniques for proving inequalities. Naturally, we have two ways to compare two quantities:

Observer design for a general class of triangular systems

Acta Universitatis Carolinae. Mathematica et Physica

Introduction and Preliminaries

Kybernetika. Milan Mareš On fuzzy-quantities with real and integer values. Terms of use:

Toposym 2. Miroslav Katětov Convergence structures. Terms of use:

REAL AND COMPLEX ANALYSIS

Acta Universitatis Carolinae. Mathematica et Physica

Kybernetika. Jiří Demel Fast algorithms for finding a subdirect decomposition and interesting congruences of finite algebras

Real Analysis Problems

Metric Spaces. Exercises Fall 2017 Lecturer: Viveka Erlandsson. Written by M.van den Berg

Supplementary Notes for W. Rudin: Principles of Mathematical Analysis

Metric Spaces and Topology

Nonlinear Control Systems

1 Definition and Basic Properties of Compa Operator

FRACTIONAL BOUNDARY VALUE PROBLEMS ON THE HALF LINE. Assia Frioui, Assia Guezane-Lakoud, and Rabah Khaldi

WSGP 23. Lenka Lakomá; Marek Jukl The decomposition of tensor spaces with almost complex structure

Relative Controllability of Fractional Dynamical Systems with Multiple Delays in Control

Institut für Mathematik

GAUSSIAN PROCESSES GROWTH RATE OF CERTAIN. successfully employed in dealing with certain Gaussian processes not possessing

Math 118B Solutions. Charles Martin. March 6, d i (x i, y i ) + d i (y i, z i ) = d(x, y) + d(y, z). i=1

Analysis III. Exam 1

converges as well if x < 1. 1 x n x n 1 1 = 2 a nx n

Journal of Inequalities in Pure and Applied Mathematics

Course 212: Academic Year Section 1: Metric Spaces

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica-Physica-Chemica

RELATIVE CONTROLLABILITY OF NONLINEAR SYSTEMS WITH TIME VARYING DELAYS IN CONTROL

ON REARRANGEMENTS OF SERIES H. M. SENGUPTA

Real Analysis Math 131AH Rudin, Chapter #1. Dominique Abdi

Czechoslovak Mathematical Journal

GATE EE Topic wise Questions SIGNALS & SYSTEMS

Commentationes Mathematicae Universitatis Carolinae

MAT 570 REAL ANALYSIS LECTURE NOTES. Contents. 1. Sets Functions Countability Axiom of choice Equivalence relations 9

In particular, if A is a square matrix and λ is one of its eigenvalues, then we can find a non-zero column vector X with

Stability and Control Design for Time-Varying Systems with Time-Varying Delays using a Trajectory-Based Approach

Mathematica Slovaca. Pavol Šoltés Oscillatoriness of solutions of a nonlinear second order differential equation

TRIANGULAR NORMS WITH CONTINUOUS DIAGONALS

On the Existence of Almost Periodic Solutions of a Nonlinear Volterra Difference Equation

Acta Universitatis Carolinae. Mathematica et Physica

Lebesgue-Stieltjes measures and the play operator

SUMS AND PRODUCTS OF EXTRA STRONG ŚWIA TKOWSKI FUNCTIONS. 1. Preliminaries

Notes on uniform convergence

ALMOST PERIODIC GROSS-SUBSTITUTE DYNAMICAL SYSTEMS. Dedicated to Professor Taro Yoshizawa on his sixtieth birthday GEORGE R. SELL* AND FUMIO NAKAJIMA

610 S.G. HRISTOVA AND D.D. BAINOV 2. Statement of the problem. Consider the initial value problem for impulsive systems of differential-difference equ

Časopis pro pěstování matematiky

Transcription:

Časopis pro pěstování matematiky Kristína Smítalová Existence of solutions of functional-differential equations Časopis pro pěstování matematiky, Vol. 100 (1975), No. 3, 261--264 Persistent URL: http://dml.cz/dmlcz/117875 Terms of use: Institute of Mathematics AS CR, 1975 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these Terms of use. This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library http://project.dml.cz

Časopis pro pěstování matematiky, roč. 100 (1975), Praha EXISTENCE OF SOLUTIONS OF FUNCTIONAL-DIFFERENTIAL EQUATIONS KRISTÍNA SMÍTALOVÁ, Bratislava (Received November 28, 1973) (i) In the paper we shall consider the functional-differential equation /(t)=/(t,y), where /: R x C n -> R n is a functional continuous with respect to the first variable, R the set of real numbers and C n the class of continuous functions from R to the n-dimensional Euclidean space R n. Assume that T and # are non-negative locally bounded functions R -> JR. Let be the Euclidean norm in R n. The main result of this paper is the following theorem which is more general then the results recently obtained by Ju. A. RJABOV [3], [4] concerning the existence of solutions of linear or weakly non-linear delayed differential equations with small delay; for complete references see a survey paper of R. D. DRIVER [1]. Theorem 1. Assume that there is a non-negative locally integrable function h : R -> R such that for each x, y e C n and each t e R, (2) \\f(t, x)\\ <L h(t) max { x(f + ) ; -r(t) g g 9(t)}, (3) \\f(t, x) - f(t, y)\\ g h(t) max { x(. + «J) - y(t + {) ; and -<o S H = 3(0}, at pt + Wt) \ Then for each point (a, b)e R x R n there is a solution of{\) defined for all t which passes through (a, b). Remark. The equation (5) y'{i) =.4(0 y(t - t(0) + B(t) y(t) + C(t) y(t + 3(0) 261

where A, B, C are locally integrable square matrices R-+R nxn, is a particular case of (1). Theorem 1 now asserts that if the function h(t) = n( A(f) +.B(f) + + C(f) ) satisfies (4) for t e R then a solution of (5) defined for all t passes through each point of R x R n. Here the norm (fly) of a matrix is assumed to be max a /y. ІJ Proof of Theorem 1. Let Q be the set of those x e C, for which x(a) = b and x(f) < \\b\\e\p(e\j' a h(i)di\), for all ter. Let Ae(0, 1]. For xeq let F x (x) be the function R-* R denned by F x (x) (t) = b + X j' a f(z, x) d. Using (2) we get «F,(X) (on sh + A I [/«;, x)dd <. IIJ a I ^ fr (l + 1 I fh(<0 exp (e 11*%) dr, ).. exp (max (e h{rf) dtj, e\ h(ri) dr/ j) dq ] <. s ь ( 1+e j>> exp e %) dř? )dл = ft exp^ ľл( )d«)- Thus F A : Q -> (2. Now define the following Picard iterations, assuming that k is fixed, 0 < X < 1: XJ(I) = i» and x* +1 = F x (x k ), for fc = 1, 2 Clearly for each t, IMO - *i.(t) = I*B f.*(«)«-f = N exp(e /X^)d^ ). Assume that, for all t, lx k (t) - x k.t{t)l <. K\\b\\ exp (e Jlfc({) d{ ). Then using (3) we obtain \\x k+i (t) - x k (t)\\ <. K\\b\\ At'hii;) exp. \J a / / fs-t(i) / «+ *«) \ \.fmax/e %)d/y, * %)di/jd{j = XA 6 e I fft({) exp (e I f %) dj) d{ = XA 6 exp (e "fe( ) d Since 0 < X < 1, the sequence x n converges almost uniformly to some xe Q such that F A (x) = x. Let {X n } be a sequence of members of the open interval (0, 1) converging^tojl. For every n, let y n satisfy the equation y n = F Xn (y n ). All y n e Q are almost uniformly bounded (i.e. uniformly bounded on each compact). Let i c R be a compact. By (2) we have, for each tea, ri(0 S h(t) \\b\\ exp (max (e I f%) di?, e IJ %) Ar\ )), 262

where u = inf - T( ), v = sup + 3( ). Therefore >; n (r) - y (s) = = const J* h( ) d for t, s e A. Consequently the functions {>>,.}are equicontinuous on each compact and hence there is a subsequence {y k(n) }of y n which converges almost uniformly to some y e Q. Clearly y(a) = b. It remains to show that y is a solution of (1) or, which is the same, of the corresponding integral equation. Let I be a compact subinterval of R. For t e I we have y(t) - b - f/(í, j/) d{ Je ^ \\y(t) - W)B + + Л и(*)ihi Гй({) díl max Л(4) («) - y(í)\\ + (1 - A B(i) ) I f/(í, y) d{ Ja I «-B Ilja where B = [inf - T( ), sup c + #( )] Clearly the right-hand side of the inequality tends to 0 whenever k -> oo, q.e.d. Remark. If the assumptions of Theorem 1 are satisfied with the constant \\e replaced by a positive constant c < \\e then for each point of R xr n there is exactly one solution of (1) which belongs to Q and passes through the point. The constant \\e in Theorem 1 is the best possible. To see this we first prove the following Lemma. For every sufficiently small 5 > 0 there are real numbers a, b with a < 0, 0 < b < n such that x(t) = e at cos (bt) is a solution of the equation (6) x'(t)'= -V-ix(r-i), for all real t. Proof. For = 0 put <p( ) = e^" 1 "* + f. Then cp > 0. Indeed, if cp(u) = 0 for some u < 0 then we may assume that u is the least root of <p, since lim cp( ) = {--00 = +oo. In this case we have cp'(u) = 0, and consequently, cp(u) + cp'(u) ^ 0, i.e. u ^ 1. On the other hand, cp is a decreasing function in ( oo, 1], and (p( 1) > > 0, a contradiction. Let ^( ) = p ^" 1 "* - ) = e 2^" 1 -^ - { 2. Clearly </>( ) > 0 for all ^ 0. Let CD( ) = ev~* + cos -y^(f). We show that c0 has a root in (-2, 0). For sufficiently small 5 we have ^(0) < n 2 \4. Since ^(-2) > 7r 2 /4, there is ve(-2, 0) such that \j/(v) = 7r 2 /4, i.e. w(v) < 0. Since co(0) > 0, there is a e (-2, 0) such that o>(a) = 0. The function x(t) = e at cos (f V*H a )) is a solution of (6). Indeed, a simple calculation shows that x is a solution of (6) if and only if ae l+a ~ d = - cos yj\p(a), and e 1+a ~ d yjil/(a) = sin *J\\*(a). But the first equality is true since it is equivalent to co(a) = 0. To see that the second equality is also true note that if 5 is sufficiently 263

small, then for each e [-2, 0] we have ^( ) < e 2(d+i) < n 2, hence 0 < WW < n > and hence sin ^\jj(a) > 0. Now, easy verification that the sum of squares of the left-hand sides of the two above equalities equals to 1 completes the proof of the lemma. Theorem 2. Theorem 1 does not hold with \\e replaced by any greater constant. Proof. Let c > l\e. In virtue of Lemma there is d with \\e < d < c such that x(t) = ke at cos (bt), where a < 0, n > b > 0, is a solution of the equation x'(t) = -dx(t - 1), x(-n\2b + 1) = 1. The 0 < x(t) _^ 1 for t e ( n\2b, n\2b) = (u, v), and x(t) is maximal in (u, v) for t = u +; 1. Define a function g by g(t) = dx(t l) for f e [u + 1, u + 2], g(r) = d for t G [u + 2, v], g(t) = 0 for t e (v, Zn\2b + 1], and let g be periodic with period 2n\b. For every integer n put u rt = 2nn\b + u, v = 27in/fc + v. If yo(0 = constant for each t e [u n, u n + 1], and if y is the solution of the equation (7) yv) = 9(t) y(t - l) for t > u n + 1 with y 0 as initial function then y(t) = 0 for each t ^ v M. However, *every solution of (7) defined for all t e R is constant on each interval [u n, u n + 1], consequently (7) has no non-trivial solution defined for all t e R. On the other hand, the equation (7) satisfies the assumptions of Theorem 1 with the constant l\e replaced by c, since sup \g(t)\ < c, % = 1, and 9 = 0, q.e.d. References [1] R. D. Driver: On Ryabov'ѕ aѕymptotiс сharaсterization of the ѕolutionѕ of quaѕi-linear differеntial equationѕ with ѕmall delayѕ, SIAM Review 10 (1968), 329 341. [2] A. Д. Mышкuc: Линeйные диффеpенциaльные ypaвнения с зaпaздывaющим apгyментoм, Moсквa 1951. [3] Ю. A. Pябoв: Пpименение метoдa мaлoгo пapaметpa для пoстpoения pешений диффеpенциaльныx ypaвнений с зaпaздывaюшщим apгyментoм, ДАH 133 (1960),JNi? 2, 288 291. [4] Ю. A. Pядoв: Пpименение метoдa мaлoгo пapaмeтpa Ляпyнoвa-Пyaнкape в тeopии систeм с зaпaздывaниeм, Инжeнepный жypнaл 1 (1961), З 15. Authoґs address: 816 31 Bratiѕlava, Mlynѕká dolina (Pгírodovedeсká fakulta UK). 264