Supernatant: The liquid layer lying above the solid layer after a precipitation reaction occurs.

Similar documents
Supernatant: The liquid layer lying above the solid layer after a precipitation reaction occurs.

Limiting Reagent. Introduction

Ascorbic Acid Titration of Vitamin C Tablets

Ascorbic Acid Titration of Vitamin C Tablets

Ascorbic Acid Titration of Vitamin C Tablets

Part II. Cu(OH)2(s) CuO(s)

Introduction to Spectroscopy: Analysis of Copper Ore

Aqueous Chemical Reactions

Introduction to Spectroscopy: Analysis of Copper Ore

Chemistry 151 Last Updated Dec Lab 8: Precipitation Reactions and Limiting Reagents

EXPERIMENT A4: PRECIPITATION REACTION AND THE LIMITING REAGENT. Learning Outcomes. Introduction

Read the lab thoroughly. Answer the pre-lab questions that appear at the end of this lab exercise.

EXPERIMENT: LIMITING REAGENT. NOTE: Students should have moles of reactants in DATASHEET converted into masses in grams prior to the lab period.

Aqueous Chemical Reactions

Lab Activity 3: Gravimetric Stoichiometry 2

Experiment #7. Titration of Vinegar

CHM111 Lab Titration of Vinegar Grading Rubric

TRATION: ANALYSIS OF VINE

Experiment 20: Analysis of Vinegar. Materials:

Studies of a Precipitation Reaction

To understand concept of limiting reagents. To learn how to do a vacuum filtration. To understand the concept of recrystallization.

Ascorbic Acid Titration of Vitamin C Tablets

Chemistry 151 Last Updated Dec Lab 10: The Neutralizing Ability of an Antacid (Titrations, Pt II)

GRAVIMETRIC ANALYSIS OF A CHLORIDE SALT. REFERENCES: Nelson, J., Chemistry: The Central Science, 3 rd edition, Prentice-Hall, 1985

Aqueous Chemical Reactions

Titration of HCl with Sodium Hydroxide

Kinetics of an Iodine Clock Reaction

Thermodynamics. Equations to use for the calculations:

+ H 2 O Equation 1. + NaOH CO 2 Na

Chemical Reactions: The Copper Cycle

Learn to do quantitative titration reactions. Observe the mole ratios of several simple chemical reactions.

Atomic Theory: Spectroscopy and Flame Tests

Acid-Base Titration Curves Using a ph Meter

Lab #5 - Limiting Reagent

Experiment 10 Acid-Base Titrimetry. Objectives

Kinetics of an Iodine Clock Reaction

Chemical Reactions: Titrations

EXPERIMENT 22 SOLUBILITY OF A SLIGHTLY SOLUBLE ELECTROLYTE

Ascorbic Acid Titration of Vitamin C Tablets This lab will be completed individually! Make sure you come prepared!

NOTE: YOU WILL BE USING THIS SOLUTION IN BOTH, THIS EXPERIMENT AND EXP 12B. IF YOU WASTE THE SOLUTION YOU MAY RUN OUT BEFORE YOU HAVE FINISHED EXP 12B

Experiment 7: ACID-BASE TITRATION: STANDARDIZATION OF A SOLUTION

Experimental Procedure. Lab 406

Introduction to Strong and Weak Acids

Bellevue College CHEM& 121 Experiment: Stoichiometric Analysis of an Antacid 1

In this laboratory exercise we will determine the percentage Acetic Acid (CH 3 CO 2 H) in Vinegar.

Experiment 7A ANALYSIS OF BRASS

6 Acid Base Titration

STOICHIOMETRY AND THE CHEMICAL REACTION

2. Synthesis of Aspirin

Thermodynamics. Equations to use for the calculations:

Upon completion of this lab, the student will be able to:

7-A. Inquiry INVESTIGATION. 322 MHR Unit 3 Quantities in Chemical Reactions. Skill Check. Safety Precautions

Experiment 2: Reaction Stoichiometry by Thermometric Titration

Flushing Out the Moles in Lab: The Reaction of Calcium Chloride with Carbonate Salts

Introduction to Strong and Weak Acids

Synthesis of Benzoic Acid

Acidity of Beverages Lab

EXPERIMENT. Stoichiometry of a Precipitation Reaction

Reaction of Magnesium with Hydrochloric Acid

Experiment: Titration

Acid-Base Titration Curves Using a ph Meter

Chemistry 11 Unit 1:Stoichiometry 10/30/2016 /20

Title: Gravimetric verification of chloride concentration from a precipitate of silver nitrate.

Experiment #10: Analysis of Antacids

To see how this data can be used, follow the titration of hydrofluoric acid against sodium hydroxide:

Chemistry 143 Acid Base Titration Dr. Caddell. Titrating Acid

Atomic Theory: Spectroscopy and Flame Tests

EXPERIMENT A7: VINEGAR TITRATION. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

EXPERIMENT C3: SOLUBILITY PRODUCT & COMMON ION EFFECT. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

CHEM 30A EXPERIMENT 8 & 9: ACID- BASE TITRATION. Learning Outcomes. Introduction. Upon completion of this lab, the student will be able to:

Chemistry 143 Experiment #11 Acid Base Titration Dr. Caddell. Titrating Acid

Titration with an Acid and a Base

Scientific Observations and Reaction Stoichiometry: The Qualitative Analysis and Chemical Reactivity of Five White Powders

Conductometric Titration & Gravimetric Determination of a Precipitate

TITRATION OF AN ACID WITH A BASE

EXPERIMENT. Titration for Acetic Acid in Vinegar

By contrast, solubility equilibrium reactions are written from the perspective of the solid reactant dissolving into ions

Measuring Enthalpy Changes

2 burets (50 ml) Standard solution of NaOH (0.600 M) Phenolphthalein indicator

Chem 2115 Experiment #7. Volumetric Analysis & Consumer Chemistry Standardization of an unknown solution, analysis of vinegar & antacid tablets

H 3 O + (aq) + P 2- (aq)

EXPERIMENT 8 Determining K sp

Aspirin Synthesis H 3 PO 4

How Do Certain Factors Affect the Rate of a Chemical Reaction?

Pre-lab: Read section 9.9 (pages ) on acid-base titrations in the textbook. Complete the attached pre-lab by Tuesday, June 2.

Experiment#1 Beer s Law: Absorption Spectroscopy of Cobalt(II)

CHM 152 updated May 2011 Lab 12: Calculating Faraday s Constant and Avogadro s Number with Electrolysis.

Minneapolis Community and Technical College. Separation of Components of a Mixture

Limiting Reagent Synthesis of Aspirin Thomas M. Moffett Jr., SUNY Plattsburgh, 2007.

Accuracy and Precision of Laboratory Glassware: Determining the Density of Water

Atomic Theory: Spectroscopy and Flame Tests

Acid / Base Titrations

Laboratory 3. Development of an Equation. Objectives. Introduction

Experiment 2: Analysis of Commercial Bleach Solutions

CHM 130 Acid-Base Titration Molarity of Acetic Acid in Vinegar

# 12 ph-titration of Strong Acids with Strong Bases

Acid-Base Titration. M M V a

Acid-Base Titration Acetic Acid Content of Vinegar

EXPERIMENT 5 ACID-BASE TITRATION

Experiment 10. Acid Base Titration

Transcription:

Limiting Reagent Introduction The quantities of substances involved in a chemical reaction represented by a balanced equation are often referred to as stoichiometric amounts. Solution stoichiometry is often used in the laboratory setting to determine the quantities of each reactant and how they will consume one another to produce the desired product. This is calculated using mole-to-mole ratios. Often one reagent is consumed completely leaving the other reagent in excess. This concept is referred to as the limiting reagent concept. This week s lab will use solution stoichiometry to determine the limiting reagent from the exact quantities dispensed. The supernatant from the resulting precipitation reactions will be studied to ensure the correct limiting reagent and excess reagent was identified from the stoichiometric calculations. Supernatant: The liquid layer lying above the solid layer after a precipitation reaction occurs. For more information: Chemistry: Atom s First by OpenStax sections 7.3 Reaction Stoichiometry and 7.4 Reaction Yields Equations to use for the calculations: VTotal = VFinal - VInitial Mass of precipitate = mass of filter paper with precipitate mass of filter paper Molarity = moles solute L solution % Yield = Actual Yield X 100 Theoretical Yield Materials: 9 test tubes test tube rack 2 25 ml burets 3 plastic funnels vortex mixer 3 small ring clamps 3 50 ml beakers 0.50M CaCl2 0.50M Na2CO3 ring stand 3 watch glasses filter paper hot plate plastic pipets DI water calculator Procedure 1. Label 3 clean test tubes A1, A2, and A3. 2. Condition a 25.00 ml buret with a few ml of the 0.50M calcium chloride solution, then fill the buret with the CaCl2 solution. See technique Using a buret to deliver solution. Drain a small amount of the CaCl2 solution into your waste beaker so it fills the buret tip (with no air bubbles present). Record the exact molarity of the CaCl2 solution on your report sheet in the data section. 3. Add approximately 4 ml of 0.50M CaCl2 solution to the three test tubes A1-A3. Record initial and final buret readings on your report sheet. 4. Condition a 25.00 ml buret with a few ml of the 0.50M sodium carbonate solution, then fill the buret with the Na2CO3 solution. See technique Using a buret to deliver solution. Drain a small amount of the Na2CO3 solution into your waste beaker so it fills the buret tip (with no air GCC CHM 151LL: Limiting Reagent GCC, 2019 page 1 of 6

bubbles present). Record the exact molarity of the Na2CO3 solution on your report sheet in the data section. 5. Add approximately 1 ml of 0.50M Na2CO3 solution to test tubes A1 only. Record initial and final buret readings on your report sheet. 6. Add approximately 4 ml of 0.50M Na2CO3 solution to test tubes A2 only. Record initial and final buret readings on your report sheet. 7. Add approximately 6 ml of 0.50M Na2CO3 solution to test tubes A3 only. Record initial and final buret readings on your report sheet. 8. Place each test tube on the vortex mixer (set to Auto/Touch; adjust the dial to a low-medium setting (a 4-5 setting on the vortex) for about 25-30 seconds. Once all three solutions have been thoroughly mixed, place them in the test tube rack and allow them to settle for 10 minutes. Record the start and stop time under observations. 9. Under the observations section, draw representations of test tubes A1, A2, and A3 showing liquid levels and solid levels. 10. Obtain three medium-flow filter papers and label them in pencil on their edges with a small A1, A2 and A3. Weigh each filter paper and record their masses on your report sheet. Obtain three 50 ml beakers and label them A1, A2 and A3. 11. Set up a filtration apparatus with a plastic funnel in a ring stand. Fold and insert the filter paper A1 into the funnel and place the 50mL beaker A1 beneath the funnel to catch the filtrate. 12. Pour the contents of test tube A1 into the funnel, using a D.I. wash bottle to wash any remaining precipitate out of the test tube into the filter paper. When the liquid had passed through filter, wash it with about 3mL of D.I. water. When this liquid had passed through the filter, repeated the wash with another 3mL of D.I. water. SAVE the filtrate for each trial to use in the supernatant test. 13. Remove the filter paper and carefully open it up, placing it on a watch glass. Place the watch glass on a hot plate (set to heat setting 4, or 90 C) to dry. Record the time drying started and ended in your notebook under observations. While the filter paper A1 is drying, repeat steps 2-4 above with A2. While the filter paper A2 is drying, repeat steps 11-12 with A3. (You may filter all three simultaneously with three ring clamps, three funnels, and three beakers if you wish. Please dry each on a separate hot plate, though.) 14. Complete all of your calculations while waiting for the solids to dry. 15. Weigh each filter paper when dry and record its new mass on your report sheet. 16. Test the ions dissolved in the filtrate solutions: Supernatant Test a. Transfer a small amount of the supernatant solution from trial A1 to two different clean test tubes with a disposable pipette. Use new disposable plastic pipettes for each test to prevent cross-contamination. b. Add about 1 ml CaCl2 solution to the first new test tube and about 1 ml Na2CO3 solution to the second. Record your observations. c. Repeat steps a-b for the filtrates from A2 and A3. Remember: use new pipettes for each test. Please refer to the Laboratory Techniques Document on the CHM151LL Course Website for more detailed techniques and images of lab equipment. Clean-Up: Rinse everything extremely well with vinegar solution first then soapy tap water followed by a quick DI water rinse. Clean your benchtop. Put all equipment back exactly where you found it. GCC CHM 151LL: Limiting Reagent GCC, 2019 page 2 of 6

Name: Data: Molarity of CaCl2: Limiting Reagent Lab Report Turn in Pages 3-5 as your graded lab report Partners: Molarity of Na2CO3: Data Table 1: Buret Readings for CaCl2 and Na2CO3 Initial Volume CaCl2 Final Volume CaCl2 Initial Volume Na2CO3 Final Volume Na2CO3 Data Table 2: Mass Recordings for Precipitates Mass of filter paper Mass of filter paper with precipitate Observations: Balanced Chemical Reaction: Test Tube Drawings: Supernatant Test: Predicted reagent in excess Observation after adding CaCl2 (aq) Observation after adding Na2CO3 (aq) GCC CHM 151LL: Limiting Reagent GCC, 2019 page 3 of 6

Calculations for Data Table 1: (Show volume and mass calculations for CaCl2 and for Na2CO3) A1 - CaCl2: Na2CO3: A2 - CaCl2: Na2CO3: A3 - CaCl2: Na2CO3: GCC CHM 151LL: Limiting Reagent GCC, 2019 page 4 of 6

Calculations for Data Table 2: (Show actual mass of precipitate and percent yield calculations for all three trials.) Results: Results Table: Volume CaCl2 (VTotal) Volume Na2CO3 (VTotal) Theoretical mass of precipitate Limiting reagent formula Excess reagent formula Actual mass precipitate Percent yield Conclusion: (5 pts) Summarize the results for determining the limiting reagent and percent yield in this week s lab. Be sure to include data. You may write on the back of this page or attach a separate page if needed. GCC CHM 151LL: Limiting Reagent GCC, 2019 page 5 of 6

Post-Lab Questions These questions will not be graded as part of your lab report grade. You will be responsible for the information in these questions and able to answer these or similar questions on the post-lab quiz at the start of next week s lab period. Questions will also be similar to your lab report data, observations, calculations, and results. 1. Aspirin, C9H8O4, can be produced in the laboratory by combining salicylic acid, C7H6O3, with acetic anhydride, C4H6O3. If you were working for a pharmaceutical company and you reacted 10.0 g of salicylic acid with 10.0 g of acetic anhydride and found you only achieved an 86.4% yield, what mass of aspirin did you actually produce? 2 C 7 H 6 O 3 (s) + C 4 H 6 O 3 (l) 2 C 9 H 8 O 4 (s) salicylic acid acetic anhydride aspirin 2. In the beakers below, using your calculation results, draw what the filtrate solutions contained for each trial. Show the precipitate and the excess reagents in the beakers. Trial A1 Trial A2 Trial A3 3. If sodium carbonate is the limiting reagent and calcium chloride is in excess: a. Which ions are present in the supernatant? b. What would happen if you added CaCl2 to the supernatant? c. What would happen if you added Na2CO3 to the supernatant? 4. If calcium chloride is the limiting reagent and sodium carbonate is in excess: a. Which ions are present in the supernatant? b. What would happen if you added CaCl2 to the supernatant? c. What would happen if you added Na2CO3 to the supernatant? 5. Discuss two sources of error and how they can be corrected in the future. 1. 2. 6. Now that you have completed the experiment please write a Purpose statement that more accurately reflects the function of this lab. GCC CHM 151LL: Limiting Reagent GCC, 2019 page 6 of 6