Chemical Diagnostics of Star Forming Regions

Similar documents
INITIAL CONDITIONS. Paola Caselli. School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES. Protoplanetary disks

Astrochemistry with SOFIA. Paola Caselli Center for Astrochemical Studies Max-Planck-Ins:tute for Extraterrestrial Physics

Deuterium Fractionation in Massive Star Forming Clumps in Infrared Dark Clouds

Lecture 10: "Chemistry in Dense Molecular Clouds"

STARLESS CORES. Mario Tafalla. (Observatorio Astronómico Nacional, Spain)

Lecture 6: Molecular Transitions (1) Astrochemistry

The Center for Astrochemical Studies at MPE

NRAO Instruments Provide Unique Windows On Star Formation

arxiv: v1 [astro-ph] 22 Sep 2008

Fractionation in Infrared Dark Cloud Cores

Infrared Dark Clouds seen by Herschel and ALMA

arxiv: v1 [astro-ph.ga] 30 Nov 2015

The Class 0 Source Barnard 1c (most recent results ) Brenda Matthews Herzberg Institute of Astrophysics National Research Council of Canada

within entire molecular cloud complexes

The influence of cosmic rays on the chemistry in Sagittarius B2(N)

Astrochemistry and Molecular Astrophysics Paola Caselli

CHESS, Herschel Chemical Survey of Star Forming Regions

Observational studies of intermediate-mass protostars with PdBI, 30m and Herschel

The Milky Way Laboratory. Cara Battersby Harvard-Smithsonian Center for Astrophysics

Astrochemical Models. Eric Herbst Departments of Chemistry and Astronomy University of Virginia

University of Groningen. Molecular data and radiative transfer tools for ALMA Tak, F F S van der;; Hogerheijde, M. Published in: Default journal

The HDO/H2O and D2O/HDO ratios in solar-type protostars

Magnetic fields and massive star formation. Qizhou Zhang Harvard-Smithsonian Center for Astrophysics

Dynamics and depletion in thermally supercritical starless cores

Bundles of fibers! (understanding filament substructure) Alvaro Hacar

NEARBY GALAXIES AND ALMA

UCLCHEM: A Gas-grain Chemical Code for Clouds, Cores, and C-Shocks *

CARBON-CHAIN AND ORGANIC MOLECULES AROUND VERY LOW LUMINOSITY PROTOSTELLAR OBJECTS OF L1521F-IRS AND IRAM

Interstellar molecules uncover cosmic rays properties

Astrochemistry Lecture 7 Chemistry in star-forming regions

Probing the embedded phase of star formation with JWST spectroscopy

arxiv:astro-ph/ v1 15 Mar 2007

Unbiased line surveys of protostellar envelopes A study of the physics and chemistry of the youngest protostars in Corona Australis

THE DIFFERENT STRUCTURES OF THE TWO CLASSES OF STARLESS CORES

arxiv:astro-ph/ v1 10 May 2002

Stellar structure and evolution. Pierre Hily-Blant April 25, IPAG

arxiv:astro-ph/ v1 12 Jun 1999

Understanding the early stages of star formation in Perseus using CS and N 2 H + tracers

DNC/HNC RATIO OF MASSIVE CLUMPS IN EARLY EVOLUTIONARY STAGES OF HIGH-MASS STAR FORMATION

MOLECULES IN THE CIRCUMNUCLEAR DISK OF THE GALACTIC CENTER

The Inception of Star Cluster Formation Revealed by [CII] Emission Around an Infrared Dark Cloud Thomas G. Bisbas

Summary and Future work

arxiv: v1 [astro-ph.ga] 15 May 2013

Astrochemistry the summary

Accretion-Disk-outflow System in High Mass Star Formation. Yuefang Wu Astronomy Department Peking University, China

arxiv: v1 [astro-ph.sr] 15 Oct 2018

arxiv:astro-ph/ v1 8 Apr 2002

Observational Properties of Protoplanetary Disks

ESO in the 2020s: Astrobiology

Star Formation Taste Tests. Alyssa A. Goodman Harvard-Smithsonian Center for Astrophysics & Initiative for Innovative Computing at Harvard

A Tale of Star and Planet Formation. Lynne Hillenbrand Caltech

Thermodynamics of GMCs and the initial conditions for star formation

Key words: ISM: individual(l1544), molecules radio lines: ISM

The Unbearable Lightness of Chemistry

Astrochemistry. Lecture 10, Primordial chemistry. Jorma Harju. Department of Physics. Friday, April 5, 2013, 12:15-13:45, Lecture room D117

Setting the stage for solar system formation

Initial conditions for massive star formation

SMA observations of Magnetic fields in Star Forming Regions. Josep Miquel Girart Institut de Ciències de l Espai (CSIC-IEEC)

The Interstellar Medium

arxiv: v1 [astro-ph.ga] 9 Aug 2016

RAMPS: The Radio Ammonia Mid-Plane Survey. James Jackson Institute for Astrophysical Research Boston University

Molecular Clouds and Star Formation. James Di Francesco September 21, 2015 NRC Herzberg Programs in Astronomy & Astrophysics

arxiv:astro-ph/ v1 19 Jan 2006

!"#$%&'(#)*'+*,+ %#--./&+0&'-&+1*"&-+ 0*2'+(*+! #"#1(&".9.'$+:"*(*1;<(&"-+

Deuterium chemistry of dense gas in the vicinity of low-mass and massive star-forming regions

Sunbathing around low-mass protostars: new insights from hydrides

ASTRONOMY AND ASTROPHYSICS Ionization structure and a critical visual extinction for turbulent supported clumps

An evolutionary sequence for high-mass stars formation

arxiv:astro-ph/ v1 9 Dec 2003

arxiv: v1 [astro-ph.sr] 28 May 2015

arxiv: v1 [astro-ph.ga] 23 Jun 2010

The dust temperatures of the pre-stellar cores in the ρ Oph main cloud and in other star-forming regions: consequences for the core mass function

Star formation in a clustered environment around the UCH II region in IRAS ABSTRACT

Challenges for the Study of Hot Cores with ALMA: NGC 6334I

arxiv: v1 [astro-ph.ga] 29 Apr 2011

arxiv:astro-ph/ v3 13 Nov 2003

Herschel Constraints on Ice Formation and Destruction in Protoplanetary Disks

arxiv: v1 [astro-ph.sr] 12 Oct 2011

Frédérique Motte (AIM Paris-Saclay)

Galaxy Ecosystems Adam Leroy (OSU), Eric Murphy (NRAO/IPAC) on behalf of ngvla Working Group 2

Large-Scale Projects with the SMA and CARMA: MASSES and CLASSy. Katherine I. Lee (Harvard-Smithsonian CfA)

Theory of star formation

arxiv: v1 [astro-ph.sr] 21 Oct 2016

arxiv: v1 [astro-ph.sr] 10 Jan 2014

CO abundances in a protostellar cloud: freeze-out and desorption in the envelope and outflow of L483

arxiv: v1 [astro-ph.ga] 28 Nov 2011

SOFIA observations of far-infrared hydroxyl emission toward classical ultracompact HII/OH maser regions

The First Stars. Simone Ferraro Princeton University. Sept 25, 2012

Molecular inventories and chemical evolution of low-mass protostellar envelopes

Microwave emissions, critical tools for probing massive star formation

Earliest phases of high mass star formation in the Galactic Plane

Astronomy 106, Fall September 2015

Francesco FONTANI PERSONAL DATA CURRENT POSITION EDUCATION POSITIONS AWARDS & FELLOWSHIPS SCIENTIFIC INTERESTS

arxiv: v1 [astro-ph.sr] 10 Mar 2015

Transition Disk Chemistry in the Eye of ALMA

Molecular Tracers of Embedded Star Formation in Ophiuchus

Interstellar Medium and Star Birth

The Physical and Chemical Status of Pre-protostellar Core B68

Photodissociation Regions Radiative Transfer. Dr. Thomas G. Bisbas

The Milky Way Galaxy

Transcription:

School of Physics and Astronomy FACULTY OF MATHEMATICS & PHYSICAL SCIENCES Chemical Diagnostics of Star Forming Regions Paola Caselli N 2 H + (1-0) Di Francesco et al. 2004 N 2 H + (3-2) Bourke et al. in prep Wilking, Gagne & Allen 2008, Handbook of Star Forming Regions, Vol. II

Collaborators Low-mass: Belloche (Bonn), Bourke (CfA), Ceccarelli (Grenoble), Crapsi (Leiden), Di Francesco (Victoria), Emprechtinger (Caltech), Foster (BU), Friesen (NRAO), Goodman (Harvard), Jørgensen (Bonn), Keto (CfA), Mitchell (Leeds), Myers (CfA), Pineda (Harvard), Rushton (Leeds), Schnee (Victoria), Tafalla (Madrid), Vastel (Toulouse), van der Tak (Groningen), Walmsley (Arcetri) Intermediate-mass: Alonso-Albi (Madrid), Ceccarelli (Grenoble), Fuente (Madrid), McCoey (Victoria), Johnstone (Victoria), Plume (Calgary) Massive: Bourke (CfA), Butler (Florida), Fontani (IRAM), Hernandez (Florida), Jimenez-Serra (Leeds), Pillai (Caltech), Tan (Florida), Zhang (CfA)

Outline Chemical/physical structure of pre-stellar cores (PSCs) Environmental effects PSCs in isolated and clustered star forming regions Summary/open questions Future directions (PSCs as astrophysical laboratories)

N 2 N 2 H + Complex chemical structure in the simplest physical units N 2 takes longer than CO to form (Herbst & Klemperer 1973) CO freeze-out & D-fractionation (Lepp & Dalgarno 1984) Suzuki et al. 1992

Deuterium Fractionation at T < 20 K H 3 + + HD H 2 D + + H 2 + 230 K Watson 1974 Millar et al. 1989 H 2 D + + N 2 N 2 D + + H 2 CO DCO + + H 2 H 2 D + / H 3 + increases if the abundance of gas phase neutral species (in particular CO) decreases (Dalgarno & Lepp 1984; Roberts & Millar 2000).

Evidences ortho-h 2 D + of in freeze-out: pre-stellar cores deuterium fractionation The o-h 2 D + line is strong and its emission is extended 5000 AU Only models including all multiply deuterated forms of H 3 + can reproduce these data (Roberts et al. 2003; Walmsley et al. 2004; Aikawa et al. 2005) Vastel et al. 2006 Caselli et al. 2003, 2008; van der Tak et al. 2005 o-h 2 D + CSO N 2 H + (1-0) IRAM N 2 D + (2-1) IRAM

L1544 Evidences interferometric of freeze-out: observations deuterium fractionation On size scale of ~800 AU: no NH 3 (and N 2 ) freeze-out (see also Hily-Blant et al. 2010 arxiv:1001.3930) 1400 AU N(NH 3 ) @ VLA The gas temperature drops to ~6 K in the central 1000 AU The deuterium fractionation is ~0.4 in the central 3000 AU Loss of specific angular momentum towards the small scales N(NH 2 D) @ PdBI 700 AU Crapsi, Caselli, Walmsley & Tafalla 2007

Evidences Radiative transfer of freeze-out: deuterium Analysis fractionation Static and contracting Bonnor-Ebert sphere Simple CO chemistry (freezeout + photodissociation) Radiative energy balance (+photoelectric heating) Radiative transfer N 2 H + (1-0) ζ ~ 1x10-17 s -1, fluffy grains, n c ~2 10 7 cm -3 within 500 AU Keto & Caselli 2008, 2010

Environmental effects NH 3 and CCS in Perseus cores: CCS almost absent in clustered protoand pre-stellar cores Chemical evolution depends on the environment. Foster et al. 2009

Velocity Dispersion Protostellar feedback Protostellar feedback affects the physical conditions of the surrounding cloud (especially in cluster forming regions). Quiscence is soon lost Pineda et al., in prep. Velocity Dispersion

Evidences Environmental of freeze-out: effects deuterium fractionation C 17 O(1-0) emission (Caselli et al. 1999) CO hole 0.03 pc dust peak Dust emission in L1544 (Ward-Thompson et al. 1999) 0.01 pc Image: dust emission in ρ Oph A (Di Francesco et al. 2004) Contours: CO depletion factor (Rushton et al., in prep.) See also Friesen et al. 2009!

Evidences of freeze-out: deuterium cluster-forming fractionation region N6: starless core in ρ Oph A, the nearest Size (AU) N 2 H + (3-2) BOURKE et al., in prep. N6 L1544 3000x1500 ~8000 N(N 2 D + )/ 0.06 0.20 N(N 2 H + ) T c (K) 14 7 SMA + JCMT Δv (km/s) N 2 H + (3-2) 0.25 0.18 Δv NT /Δv 0.25 0.23 N 2 H + (3-2) M (M ) Within N 2 H + (3-2) 0.2 0.05

Evidences of freeze-out: Caselli et al., in prep. deuterium fractionation D-fractionation in Infrared Dark Clouds N 2 D + /N 2 H + ~ 0.03 Jimenez-Serra, Caselli, Tan +, in prep.

R CHL1157-mm outflow H 2 D O 3 OH SiO = 440 pc, L bol = 8.3 L o 3 B1 B2 Only H 2 O is detected on-source! Water traces hot spots where shocks dump energy into cloud

Summary Astrochemical/radiative transfer modeling + observations are needed to identify the right tracer to study the initial conditions of star formation. Environment, protostellar feedback, gas-dust interactions affect chemical/physical evolution difficult to gauge ages and initial conditions. Still puzzling: presence of (N-bearing) gas phase molecules at n H > 10 6 cm -3 (N 2 vs CO) different behavior of NH 2 D and N 2 D + desorption processes Dense and cold material in IRDCs is probably concentrated in small regions (<6 ), filling ~3% of the volume.

Future Evidences directions of freeze-out: deuterium fractionation Cosmic-ray ionization rate Metal abundance Grain size distribution H 2 ortho-topara ratio Ice mantle Oxygen abundance

Future Evidences directions of freeze-out: deuterium fractionation van Loo, Hartquist, Falle Cazaux, Cuppen Keto, Broderick, Spaans Pineda + Boley, Spaans,Hartquist