Constraints on SUSY parameters from present data

Similar documents
Supersymmetry at the LHC

SUSY Dark Matter Models

arxiv: v1 [hep-ph] 12 Dec 2008

Yukawa and Gauge-Yukawa Unification

Kaluza-Klein Theories - basic idea. Fig. from B. Greene, 00

SUSY WG summary: ILC-LHC-Cosmology

(Neutrino indirect) detection of neutralino dark matter in (non) universals SUSY GUT models

Supersymmetry Basics. J. Hewett SSI J. Hewett

The Minimal Supersymmetric Standard Model (MSSM)

Cosmology/DM - I. Konstantin Matchev

Lecture 18 - Beyond the Standard Model

Supersymmetry at the LHC

Dark Matter Implications for SUSY

Neutralino Dark Matter and SUSY Spectroscopy. M. E. Peskin June 2004 YITP

SUSY THEORY OVERVIEW

Dark Matter motivated SUSY collider signatures

SUSY and Exotics. UK HEP Forum"From the Tevatron to the LHC, Cosener s House, May /05/2009 Steve King, UK HEP Forum '09, Abingdon 1

Supersymmetry at the LHC

Pseudo-Dirac Bino as Dark Matter and Signatures of D-Type G

Universal Extra Dimensions

Accurate Neutralino Relic Density. Paolo Gondolo

Search for Supersymmetry at the LHC

SUSY AND COSMOLOGY. Jonathan Feng UC Irvine. SLAC Summer Institute 5-6 August 2003

Positron Fraction from Dark Matter Annihilation in the CMSSM

Dark Matter WIMP and SuperWIMP

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia

Probing Supersymmetric Connection with Dark Matter

Beyond the SM: SUSY. Marina Cobal University of Udine

SUSY searches at the LHC * and Dark Matter

Supersymmetry at the LHC

Higgs Boson and New Particles at the LHC

SUSY Tools. Alexei Safonov (UC Davis) A. Safonov SUSY Tools SUSY WG summary meeting, August 25

Supersymmetry at the ILC

The Physics of Heavy Z-prime Gauge Bosons

SUSY Phenomenology & Experimental searches

SUPERSYMETRY FOR ASTROPHYSICISTS

Dark Matter Experiments and Searches

Implications of an extra U(1) gauge symmetry

Natural SUSY and the LHC

Cosmology at the LHC

Physics at e + e - Linear Colliders. 4. Supersymmetric particles. M. E. Peskin March, 2002

Lectures on Supersymmetry III

*** LIGHT GLUINOS? Cracow-Warsaw Workshop on LHC Institut of Theoretical Physics, University of Warsaw

Astroparticle Physics at Colliders

Astroparticle Physics and the LC

Implications of a Heavy Z Gauge Boson

SUSY at Accelerators (other than the LHC)

Extra-weakly interacting dark matter

SUSY with light electroweakino

Identifying the NMSSM by combined LHC-ILC analyses

Cold Dark Matter beyond the MSSM

Introduction to Supersymmetry

Dark Matter Abundance in Brane Cosmology

Introduction to SUSY. Giacomo Polesello. INFN, Sezione di Pavia

SUSY at Accelerators (other than the LHC)

Why SUSY? Key Words LECTURE OUTLINE. Between Supersymmetry and Dark Matter Teruki Kamon KNU/TAMU. Probing the Connection.

Search for SUperSYmmetry SUSY

Properties of the Higgs Boson, and its interpretation in Supersymmetry

Search for Supersymmetry at LHC

Discovery potential for SUGRA/SUSY at CMS

Abdelhak DJOUADI (LPT Orsay/Next Southampton)

Phenomenology of nonuniversal gaugino masses in supersymmetric grand unified theories

Measuring Relic Density at the LHC

K. Cheung 1. Collider Phenomenology on Supersymmetry

Crosschecks for Unification

SUSY Models, Dark Matter and the LHC. Bhaskar Dutta Texas A&M University

COSMOLOGY AT COLLIDERS

Lecture 4 - Beyond the Standard Model (SUSY)

Sho IWAMOTO. 15 Sep Osaka University. Based on [ ] in collaboration with M. Abdullah, J. L. Feng, and B. Lillard (UC Irvine)

Is SUSY still alive? Dmitri Kazakov JINR

MSSM4G: MOTIVATIONS AND ALLOWED REGIONS

SUSY dark matter in nonuniversal gaugino mass models

Probing the Connection Between Supersymmetry and Dark Matter

The Standard Model and Beyond

Exceptional Supersymmetry. at the Large Hadron Collider

New Physics beyond the Standard Model: from the Earth to the Sky

Search for physics beyond the Standard Model at LEP 2

A realistic model of gauge-mediated SUSY-breaking scenario with superconformal hidden sector

Introduction ffl MSSM with R-parity too many free parameters (124): mostly come from the flavor sector in the soft SUSY breaking Lagrangian generic FC

Beyond the SM, Supersymmetry

Prospects for SUSY at the LHC

Dark Matter Direct Detection in the NMSSM

Sho IWAMOTO. 7 Nov HEP phenomenology joint Cavendish DAMTP U. Cambridge

Lecture 1. Supersymmetry: Introduction

String Theory in the LHC Era

The first year of the LHC and Theory. G.G.Ross, Krakow, December 09

Searches for Supersymmetry at ATLAS

The Lightest Higgs Boson and Relic Neutralino in the MSSM with CP Violation

Natural Electroweak Symmetry Breaking in NMSSM and Higgs at 100 GeV

Flavor Violation at the LHC. Bhaskar Dutta. Texas A&M University

Unification without Doublet-Triplet Splitting SUSY Exotics at the LHC

arxiv:hep-ph/ v1 4 Apr 1997

SUSY GUTs, DM and the LHC

SUSY naturalness with implications for LHC, ILC, axion and WIMP detection. Howard Baer University of Oklahoma

Higgs, neutralinos and exotics beyond the MSSM

Szuperszimmetria keresése az LHC-nál

Interconnection between Particle Physics and Cosmology at the LHC

LHC and Dark Matter 07/23/10. Bhaskar Dutta Texas A&M University

Reconstructing Supersymmetry in the LHC era

New Physics at the TeV Scale and Beyond Summary

Transcription:

Constraints on SUSY parameters from present data Howard Baer Florida State University ILC-Cosmology working group MSSM Models of SUSY breaking Constraints WMAP allowed regions Non-universality Beyond the MSSM H. Baer, ILC and Cosmology, Snowmass, 2005 1

The Standard Model of Particle Physics Construction gauge symmetry: SU(3) C SU(2) L U(1) Y matter content: 3 generations quarks and leptons u d L u R, d R ; ν e Higgs sector spontaneous electroweak symmetry breaking: φ = φ+ φ 0 L, e R (1) (2) Yukawa interactions massive quarks and leptons 19 parameters good-to-excellent description of (almost) all accelerator data! H. Baer, ILC and Cosmology, Snowmass, 2005 2

Data not described by the SM neutrino masses and mixing baryogenesis η 10 10 (matter anti-matter asymmetry) cold dark matter dark energy Note astro/cosmological origin of all discrepancies! H. Baer, ILC and Cosmology, Snowmass, 2005 3

Focus of this talk is on supersymmetry if we consider the main classes of new physics that are currently being contemplated, it is clear that (supersymmetry) is the most directly related to GUTs. SUSY offers a well defined model computable up to the GUT scale and is actually supported by the quantitative success of coupling unification in SUSY GUTs.For the other examples, all contact with GUTs is lost or at least is much more remote. the SUSY picture remains the standard way beyond the Standard Model G. Altarelli and F. Feruglio, hep-ph/0306265 H. Baer, ILC and Cosmology, Snowmass, 2005 4

Minimal Supersymmetric Standard Model: MSSM Rules for Lagrangian of renormalizable globally supersymmetric Lagrangian texts: Drees, Godbole, Roy (WS) ; HB and X. Tata (CUP, Spring 06) Gauge symmetry: SU(3) C SU(2) L U(1) Y Fields superfields fermions (left) chiral scalar superfields gauge fields gauge superfields two Higgs doublets are necessary Superpotential: R p conserving (RPC) or violating (RPV)? Explicit soft SUSY breaking terms: scalar/ino masses, A i, B MSSM with RPC: 124 (178) parameter model valid at M weak? MSSM with bi (tri)linear RPV: add 6 (45) more complex SP parameters H. Baer, ILC and Cosmology, Snowmass, 2005 5

Models of SUSY breaking Spontaneous breaking of SUSY phen. inconsistent within MSSM Hidden sector models (HS) HS is arena for SUSY breaking; how to communicate SUSY breaking to visible sector (VS)? gravity mediation: supergravity (SUGRA) and local SUSY: minimal messenger sector: m 3/2 TeV: LSP=bino/higgsino/wino/gravitino? gauge mediation (GMSB): introduce messenger sector fields as intermediary between HS and VS: m 3/2 TeV: LSP=gravitino anomaly mediation (AMSB): m 3/2 > TeV: LSP=wino role of extra dimensions? compactification? sequestered sector and AMSB; gaugino mediation; GUTs; H. Baer, ILC and Cosmology, Snowmass, 2005 6

Gravity-mediated SUSY breaking models m 3/2 M 2 s /M P l 10 3 GeV for M s 10 11 GeV theory below Q = M GUT usually assumed to be MSSM Soft SUSY breaking boundary conditions usually stipulated at Q = M GUT lots of possibilities depending on SUSY breaking/ GUTs/ compactification (all unknown physics) minimal choice: single scalar mass m 0, gaugino mass m 1/2, trilinear term A 0, bilinear term B evolve couplings/soft terms to M weak via RG evolution EWSB radiatively due to large m t parameter space: m 0, m 1/2, A 0, tan β, sign(µ) this is simplest choice and a baseline model, but many other possibilities depending on high scale physics H. Baer, ILC and Cosmology, Snowmass, 2005 7

non-universal scalar masses non-universal gaugino masses FC soft SUSY breaking terms large CP violating phases additional fields beyond MSSM below M GUT? H. Baer, ILC and Cosmology, Snowmass, 2005 8

Sparticle mass spectra Mass spectra codes Isajet (HB, Paige, Protopopescu, Tata) SuSpect (Djouadi, Kneur, Moultaka) SoftSUSY (Allanach) Spheno (Porod) Comparison (Belanger, Kraml, Pukhov) m0 [GeV] m0 [GeV] 4500 4000 3500 3000 2500 2000 WMAP 2000 1500 ISAJET 7.71 1500 SOFTSUSY 1.9 1000 1000 120 130 140 150 160 170 180 120 130 140 150 160 170 180 4500 4000 3500 3000 2500 2000 excl. by LEP excl. by LEP no REWSB m 1/2 [GeV] WMAP m0 [GeV] m0 [GeV] 4500 4000 3500 3000 2500 4500 4000 3500 3000 2500 2000 no REWSB no REWSB m 1/2 [GeV] 1500 SPHENO 2.2.2 1500 SUSPECT 2.3 1000 1000 120 130 140 150 160 170 180 120 130 140 150 160 170 180 m 1/2 [GeV] m 1/2 [GeV] excl. by LEP excl. by LEP WMAP WMAP Website: http://kraml.home.cern.ch/kraml/comparison/ H. Baer, ILC and Cosmology, Snowmass, 2005 9

LEP2: Constraints on SUSY models m h > 114.4 GeV for SM-like h m fw1 > 103.5 GeV mẽl,r > 99 GeV for m l m ez1 > 10 GeV BF (b sγ) = (3.25 ± 0.54) 10 4 (BELLE, CLEO, ALEPH) SM theory: BF (b sγ) 3.3 3.7 10 4 a µ = (g 2) µ /2 (Muon g 2 collaboration) a µ = (27.1 ± 9.4) 10 10 (Davier et al. e + e ) a SUSY µ m2 µ µm i tan β M 4 SUSY BF (B s µ + µ ) < 1.5 10 7 constrains at very large tan β > 50 Ω CDM h 2 = 0.113 ± 0.009 (WMAP) (CDF-new!) H. Baer, ILC and Cosmology, Snowmass, 2005 10

Neutralino dark matter Why R-parity? natural in SO(10) SUSYGUTS if properly broken, or broken via compactification (Mohapatra, Martin, Kawamura, ) In thermal equilibrium in early universe As universe expands and cools, freeze out Number density obtained from Boltzmann eq n dn/dt = 3Hn σv rel (n 2 n 2 0) depends critically on thermally averaged annihilation cross section times velocity many thousands of annihilation/co-annihilation diagrams equally many computer codes Neutdriver (Jungman; not maintained) DarkSUSY: (Gondolo, Edsjo, Ullio, Bergstrom, Schelke, Baltz) H. Baer, ILC and Cosmology, Snowmass, 2005 11

Micromegas (Belanger, Boudjema, Pukhov, Semenov) IsaRED: (HB, Balazs, Belyaev) SSARD: (Ellis, Falk and Olive) Drees/ Nojiri code Roszkowski code Arnowitt/ Nath code Lahanas/ Nanopoulos code Bottino/ Fornengo et al. code H. Baer, ILC and Cosmology, Snowmass, 2005 12

Effect of constraints on msugra model msugra,tanβ=10,a0=0,µ>0,mtop=175gev δaposx10 :30,10,5,1 10 1800 1600 Ωh2< 0.094 0.094< Ωh2< 0.129 0.129< Ωh2< 0.5 m1/2 (GeV) 1400 stau LSP Ωh2< 0.094 0.094< Ωh2< 0.129 0.129< Ωh2< 0.5 m1/2 (GeV) 1400 BF(b sγ)x104:2,3 2000 stau LSP 1600 δaposx1010:30,10,5,1 BF(b sγ)x10 :2,3 2000 1800 msugra,tanβ=55,a0=0,µ>0,mtop=175gev 4 1200 1200 1000 1000 800 800 600 600 400 400 200 0.5 200 NO REWSB LEP2 1 1.5 2 2.5 m0 (GeV) 3 3.5 4 4.5 NO REWSB LEP2 5 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 m0 (GeV) H. Baer, ILC and Cosmology, Snowmass, 2005 13

Main msugra regions consistent with WMAP bulk region (low m 0, low m 1/2 ) stau co-annihilation region (m τ1 m ez1 ) HB/FP region (large m 0 where µ small) A-funnel (2m ez1 m A, m H ) h corridor (2m ez1 m h ) stop co-annihilation region (particular A 0 values m t 1 m ez1 ) H. Baer, ILC and Cosmology, Snowmass, 2005 14

Constraints as χ2 on msugra model 4.5 1800 4 1600 3.5 1400 3 1000 2.5 800 2 600 400 200 NO REWSB sqrt(χ2) 1200 5 4.5 4 3.5 1200 3 1000 2.5 800 2 1.5 600 1.5 1 400 1 0.5 200 0.5 NO REWSB 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 sqrt(χ2) m1/2 (GeV) 1400 2000 stau LSP 1600 5 msugra, tgβ=55, µ>0, A0=0, mtop=175 GeV + e e input for δaµ LEP2 excluded m1/2 (GeV) 1800 stau LSP 2000 msugra, tgβ=10, µ>0, A0=0, mtop=175 GeV + e e input for δaµ LEP2 excluded 0 0.5 1 m0 (TeV) 1.5 2 2.5 3 3.5 4 4.5 5 m0 (TeV) HB, Balazs; HB, Belyaev, Krupovnickas, Mustafayev H. Baer, ILC and Cosmology, Snowmass, 2005 15

bulk region ILC-Cosmology group: 4 simulation points (m 0, m 1/2, A 0, tan β, sgn(µ), m t = 100 GeV, 250 GeV, 100 GeV, 10, +1, 178) HB/FP region (m 0, m 1/2, A 0, tan β, sgn(µ), m t = 3280 GeV, 300 GeV, 0, 10, +1, 175 ) τ co-ann. region (m 0, m 1/2, A 0, tan β, sgn(µ), m t = 210 GeV, 360 GeV, 0, 40, +1, 178 ) A funnel (m 0, m 1/2, A 0, tan β, sgn(µ), m t = 380 GeV, 420 GeV, 0, 53, +1, 178 ) Results: see talks by Battaglia, Alexander, Peskin H. Baer, ILC and Cosmology, Snowmass, 2005 16

Sparticle reach of all colliders and relic density 1600 msugra with tanβ = 10, A 0 = 0, µ > 0 Ωh 2 < 0.129 LEP2 excluded 1400 1200 m 1/2 (GeV) 1000 800 LHC 600 LC 1000 400 200 LC 500 Tevatron 0 1000 2000 3000 4000 5000 6000 7000 8000 m 0 (GeV) HB, Belyaev, Krupovnickas, Tata H. Baer, ILC and Cosmology, Snowmass, 2005 17

Sparticle reach of all colliders and relic density 1600 msugra with tanβ = 45, A 0 = 0, µ < 0 Ωh 2 < 0.129 LEP2 excluded 1400 1200 m 1/2 (GeV) 1000 800 LHC 600 LC 1000 400 200 LC 500 Tevatron 0 1000 2000 3000 4000 5000 6000 7000 m 0 (GeV) HB, Belyaev, Krupovnickas, Tata H. Baer, ILC and Cosmology, Snowmass, 2005 18

Direct and indirect detection of neutralino DM 1600 msugra, A 0 =0 tanβ=10, µ>0 1600 msugra, A 0 =0, tanβ=50, µ<0 1400 1400 1200 not LSP Z ~ 1 LHC DD µ 1200 not LSP Z ~ 1 DD m 1/2 (GeV) 1000 800 m 1/2 (GeV) 1000 800 LHC 600 LC1000 600 LC1000 400 LC500 400 LC500 µ 200 TEV LEP no REWSB 200 LEP no REWSB 0 1000 2000 3000 4000 5000 6000 7000 8000 m 0 (GeV) Φ(p - )=3x10-7 GeV -1 cm -2 s -1 sr -1 Φ(γ)=10-10 cm -2 s -1 Φ sun (µ)=40 km -2 yr -1 (S/B) e+ =0.01 m h =114.4 GeV 0 1000 2000 3000 4000 5000 m 0 (GeV) Φ(p - ) 3e-7 GeV -1 cm -2 s -1 sr -1 (S/B) e+ =0.01 Φ(γ)=10-10 cm -2 s -1 Φ sun (µ)=40 km -2 yr -1 m h =114.4 GeV 0<Ωh 2 <0.129 σ(z ~ 1 p)=10-9 pb Φ earth (µ)=40 km -2 yr -1 σ(z ~ 1 p)=10-9 pb 0< Ωh 2 < 0.129 HB, Belyaev, Krupovnickas, O Farrill H. Baer, ILC and Cosmology, Snowmass, 2005 19

SUGRA models with non-universal scalars Normal scalar mass hierarchy (NMH): 1700 m 0 (1,2) = 100GeV, m 0 (3) = 1400GeV, m 1/2 = 550GeV, A 0 = 0, tanβ = 30, µ > 0, m t = 175GeV HB, Belyaev, Krupovnickas, Mustafayev 1500 b ~ R ~ tl τ ~ L BF (b sγ) prefers heavy 3rd gen. squarks 1300 1100 H d u ~ L τ ~ R ~ tr (g 2) µ prefers light 2nd gen. sleptons 900 u ~ R, d~ R m 0 (1) m 0 (2) m 0 (3) (preserve FCNC bounds) m (GeV) 700 500 300 e ~ L motivation: reconcile BF (b sγ) with (g 2) µ 100 e ~ R -100-300 -500 H u -700 10 3 10 5 10 7 10 9 10 11 10 13 10 15 10 17 10 18 Q(GeV) H. Baer, ILC and Cosmology, Snowmass, 2005 20

Normal scalar mass hierarchy: parameter space m0 (1) ' m0 (2) m0 (3) LHC: light sleptons, enhanced leptonic cascade decays ILC: first two gen. sleptons likely accessible; squarks/staus heavy msugra, tgβ=30, µ>0, A0=0, mtop=175 GeV,m01,2=100 GeV + e e input for δaµ LEP2 excluded 5 1800 4.5 1600 1400 stau LSP 2000 4 3.5 1000 2.5 sqrt(χ2) 3 m1/2 (GeV) 1200 800 2 600 1.5 400 1 200 0.5 NO REWSB 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 m03 (TeV) H. Baer, ILC and Cosmology, Snowmass, 2005 21

SUGRA models with non-universal Higgs mass (NUHM1) m 2 H u = m 2 H d m 2 φ m 0: HB, Belyaev, Mustafayev, Profumo, Tata motivation: SO(10) SUSYGUTs where Ĥu,d φ(10) while matter ψ(16) m 2 φ m 0 higgsino DM for any m 0, m 1/2 m 2 φ < 0 can have A-funnel for any tan β m 0 =300GeV, m 1/2 =300GeV, tanβ=10, A 0 =0, µ>0, m t =178GeV Ωh 2 1 10-1 10-2 10-3 WMAP -3-2 -1 0 1 2 m φ / m 0 m (TeV) 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 µ m χ m A -3-2 -1 0 1 2 m φ / m 0 H. Baer, ILC and Cosmology, Snowmass, 2005 22

NUHM2 (2-parameter case) m 2 H u m 2 H d m 0 : HB, Belyaev, Mustafayev, Profumo, Tata motivation: SU(5) SUSYGUTs where Ĥu φ(5), Ĥ d φ( 5) can re-parametrize m 2 H u, m 2 H d µ, m A (Ellis, Olive, Santoso) large S term in RGEs light ũ R, c R squarks, mẽl < mẽr NUHM2: m 0 =300GeV, m 1/2 =300GeV, tanβ=10, A 0 =0, m t =178GeV µ (GeV) 900 Ah 5 4.5 800 GS 4 700 3.5 600 HS 3 500 τ ~ 1 2.5 sqrt(χ 2 ) 400 msugra 2 300 NUHM1 1.5 200 1 100 LEP2 0 250 500 750 1000 1250 1500 1750 2000 m A (GeV) 0.5 0 H. Baer, ILC and Cosmology, Snowmass, 2005 23

Gaugino mass non-universality M 1 M 2 M 3 : HB, Krupovnickas, Mustafayev, Park, Profumo, Tata motivation: SUSYGUTs where gauge kinetic function transforms non-trivially M 2 M 1 at M GUT : mixed wino dark matter (MWDM) M 2 M 1 at M GUT : bino-wino co-annihilation (BWCA) H. Baer, ILC and Cosmology, Snowmass, 2005 24

Gaugino mass non-universality: low M 3 case M 3 = 1 2 M 2 = 1 2 M 1 lower M 3 small µ so higgsino-enhanced annihilation rates lower Ω ez1 h 2 Belanger, Boudjema, Cottrant, Pukhov, Semenov H. Baer, ILC and Cosmology, Snowmass, 2005 25

SUGRA models beyond MSSM: NMSSM Add extra singlet SF Ŝ motivation: introduce µ parameter via SUSY breaking 3 neutral scalar higgs, 2 pseudoscalars and 5 neutralinos M 2 [GeV] 800 Ωh 2 = 0.02 600 WMAP 400 Ωh 2 = 1 200 0 0 200 400 600 800 µ [GeV] Belanger, Boudjema, Hugonie, Pukhov, Semenov; Ellwanger, Gunion, Hugonie H. Baer, ILC and Cosmology, Snowmass, 2005 26

Conclusions SUSY is standard way beyond the SM SUGRA models most naturally encompass DM: thermal WIMPS WMAP bound Ω ez1 h 2 = 0.113 ± 0.009 especially constraining bulk, τ coann., HB/FP, A-funnel, h-funnel, t 1 coann. Various regions distinct collider/dm signatures Non-universality normal mass hierarchy NUHM1, NUHM2 models gaugino mass non-universality: MWDM, BWCA, low M 3 Beyond MSSM? e.g. NMSSM If weak scale SUSY exists, ILC will be critical tool and provide a window to GUT/Planck scale physics H. Baer, ILC and Cosmology, Snowmass, 2005 27