More Hodge-Podge Pseudoprimes

Similar documents
Generalized Lucas Sequences Part II

198 VOLUME 46/47, NUMBER 3

#A11 INTEGERS 12 (2012) FIBONACCI VARIATIONS OF A CONJECTURE OF POLIGNAC

On the Composite Terms in Sequence Generated from Mersenne-type Recurrence Relations

Fermat s Little Theorem. Fermat s little theorem is a statement about primes that nearly characterizes them.

The Impossibility of Certain Types of Carmichael Numbers

p = This is small enough that its primality is easily verified by trial division. A candidate prime above 1000 p of the form p U + 1 is

LARGE PRIME NUMBERS. In sum, Fermat pseudoprimes are reasonable candidates to be prime.

Equivalence of Pepin s and the Lucas-Lehmer Tests

Primality testing: variations on a theme of Lucas. Carl Pomerance, Dartmouth College Hanover, New Hampshire, USA

LARGE PRIME NUMBERS (32, 42; 4) (32, 24; 2) (32, 20; 1) ( 105, 20; 0).

Improving the Accuracy of Primality Tests by Enhancing the Miller-Rabin Theorem

Part II. Number Theory. Year

Pseudoprime Statistics to 10 19

1. Introduction. Let P and Q be non-zero relatively prime integers, α and β (α > β) be the zeros of x 2 P x + Q, and, for n 0, let

1. Definitions and Closed Form Bisht [6] defined a generalized Lucas integral sequence of order k 1 as follows:

On Carmichael numbers in arithmetic progressions

ABSTRACT 1. INTRODUCTION

A Few Primality Testing Algorithms

A Guide to Arithmetic

Departmento de Matemáticas, Universidad de Oviedo, Oviedo, Spain

Perfect numbers among polynomial values

Fibonacci Pseudoprimes and their Place in Primality Testing

EFFICIENT COMPUTATION OF TERMS OF LINEAR RECURRENCE SEQUENCES OF ANY ORDER

IRREDUCIBILITY TESTS IN F p [T ]

Lecture notes: Algorithms for integers, polynomials (Thorsten Theobald)

NOTES ON SOME NEW KINDS OF PSEUDOPRIMES

PRIMALITY TEST FOR FERMAT NUMBERS USING QUARTIC RECURRENCE EQUATION. Predrag Terzic Podgorica, Montenegro

Oleg Eterevsky St. Petersburg State University, Bibliotechnaya Sq. 2, St. Petersburg, , Russia

Fast Primality Tests for Numbers Less Than

ON CARMICHAEL NUMBERS IN ARITHMETIC PROGRESSIONS

VARIANTS OF KORSELT S CRITERION. 1. Introduction Recall that a Carmichael number is a composite number n for which

THE SOLOVAY STRASSEN TEST

RANK AND PERIOD OF PRIMES IN THE FIBONACCI SEQUENCE. A TRICHOTOMY

Journal of Number Theory

SOLUTIONS TO PROBLEM SET 1. Section = 2 3, 1. n n + 1. k(k + 1) k=1 k(k + 1) + 1 (n + 1)(n + 2) n + 2,

LEHMER S TOTIENT PROBLEM AND CARMICHAEL NUMBERS IN A PID

Primality testing: then and now

Primality testing: then and now

Journal of Number Theory

PRIMITIVE PRIME FACTORS IN SECOND-ORDER LINEAR RECURRENCE SEQUENCES

Andrew Granville To Andrzej Schinzel on his 75th birthday, with thanks for the many inspiring papers

FERMAT S TEST KEITH CONRAD

arxiv: v1 [math.nt] 8 Jan 2014

God may not play dice with the universe, but something strange is going on with the prime numbers.

arxiv: v1 [math.nt] 22 Jun 2017

COMPLETE PADOVAN SEQUENCES IN FINITE FIELDS. JUAN B. GIL Penn State Altoona, 3000 Ivyside Park, Altoona, PA 16601

Introduction to Number Theory

Primality Tests Using Algebraic Groups

Chapter 9 Mathematics of Cryptography Part III: Primes and Related Congruence Equations

CONGRUENCES CONCERNING LUCAS SEQUENCES ZHI-HONG SUN

FACTORS OF CARMICHAEL NUMBERS AND A WEAK k-tuples CONJECTURE. 1. Introduction Recall that a Carmichael number is a composite number n for which

The Fibonacci Quarterly 44(2006), no.2, PRIMALITY TESTS FOR NUMBERS OF THE FORM k 2 m ± 1. Zhi-Hong Sun

The Elliptic Curve Method and Other Integer Factorization Algorithms. John Wright

The New Book of Prime Number Records

arxiv: v2 [math.nt] 29 Jul 2017

1. INTRODUCTION For n G N, where N = {0,1,2,...}, the Bernoulli polynomials, B (t), are defined by means of the generating function

Lucas Lehmer primality test - Wikipedia, the free encyclopedia

Arithmetic properties of lacunary sums of binomial coefficients

ON EXPLICIT FORMULAE AND LINEAR RECURRENT SEQUENCES. 1. Introduction

arxiv: v1 [math.nt] 18 Aug 2011

ABSTRACT INVESTIGATION INTO SOLVABLE QUINTICS. Professor Lawrence C. Washington Department of Mathematics

Primes at a Glance. By R. K. Guy, C. B. Lacampagne, and J. L. Selfridge

AND RELATED NUMBERS. GERHARD ROSENBERGER Dortmund, Federal Republic of Germany (Submitted April 1982)

Euclidean prime generators

POLYGONAL-SIERPIŃSKI-RIESEL SEQUENCES WITH TERMS HAVING AT LEAST TWO DISTINCT PRIME DIVISORS

Explicit Methods in Algebraic Number Theory

Explicit solution of a class of quartic Thue equations

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

arxiv:math/ v1 [math.nt] 17 Apr 2006

Quasi-reducible Polynomials

Neville s Method. MATH 375 Numerical Analysis. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan Neville s Method

ODD REPDIGITS TO SMALL BASES ARE NOT PERFECT

Summary Slides for MATH 342 June 25, 2018

Cryptography. Number Theory with AN INTRODUCTION TO. James S. Kraft. Lawrence C. Washington. CRC Press

CRC Press has granted the following specific permissions for the electronic version of this book:

Lucas Pseudoprimes. By Robert Baillie and Samuel S. Wagstaff, Jr.

Pseudoprimes and Carmichael Numbers

ELEMENTARY LINEAR ALGEBRA

Algorithms. Shanks square forms algorithm Williams p+1 Quadratic Sieve Dixon s Random Squares Algorithm

Elliptic Curves Spring 2013 Lecture #8 03/05/2013

2.3 In modular arithmetic, all arithmetic operations are performed modulo some integer.

THE p-adic VALUATION OF EULERIAN NUMBERS: TREES AND BERNOULLI NUMBERS

#A9 INTEGERS 12 (2012) PRIMITIVE PRIME DIVISORS IN ZERO ORBITS OF POLYNOMIALS

How To Test If a Polynomial Is Identically Zero?

EXPLICIT DECOMPOSITION OF A RATIONAL PRIME IN A CUBIC FIELD

Theory of Numbers Problems

THERE ARE NO ELLIPTIC CURVES DEFINED OVER Q WITH POINTS OF ORDER 11

IRREDUCIBILITY TESTS IN Q[T ]

Elliptic curves: Theory and Applications. Day 3: Counting points.

Primes, Polynomials, Progressions. B.Sury Indian Statistical Institute Bangalore NISER Bhubaneshwar February 15, 2016

Notes on Systems of Linear Congruences

TWO HUNDRED CONJECTURES AND ONE HUNDRED AND FIFTY OPEN PROBLEMS ON FERMAT PSEUDOPRIMES (COLLECTED PAPERS)

Carmichael numbers with a totient of the form a 2 + nb 2

Congruences for combinatorial sequences

2 More on Congruences

Carmichael numbers and the sieve

Jonathan Sondow 209 West 97th Street Apt 6F New York, NY USA

4 Linear Recurrence Relations & the Fibonacci Sequence

Transcription:

More Hodge-Podge Pseudoprimes Eric Roettger Mount Royal University Based on joint work with: Richard Guy and Hugh Williams eroettger@mtroyal.ca March 2017 Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 1 / 61

Some Review For our review I am roughly going to follow Hugh Williams book Édouard Lucas and primality testing, specifically Chapter 15 (published 1998). One of the first elementary number theory results you likely learned as an undergrad. Theorem (Fermat s Little Theorem) If p is a prime, then a p a (mod p). Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 2 / 61

Some Review This is of course useful in the following way. If N is a prime and (a, N) = 1, then a N 1 1 (mod N). Moreover, if we select a such that (a, N) =1andwefindthat a N 1 6 1 (mod N), then we can say conclusively say N is not a prime. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 3 / 61

Some Review It is clear that, if we select a such that (a, N) =1andwefindthat a N 1 1 (mod N), then we can not say conclusively say N is a prime. But it does give us some evidence that it might be the case. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 4 / 61

Some Review So we may be inclined to call this some sort of Primality Test, but it certainly is not a Primality Proof, as and 341 = (11)(31). 2 340 1 (mod 341), Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 5 / 61

Some Review Definition We say that N is a base b pseudoprime (written b-psp or psp(b)) if N is composite integer such that b N 1 1 (mod N). Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 6 / 61

Some Review E. Malo. Nombres qui, sans être premiers, vérifient exceptionellement une congruence de Fermat. L Intermédiaire des Math., 10:88, 1903. contains a proof of the infinitude of base 2 pseudoprimes. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 7 / 61

Some Review M. Cipolla. Sui numeri composti P, che verificano la congruenza di Fermat a P 1 1(modP). ann. Mat. Pura Appl., 9:139-160, 1904. contains a proof of the infinitude of base b pseudoprimes for any base b. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 8 / 61

Some Review Definition Let N be a composite integer such that b N 1 1 (mod N) for all b such that (b, N) = 1. We call such an integer N acarmichael number. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 9 / 61

Some Review Korselt s Criterion: A positive integer is a Carmichael number if and only if N is square-free and for all prime divisors p of N, p 1 N 1. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 10 / 61

Some Review Carmichael found the first of such numbers in 1910 and it was 561. Notice 561 = (3)(11)(17) satisfies Korselt s Criterion it is clearly square-free and 2 560, 10 560, and 16 560. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 11 / 61

Some Review Question: Are there infinitely many Carmichael numbers? Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 12 / 61

Some Review Answer: The 1994 paper There are infinitely many Carmichael numbers by W. R. Alford, Andrew Granville and Carl Pomerance answers this question. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 13 / 61

Lucas Functions The Lucas functions u n and v n are defined by: u n =( n n )/( ), v n = n + n, where and are the zeros of the polynomial x 2 px + q, andp, q are rational integers and (p, q) = 1. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 14 / 61

ASpecialCaseoftheLucas Functions If we let p=1 and q=-1 then u n (1, where you can recall 1) = F n the Fibonacci Numbers, F n :0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89,... and v n (1, 1) = L n the Lucas Numbers, L n :2, 1, 3, 4, 7, 11, 18, 29, 47, 76,... Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 15 / 61

Multiplication Formulas m/2 1 X m k 1 u mn = u n ( 1) k q nk vn m 2k 1 k k=0 bm/2c X u mn = u n v mn = bm/2c k=0 m k m k 1 k 1 X ( 1) k m m k 1 q nk v m k k 1 k=0 q nk bm/2c k u m 2k 1 n n 2k. (m even), (m odd), Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 16 / 61

The Law of Apparition for {u n } Let r be any prime such that r - 2q. If =( /r), then r u r. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 17 / 61

Fibonacci Pseudoprime Emma Lehmer came up with the following definition. Definition: A Fibonacci pseudoprime is a composite integer N such that F N (N) 0 (mod N), where (N) =( /N). Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 18 / 61

The Infinitude of Fibonacci Pseudoprime Emma Lehmer also showed that for an infinite number of primes p, N = u 2p is a Fibonacci pseudoprime. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 19 / 61

Lucas Pseudoprime Definition: For a given pair of integers P, Q, wesaythatn is a Lucas pseudoprime if N is composite and u N (N) (P, Q) 0 (mod N), where (N) =( /N) and =P 2 4Q. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 20 / 61

Some Review An example of a Fibonacci Pseudoprime (and thus also a Lucas Pseudoprime) is N = 323 = (17)(19), here (5/323) = 1 and one can check that F 324 0 (mod 323) or u 324 (1, 1) 0 (mod 323). Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 21 / 61

Infinitude of Lucas Pseudoprimes In a 1973 paper A. Rotkiewicz showed that if Q = ±1 andp, Q are not both 1, there are infinitely many odd composite Lucas pseudoprimes with parameters P, Q. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 22 / 61

Historical Motivation It was Lucas himself who wished to generalize these sequences. He wrote: We believe that, by developing these new methods [concering higher-order recurrence sequences], by searching for the addition and multiplication formulas of the numerical functions which originate from the recurrence sequences of the third or fourth degree, and by studying in a general way the laws of the residues of these functions for prime moduli..., we would arrive at important new properties of prime numbers. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 23 / 61

One finds in particular, in the study of the function U n = (a n, b n, c n,...) / (a, b, c,...) in which a, b, c,... designate the roots of the equation, and (a, b, c,...)thealternating function of the roots, or the square root of the discriminant of the equation, the generalization of the principal formulas contained in the first part of this work. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 24 / 61

Lucas (Théorie des Nombres) The theory of recurrent sequences is an inexhaustible mine which contains all the properties of numbers; by calculating the successive terms of such sequences, decomposing them into their prime factors and seeking out by experimentation the laws of appearance and reproduction of the prime numbers, one can advance in a systematic manner the study of the properties of numbers and their application to all branches of mathematics. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 25 / 61

Fundamental Properties of Lucas Functions 1 There are two functions (v n and u n ); 2 Both functions satisfy linear recurrences (of order two); 3 One of the functions produces a divisibility sequences; 4 There are addition formulas; 5 There are multiplication formulas. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 26 / 61

ACubicGeneralizationoftheLucas Functions Let,, be the zeros of X 3 PX 2 + QX R, wherep, Q, R are integers. Put =( )( )( ), then 2 = =Q 2 P 2 4Q 3 4RP 3 + 18PQR 27R 2. C n = n 2n + n 2n + n 2n 2n n + 2n n + 2n n n n n n n n or C n = and W n = n 2n + n 2n + n 2n + 2n n + 2n n + 2n n. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 27 / 61

Some Simple Observations For a fixed m, {C n } and {W n } both satisfy where X n+6m = a 1 X n+5m a 2 X n+4m + a 3 X n+3m a 4 X n+2m +a 5 X n+m a 6 X n, a 1 = W m, a 2 = W 2 m C 2 m /4+R m W m, a 3 = R m [ W 2 m + C 2 m /2+R 2m ], a 4 = R 2m a 2, a 5 = R 4m a 1, a 6 = R 6m. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 28 / 61

{C n } is a divisibility sequence Note that if n = ms, then C n (P, Q, R) = ( n n )( n n )( n n ) ( )( )( ) = ( ms ms )( ms ms )( ms ms ) ( )( )( ) = ( m m )( m m )( m m ) ( )( )( ) = C m (P, Q, R) C s (A m, B m, R m ), ( ms ms )( ms ms )( ms ms ) ( m m )( m m )( m m ) where A n = n + n + n and B n = n n + n n + n n are third order linear recurrences. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 29 / 61

Addition Formulas 2C n+3m = W m C n+2m + C m W n+2m R m W m C n+m + R m C m W n+m 2R 3m C n and 2W n+3m = C m C n+2m + W m W n+2m R m W m W n+m + R m C m C n+m +2R 3m W n. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 30 / 61

Multiplication Formulas and W mn = X ( 1) 0 m(m 0 1)! R n( 0+ 3 ) Q n 1! 2! 3! 2 v 1 2 ( P n, Q n ) where C mn /C n = X ( 1) 0 m(m 0 1)! R n( 0+ 3 ) Q n 1! 2! 3! 2 u 1 2 ( P n, Q n ), P n = W n, Qn =(W 2 n C 2 n )/4, and the sums are evaluated over all values of 0, 1, 2, 3, such that i are non-negative integers that sum to m and 1 +2 2 +3 3 = m. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 31 / 61

The Law of Apparition for {C n } If we let!(m) be the least positive integer n such that m C n, it is not necessarily the case that if m C k,then!(m) k. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 32 / 61

Ranks of Apparition Let! 1 be the least positive integer for which p C!1.Fori =1, 2,...,k define! i+1, if it exists, to be the least positive integer such that p C!i+1,! i+1 >! i and! j -! i+1 for any j apple i + 1. We define! 1,! 2,...,! k to be the ranks of apparition for {C n }. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 33 / 61

Classification of Primes (following Adams and Shanks, 1982) Put f (x) =x 3 Px 2 + Qx R and suppose p - 6R. p is an Iprimeif f (x) hasnozeroinf p p is an Qprimeif f (x) has only one zero in F p p is an Sprimeif f (x) has all three zeros in F p Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 34 / 61

Determination p is a Q prime if and only if ( /p) = 1. If ( /p) = 1, p is an S prime if and only if u p 1 (P 0, Q 0 ) 0 (mod p), 3 where P 0 =2P 3 9QP + 27R, Q 0 =(P 2 3Q) 3. p is an I prime otherwise. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 35 / 61

Some Laws of Apparition Assume p - 6R. If p is an Iprimethere is only one rank of apparition! of {C n } and! p 2 + p + 1. If p is a Qprimethere is only one rank of apparition! of {C n } and! p + 1. If p is an Sprimethere can be no more than 3 ranks of apparition of p. If! is any rank of apparition, we have! p 1. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 36 / 61

Lucas Cubic Pseudoprime? Definition: For a given set of integers P, Q, R we say that N is a Lucas cubic pseudoprime if N is composite and C N (N) (P, Q, R) 0 (mod N), or C N 2 +N+1(P, Q, R) 0 (mod N), where (N) =( /N) and =Q 2 P 2 4Q 3 4RP 3 + 18PQR 27R 2. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 37 / 61

AN EXAMPLE S-prime like An example of a Lucas Cubic Pseudoprime is N = 533 = (13)(41), here ( /533) = 1 and one can check that C 532 (1, 1, 1) 0 (mod 533). Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 38 / 61

AN EXAMPLE Q-prime like An example of a Lucas Cubic Pseudoprime is N = 407 = (11)(37), here ( /407) = 1 and one can check that C 408 (1, 1, 13) 0 (mod 407). Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 39 / 61

A NONEXAMPLE If P = 1, Q =2andR = 3, then there are no Lucas Cubic Pseudoprimes below 600. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 40 / 61

Some Fourth Order Recurrences, Guy and Williams Put f (x) =x 2 P 1 x + P 2 (P 1, P 2 2 Z) =P 2 1 4P 2 (6= 0). Let 1, 2 be the zeros of f (x) andlet i, i (i =1, 2) be the zeros of x 2 i x + Q, where Q 2 Z and (P 1, P 2, Q) = 1. We define the sequences {U n } and {V n } by U n =( 1 n + 1 n 2 n n 2)/( 1 2 ) V n = n 1 + n 1 + n 2 + n 2. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 41 / 61

Recurrence Formulas For a fixed m {U n } and {V n } both satisfy X n+4m = V m X n+3m [2Q m +(V 2 m + U 2 m)/4]x n+2m +Q m V m X n+m Q 2m X n. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 42 / 61

Addition Formulas 2U m+n = V m U n + U m V n 2Q n U m n 2V m+n V m V n + U m U n 2Q n V m n Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 43 / 61

Multiplication Formulas 2 m U mn = X C(h, i, j, k)( 1) k+i P i 12 2k+j V k n U i+j n Q nk u j (P 1, P 2 ) 2 m V mn = X C(h, i, j, k)( 1) k+i P i 12 2k+j V k n U i+j n Q nk v j (P 1, P 2 ) where the sums are taken over all non-negative integers h, i, j, k such that h + i + j +2k = m and C(h, i, j, k) =m(h + i + j + k 1)!/(h!i!j!k!). Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 44 / 61

The Law of Apparition for {U n } (1) Note that 1, 2, 1, 2 are the zeros of F (x) =x 4 P 1 X 3 +(P 2 +2Q)x 2 QP 1 x + Q 2. The discriminant D of F (x) is given by D = E E =(P 2 +4Q) 2 4QP1 2. 2 Q 2 where Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 45 / 61

The Law of Apparition for {U n } (2) Let r be a prime such that r - 2 EQ. If ( /r) =(E/r) = 1, there are at most two ranks of apparition of r in {U n } and both divide either r 1orr + 1. If ( /r) = 1, = (E/r) = 1, there are at most two ranks of apparition of r in {U n }.Onedividesr 1 and the other divides r + 1. There are exactly two if r - P 1. If ( /r) = 1, = (E/r) = 1, there is only one rank of apparition! of r in {U n } and! r 2 1. Also, r 2 U!. If ( /r) = 1, = (E/r) = 1, there is only one rank of apparition! of r in {U n } and! r 2 + 1. Also, r 2 U!. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 46 / 61

Lucas Quartic Pseudoprime? Defintion For a set of integers P 1, P 2, Q, wesaythatn is a Lucas quartic pseudoprime if N is composite and: U N 1 (P 1, P 2, Q) 0 (mod N) or U N+1 (P 1, P 2, Q) 0 (mod N), when ( /N) =(E/N) =1 U N 1 (P 1, P 2, Q) 0 (mod N) when ( /N) = 1and(E/N) =1 U N 2 1(P 1, P 2, Q) 0 (mod N) when ( /N) =1and(E/N) = 1 U N 2 +1(P 1, P 2, Q) 0 (mod N) when ( /N) =(E/N) = 1 and = P 2 1 4P 2 (6= 0), E =(P 2 +4Q) 2 4QP 2 1 Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 47 / 61

Hall and Elkies examples of 6th order Divisibility Sequences Hall (1933) presented the sequence {U n },whereu 0 = 0, U 1 = 1, U 2 = 1, U 3 = 1, U 4 = 5, U 5 = 1, U 6 = 7, U 7 = 8, U 8 = 5,...,and U n+6 = U n+5 + U n+4 +3U n+3 + U n+2 U n+1 U n. Elkies has also developed the sixth order recurrence below (personal communication). For this sequence we have U 0 = 0, U 1 = 1, U 2 = 1, U 3 = 2, U 4 = 7, U 5 = 5, U 6 = 20, U 7 = 27, U 8 = 49,...,and U n+6 = U n+5 +2U n+4 +5U n+3 +2U n+2 U n+1 U n. These are not special cases of C n and yet are divisibility sequences. So what are they? Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 48 / 61

ASixthorder{U n } and {W n } Let U n =( n 1 n 1 + n 2 n 2 + n 3 n 3)/( 1 1 + 2 2 + 3 3 ) W n = 1 n + 1 n + 2 n + 2 n + 3 n + 3. n where i, i are the zeros of x 2 ix + R 2 and i (i =1, 2, 3) are the zeros of x 3 S 1 x 2 + S 2 x + S 3,whereR, S 1, S 2, S 3 are rational integers such that S 3 = RS1 2 2RS 2 4R 3 Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 49 / 61

Some Observations Here {U n } is a divisibility sequence of order 6. Indeed, in this case both {U n } and {W n } satisfy X n+6 = S 1 X n+5 (S 2 +3Q)X n+4 +(S 3 +2QS 1 )X n+3 Q(S 2 +3Q)X n+2 + Q 2 S 1 X n+1 Q 3 X n where Q = R 2.ForHall ssequences,wehaves 1 = 1, S 2 = 4, S 3 = 5, Q = R =1andforElkies sequences 1 = 1, S 2 = 5, S 3 = 7, Q = R =1 Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 50 / 61

Alinktosomethingfamiliar Let P 0, Q 0, R 0 be arbitrary integers. If we put S 1 = P 0 Q 0 3R 0, S 2 = P 0 3 R 0 + Q 0 3 5P 0 Q 0 R 0 +3R 0 3, then S 3 = R 0 (P 0 2 Q 02 2Q 0 3 2P 0 3 R 0 +4P 0 Q 0 R 0 R 0 3 ), Q = R 02, U n =( n n )( n n )( n n )/[( )( )( )] where,, are the zeros of x 3 P 0 x 2 + Q 0 x R 0. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 51 / 61

Addition Formulas 2W 2n+m = W n W n+m + U n+m U n R n W n W m +R n U n U m +2R n+2m W n m, 2U 2n+m = W n U n+m + U n W n+m R n W n U m +R n U n W m 2R n+2m U n m. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 52 / 61

Multiplication Formulas W mn = X ( 1) m(m 0 0 1)! R n( 0+ 3 ) Q n 1! 2! 3! 2 v 1 2, X U mn = U m(m n ( 1) 0 0 1)! R n( 0+ 3 ) Q n 1! 2! 3! 2 u 1 2. Here the sums are taken over all non-zero integers 0, 1, 2, 3 such that 3X i=0 i = 3X i i = m i=0 and u n = u n ( P n, Q n ), v n = v n ( P n, Q n ), where P n = W n, Q n =(W 2 n U 2 n)/4. Note that P 1 = S 1, Q 1 = S 2 S 1 R +3R 2. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 53 / 61

The Law of Apparition Put = S1 2 4S 2 +4RS 1 12R 2.Letf(x) =x 3 S 1 X 2 + S 2 x + S 3 and let D denote the discriminant of f (x). Suppose r is a prime such that r - 2RD and put =( /r). If f (x) isirreduciblemodulor, putt = r 2 + r + 1; otherwise, put t = r. Thenr U t. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 54 / 61

Another Lucas Cubic Pseudoprime Defintion For a set of integers R, S 1, S 2, S 3,suchthat S 3 = RS 2 1 2RS 2 4R 3 we say N is a Lucas cubic pseudoprime if N is composite and U N 2 + (N)N+1(S 1, S 2, R) 0 (mod N) or U N (N) (S 1, S 2, R) 0 (mod N), where (N) =( /N) and =S 2 1 4S 2 +4RS 1 12R 2. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 55 / 61

Twinsies Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 56 / 61

What I did not know-2000 work by Grantham Defintion Let f (x) 2 Z[x] be a monic polynomial of degree d with discriminant. An odd integer n > 1issaidtopasstheFrobenius probable prime test with respect to f (x) if(n, f (0) ) = 1, and it is declared to be a probable prime by the following algorithm. (Such an integer will be called a Frobenius probable prime with respect to f (x).) Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 57 / 61

Frobenius Probable Prime Algorithm Factorization Step. Let f 0 (x) =f (x) mod n. For1apple i apple d, let F i (x) =gcmd(x ni x, f i 1 (x)) and f i (x) =f i 1 (x)/f i (x). If any of the gcmds fail to exist, declare n to be composite and stop. If f d (x) 6= 1, declare n to be composite and stop. Frobenius Step. For 2 apple i apple d, compute F i (x n ) mod F i (x). If it is nonzero for some i, declaren to be composite and stop. Jacobi Step. Let S = 2 i deg(f i (x))/i. If ( 1) S 6= n,declaren to be composite and stop. If n is not declared composite by one of these three steps, declare n to be a Frobenius probable prime and stop. Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 58 / 61

One of Grantham s Theorems Theorem If f (x) =x 2 Px + Q 2 Z[x], andn is a Frobenius pseudoprime with respect to f (x), thenn is a Lucas pseudoprime with parameters (P, Q). Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 59 / 61

Conjectures If f (x) =x 3 Px 2 + Qx R 2 Z[x], and n is a Frobenius pseudoprime with respect to f (x), then n is a Lucas cubic pseudoprime with parameters (P, Q, R). If f (x) =x 4 P 1 X 3 +(P 2 +2Q)x 2 QP 1 x + Q 2 2 Z[x], and n is a Frobenius pseudoprime with respect to f (x), then n is a Lucas quartic pseudoprime with parameters (P 1, P 2, Q). If f (x) =x 3 S 1 x 2 + S 2 x +(RS 2 1 2RS 2 4R 3 ) 2 Z[x], and n is a Frobenius pseudoprime with respect to f (x), then n is a Lucas cubic pseudoprime (second type) with parameters (S 1, S 2, R). Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 60 / 61

The End Eric Roettger (MRU) More Hodge-Podge Pseudoprimes March 2017 61 / 61