Feedback Control and Counting Statistics in Quantum Transport Tobias Brandes (Institut für Theoretische Physik, TU Berlin)

Similar documents
Hardwiring Maxwell s Demon Tobias Brandes (Institut für Theoretische Physik, TU Berlin)

arxiv: v2 [cond-mat.stat-mech] 9 Jul 2012

Nonequilibrium Thermodynamics of Small Systems: Classical and Quantum Aspects. Massimiliano Esposito

Introduction to Stochastic Thermodynamics: Application to Thermo- and Photo-electricity in small devices

Maxwell's Demon in Biochemical Signal Transduction

Information to energy conversion in an electronic Maxwell s demon and thermodynamics of measurements.

The physics of information: from Maxwell s demon to Landauer. Eric Lutz University of Erlangen-Nürnberg

Maxwell's Demons and Quantum Heat Engines in Superconducting Circuits

Thermodynamics for small devices: From fluctuation relations to stochastic efficiencies. Massimiliano Esposito

LECTURE 4: Information-powered refrigerators; quantum engines and refrigerators

Supplementary Figure 1: Reflectivity under continuous wave excitation.

PHYS 414 Problem Set 4: Demonic refrigerators and eternal sunshine

Information Thermodynamics on Causal Networks

Simple quantum feedback. of a solid-state qubit

Quantum error correction for continuously detected errors

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information

MICROREVERSIBILITY AND TIME ASYMMETRY IN NONEQUILIBRIUM STATISTICAL MECHANICS AND THERMODYNAMICS

A Simple Model of Quantum Trajectories. Todd A. Brun University of Southern California

COHERENT CONTROL VIA QUANTUM FEEDBACK NETWORKS

arxiv: v2 [cond-mat.stat-mech] 16 Mar 2012

AN INTRODUCTION CONTROL +

arxiv: v2 [cond-mat.mes-hall] 23 Jun 2011

Quantum Transport through Coulomb-Blockade Systems

Emergent Fluctuation Theorem for Pure Quantum States

MEASUREMENT THEORY QUANTUM AND ITS APPLICATIONS KURT JACOBS. University of Massachusetts at Boston. fg Cambridge WW UNIVERSITY PRESS

Contrasting measures of irreversibility in stochastic and deterministic dynamics

Einselection without pointer states -

Coulomb blockade and single electron tunnelling

Supplementary Information for

Wiseman-Milburn Control for the Lipkin-Meshkov-Glick Model

NANOSCALE SCIENCE & TECHNOLOGY

Rydberg Quantum Simulation Ground State Preparation by Master Equation

Chapter 2: Interacting Rydberg atoms

Information Landscape and Flux, Mutual Information Rate Decomposition and Connections to Entropy Production

arxiv: v2 [quant-ph] 1 Oct 2017

Experimental Rectification of Entropy Production by Maxwell s Demon in a Quantum System

Three-terminal quantum-dot thermoelectrics

Quantum Reservoir Engineering

arxiv: v2 [cond-mat.stat-mech] 3 Jun 2018

Jyrki Piilo. Lecture II Non-Markovian Quantum Jumps. Turku Centre for Quantum Physics Non-Markovian Processes and Complex Systems Group

arxiv: v2 [cond-mat.stat-mech] 28 Mar 2013

Thermal Fluctuation-Induced Electricity Generation across a. Non-Ideal Diode

SUPPLEMENTARY INFORMATION

Methodology for the digital simulation of open quantum systems

Quantum Simulation with Rydberg Atoms

Classical and quantum simulation of dissipative quantum many-body systems

Quantum Feedback Stabilized Solid-State Emitters

Quantum control of dissipative systems. 1 Density operators and mixed quantum states

Optimal quantum driving of a thermal machine

Trapped ion spin-boson quantum simulators: Non-equilibrium physics and thermalization. Diego Porras

J10M.1 - Rod on a Rail (M93M.2)

A Rough Introduction to Quantum Feedback Control

ψ s a ˆn a s b ˆn b ψ Hint: Because the state is spherically symmetric the answer can depend only on the angle between the two directions.

Nonequilibrium thermodynamics at the microscale

Electron spins in nonmagnetic semiconductors

Lie algebraic aspects of quantum control in interacting spin-1/2 (qubit) chains

Dynamics of Quantum Dissipative Systems: The Example of Quantum Brownian Motors

Thermodynamic Computing. Forward Through Backwards Time by RocketBoom

Efficiency at Maximum Power in Weak Dissipation Regimes

Quantum Transport in Ultracold Atoms. Chih-Chun Chien ( 簡志鈞 ) University of California, Merced

Information and Physics Landauer Principle and Beyond

Entropy Production and Fluctuation Relations in NonMarkovian Systems

Open Quantum Systems

OIST, April 16, 2014

Spin Coherent Phenomena in Quantum Dots Driven by Magnetic Fields

SPINTRONICS. Waltraud Buchenberg. Faculty of Physics Albert-Ludwigs-University Freiburg

Quantum feedback control of solid-state qubits

Transitionless quantum driving in open quantum systems

Scattering theory of current-induced forces. Reinhold Egger Institut für Theoretische Physik, Univ. Düsseldorf

Fluctuation theorem in systems in contact with different heath baths: theory and experiments.

The Physics of Nanoelectronics

C/CS/Phy191 Problem Set 6 Solutions 3/23/05

Non-Equilibrium Master Equations

Hopping transport in disordered solids

arxiv: v1 [cond-mat.stat-mech] 8 Jul 2013

Quantum heat engine using energy quantization in potential barrier

Quantum computation and quantum information

Coherence and optical electron spin rotation in a quantum dot. Sophia Economou NRL. L. J. Sham, UCSD R-B Liu, CUHK Duncan Steel + students, U Michigan

9 Atomic Coherence in Three-Level Atoms

arxiv: v3 [quant-ph] 30 Oct 2014

Atom assisted cavity cooling of a micromechanical oscillator in the unresolved sideband regime

arxiv: v1 [cond-mat.stat-mech] 6 Jul 2015

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008).

Mesoscopic Nano-Electro-Mechanics of Shuttle Systems

Applied Physics 150a: Homework #3

Currents from hot spots

Violation of detailed balance for charge-transfer statistics in Coulomb-blockade systems

Time-Dependent Electron Localization Function! (TD-ELF)! GOAL! Time-resolved visualization of the breaking and formation of chemical bonds.!

Quantum Impurities In and Out of Equilibrium. Natan Andrei

Supplementary information for Quantum delayed-choice experiment with a beam splitter in a quantum superposition

Driving Qubit Transitions in J-C Hamiltonian

Stochastic thermodynamics

Weak measurements: subensembles from tunneling to Let s Make a Quantum Deal to Hardy s Paradox

Quantum Mechanics II: Examples

PRELIMINARY EXAMINATION Department of Physics University of Florida Part A, January, 2012, 09:00 12:00. Instructions

Quantum Dynamics. March 10, 2017

Dissipation in Transmon

Open Quantum Systems and Markov Processes II

S.K. Saikin May 22, Lecture 13

arxiv:cond-mat/ v3 15 Jan 2001

Transcription:

Feedback Control and Counting Statistics in Quantum Transport Tobias Brandes (Institut für Theoretische Physik, TU Berlin) Quantum Transport Example: particle counting. Moments, cumulants, generalized density operators. Quantum dots. Feedback control Introduction, various kinds of feedback control. Wiseman-Milburn control. Information and thermodynamics, Maxwell demon control. (Talk on Tuesday) Time-versus-number feedback control. A recent experiment with quantum dots. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 1 / 14

Feedback control Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 2 / 14

Feedback control Centrifugal governor, Boulton and Watt Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 2 / 14

Feedback control Centrifugal governor, Boulton and Watt Stochastic cooling of particle collider beam, S. van der Meer (1972), Nobel Prize (1984) - discovery of W and Z bosons. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 2 / 14

Feedback control Centrifugal governor, Boulton and Watt Photodetector signal corrects laser diode pump current, S. Machida, Y. Yamamoto (1986). Stochastic cooling of particle collider beam, S. van der Meer (1972), Nobel Prize (1984) - discovery of W and Z bosons. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 2 / 14

Feedback control Centrifugal governor, Boulton and Watt Photodetector signal corrects laser diode pump current, S. Machida, Y. Yamamoto (1986). Stochastic cooling of particle collider beam, S. van der Meer (1972), Nobel Prize (1984) - discovery of W and Z bosons. Feedback control of a single-atom trajectory, A. Kubanek, M. Koch, C. Sames, A. Ourjoumtsev, P. W. H. Pinkse, K. Murr and G. Rempe (2009). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 2 / 14

Feedback control Challenge for Quantum Systems Unitary dynamics versus measurement process. How to model the feedback loop? H. M. Wiseman, G. J. Milburn, Quantum measurement and Control (2009) Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 3 / 14

Passive versus active feedback (Passive) Coherent feedback control of quantum transport C. Emary, J. Gough, PRB 90, 205436 (2014). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 4 / 14

Passive versus active feedback (Passive) Coherent feedback control of quantum transport C. Emary, J. Gough, PRB 90, 205436 (2014). (Passive) Cavity in waveguide J. Kabuss, D. O. Krimer, S. Rotter, K. Stannigel, A. Knorr, and A. Carmele, PRA 92, 052321 (2015). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 4 / 14

Passive versus active feedback (Passive) Coherent feedback control of quantum transport (Active): feedback control of electron counting statistics. C. Emary, J. Gough, PRB 90, 205436 (2014). (Passive) Cavity in waveguide TB; Phys. Rev. Lett. 105, 060602 (2010); T. Wagner, P. Strasberg, J. C. Bayer, E. P. Rugeramigabo, TB, R. J. Haug; nature J. Kabuss, D. O. Krimer, S. Rotter, K. nanotechnology (2016). Stannigel, A. Knorr, and A. Carmele, PRA 92, 052321 (2015). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 4 / 14

Active feedback master equation General setup Open system Hamiltonian. H = H S + H res + H T. HS system. Hres reservoir. H T system-reservoir coupling. G. Schaller, Open Quantum Systems Far From Equilibibrium (2014) Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 5 / 14

Active feedback master equation Quantum jumps n-resolved density operator ρ(t) n=0 ρ(n) (t) Stochastic trajectories {x n } = x n,..., x 1 : jumps of type l i at time t i. path integral ρ (n) (t) = M l 1 =1,...,l n=1 t 0 t2 dt n... dt 1 ρ(t {x n }). 0 Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 5 / 14

Active feedback master equation Without feedback n-resolved density operator ρ(t) n=0 ρ(n) (t) Stochastic trajectories {x n } = x n,..., x 1 : jumps of type l i at time t i. path integral ρ (n) (t) = M l 1 =1,...,l n=1 t 0 t2 dt n... dt 1 ρ(t {x n }). 0 Without feedback: ρ(t {x n }) S t tn J ln S tn t n 1 J ln 1...J l1 S t1 ρ in. Reduced density matrix ρ(t) = Lρ(t), L L 0 + J, S t e L 0t. Moelmer, Zoller, Hegerfeldt, Carmichael,... 1980s Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 5 / 14

Active feedback master equation With feedback n-resolved density operator ρ(t) n=0 ρ(n) (t) Stochastic trajectories {x n } = x n,..., x 1 : jumps of type l i at time t i. path integral ρ (n) (t) = With feedback: M l 1 =1,...,l n=1 t 0 t2 dt n... dt 1 ρ(t {x n }). 0 ρ(t {x n }) = S(t {x n })J ln (t n {x n 1 })S(t n {x n 1 })... J l2 (t 2 {x 1 })S(t 2 {x 1 })J l1 (t 1 )S(t 1 )ρ in. Future time evolution conditioned upon full trajectory. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 5 / 14

Active feedback master equation Feedback protocols 0 Open loop control, J l (t {x n }) = J l (t). 1 Feedback conditioned on the previous jump, J l (t {x n }) = J lln (t t n ). Wiseman-Milburn quantum feedback control, Jlln (t t n ) = e K l J l. Wiseman, Milburn ( 90s); Pöltl, Emary TB (2011); Schaller, Kiesslich, Emary, TB (2011); Kiesslich, Emary, Schaller, TB (2012); Daryanoosh, Wiseman, TB (2016). Waiting time feedback control TB, Emary (2016). Delayed quantum control, Emary (2013). 2 Time-versus-number feedback, J l (t {x n }) = J l (t, n). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 5 / 14

Wiseman-Milburn feedback Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 6 / 14

Wiseman-Milburn feedback The idea Dissipation originates from quantum jumps. Fight dissipation by acting immediately after each jump: feedback control. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 6 / 14

Wiseman-Milburn feedback Counting fields and feedback ρ = (L 0 + e iχ J )ρ, counting field χ. (R. J. Cook 1981). FEEDBACK: complex number e iχ superoperator e K (Wiseman,... 1990s). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 6 / 14

Wiseman-Milburn feedback Stabilization: the effective Hamiltonian (C. Emary, 2011) Quantum jump ρ J ρ. Non-jump ρ e L 0τ ρ. Mixes up everything. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 6 / 14

Wiseman-Milburn feedback Stabilization: the effective Hamiltonian Quantum jump ρ J ρ. Non-jump ρ e L0τ ρ. Mixes up everything. FEEDBACK IDEA: No mixing if L 0 ρ k = λ k ρ k. Compensate quantum jumps by rotation into ρ k via e K J ρ = ρ k. eigenvalue problem to determine K in L 0 e K J ρ k = λ k ρ k. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 6 / 14

Wiseman-Milburn feedback Stabilization: the effective Hamiltonian Effective, non-hermitian Hamiltonian H eff via L 0 ρ = i(h eff ρ ρh eff ). Eigenstates ρ k = Ψ k Ψ k of L 0 are pure density matrices. The Ψ k are (right) eigenstates of H eff. (Non-hermitian part of H eff contains the back-action of the measurement process.) Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 6 / 14

Wiseman-Milburn feedback: charge qubit C. Pöltl, C. Emary, TB; Phys. Rev. B 84, 085302 (2011). Γ L T C Γ R µ L Effective Hamiltonian ǫ L ǫ R H eff H S iγ L 2 0 0 iγ R 2 R R µ R Pure eigenstates 0 0, ψ ± ψ ± Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 7 / 14

Wiseman-Milburn feedback: charge qubit Control Stabilization Electron tunnels into L which is instantaneously rotated into ψ + (alternatively, ψ ). effective single level system, decay rate γ (±) R 2Iε ± C L Γ L T C Γ R Γ L γ (j) R µ L µ L ǫ L ǫ R Stabilized µ R µ R Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 7 / 14

Wiseman-Milburn feedback: charge qubit Controlled master equation C L Γ L T C Γ R ρ = (L 0 + C L J L + J R ) µ L C L e 2iθ C n 0 Σ, Σρ [σ, ρ] ǫ L ǫ R µ R Rotation in Liouville-space about angle θ C around direction n 0 = (sin θ, 0, cos θ), Pauli matrix vector σ. Every qubit rotation as possible control operation, J. Wang and H. M. Wiseman, Phys. Rev. A 64, 063810 (2001). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 7 / 14

Wiseman-Milburn feedback: charge qubit Controlled master equation C L Γ L T C Γ R ρ = (L 0 + C L J L + J R ) µ L C L e 2iθ C n 0 Σ, Σρ [σ, ρ] ǫ L ǫ R µ R Rotation in Liouville-space about angle θ C around direction n 0 = (sin θ, 0, cos θ), Pauli matrix vector σ. Every qubit rotation as possible control operation, J. Wang and H. M. Wiseman, Phys. Rev. A 64, 063810 (2001). Project out empty state (Γ L ). Bloch representation of stationary state ρ stat = ( σ x, σ y, σ z ). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 7 / 14

Wiseman-Milburn feedback: charge qubit Right eigenvalues of H eff : ε 0 = i Γ L 2, ε = 1 ( iγr 16TC 2 4 ) Γ2 R Bloch sphere σ z Eigenstates of the free Liouvillian For Γ R >4T C : σ x =0, σ y = 4T C Γ R, σ z = For Γ R <4T C : 16T 2 σ C Γ 2 R x =, σ y = Γ R, 4T C 4T C Γ 2 R 16T 2 C Γ R σ z =0 ρ σ y ρ wo ρ ++ σ x Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 8 / 14

Maxwell demon type feedback Introduction Maxwell s thought experiment Two volumes of gas in equilibrium separated by sliding door. Demon opens/closes door, separates fast from slow gas molecules. Decrease of entropy.... to show that the second law of thermodynamics has only a statistical certainty. Concept of a transport device that acts like Maxwell s demon. Colloquium: The physics of Maxwell s demon and information; K. Maruyama, F. Nori, and V. Vedral, Rev. Mod. Phys. 81, 1 (2009). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 9 / 14

Maxwell demon type feedback Single electron transistor Modify tunnel rates, e.g. Γ R, depending on dot occupation. G. Schaller, C. Emary, G. Kießlich, TB; Phys. Rev. B 84, 085418 (2011). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 10 / 14

Maxwell demon type feedback Single junction Integrate out the dot for Γ L Γ R Γ. Rates γ = Γf L (1 f R ), γ = Γf R (1 f L ). p n (t) probability for n charges transfered to right reservoir. ṗ n = γp n 1 + γp n+1 (γ + γ)p n Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 10 / 14

Maxwell demon type feedback Single junction Integrate out the dot for Γ L Γ R Γ. Rates γ = Γf L (1 f R ), γ = Γf R (1 f L ). p n (t) probability for n charges transfered to right reservoir. ṗ n = γp n 1 + γp n+1 (γ + γ)p n Without feedback: Identical microscopic forward and backward rates Γ = Γ. Local detailed balance condition with affinity A, γ γ = ea, A µ L µ R k B T Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 10 / 14

Maxwell demon type feedback Single junction Integrate out the dot for Γ L Γ R Γ. Rates γ = Γf L (1 f R ), γ = Γf R (1 f L ). p n (t) probability for n charges transfered to right reservoir. ṗ n = γp n 1 + γp n+1 (γ + γ)p n With feedback: Different forward and backward rates Γ Γ ( by hand ) Violates local detailed balance condition, γ γ = ea+ln Γ Γ, A µ L µ R k B T Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 10 / 14

Maxwell demon type feedback Single junction Integrate out the dot for Γ L Γ R Γ. Rates γ = Γf L (1 f R ), γ = Γf R (1 f L ). p n (t) probability for n charges transfered to right reservoir. ṗ n = γp n 1 + γp n+1 (γ + γ)p n Elevate (violated) local detailed balance to modified exchange fluctuation theorem p n (t) p n (t) = e(a+ln Γ Γ )n, A µ L µ R k B T. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 10 / 14

Maxwell demon type feedback Single junction: Interpretation Rates γ = Γf L (1 f R ), γ = Γf R (1 f L ). p n(t) p n (t) = e(a+ln Γ Γ)n, A µ L µ R k B T. Stationary charge current J = γ γ (set e = 1). With feedback Γ Γ finite J even for zero voltage drop. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 10 / 14

Maxwell demon type feedback Single junction: Interpretation Rates γ = Γf L (1 f R ), γ = Γf R (1 f L ). p n(t) p n (t) = e(a+ln Γ Γ)n, A µ L µ R k B T. Only n (number of transfered charges) thermodyn. relevant. Shannon entropy S n p n ln p n. Decompose Ṡ = Ṡe + Ṡi with Ṡi 0, J. Schnakenberg, Rev. Mod. Phys. 48, 571 (1976); M. Esposito, C. Van den Broek, Phys. Rev. E 82, 011143 (2010). lim t p n (t) p n (t) = t eṡi, Ṡ i = AJ + ln J, J γ γ Γ Γ Ṡ i = dissipated electric power per k B T plus information current. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 10 / 14

Maxwell demon type feedback Single junction: Interpretation Rates γ = Γf L (1 f R ), γ = Γf R (1 f L ). p n(t) p n (t) = e(a+ln Γ Γ)n, A µ L µ R k B T. Information gain via feedback modifies exchange fluctuation relation. General scenario T. Sagawa and M. Ueda ( 08), J. M. P. Parrondo ( 11); D. Abreu, U. Seifert ( 12); T. Munakata, M. L. Rosinberg ( 12); H. Tasaki ( 13); J. M. Horowitz, M. Esposito ( 14); D. Hartich, A. C. Barato, U. Seifert ( 14); J. M. Horowitz ( 15); J. M. Horowitz, K. Jacobs ( 15) Example e β(w F ) I = 1 modified Jarzynski relation. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 10 / 14

Feedback controlled tunnel barrier Single electron transistor Rate equation ρ = Lρ, ρ = (ρ 0, ρ 1 ) T. Explicitely break local detailed balance: L = α=l,r ( Γα f α Γ α (1 f α )e iχ Γ α f α Γ α (1 f α ) ) G. Schaller, C. Emary, G. Kießlich, TB; Phys. Rev. B 84, 085418 (2011). Fluctuation relation (affinity A V /k B T, voltage V µ L µ R ) lim t p n (t) p n (t) = e ( A+ln Γ R Γ +ln Γ ) L n R Γ L. M. Esposito, G. Schaller; EPL 99, 30003 (2012). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 11 / 14

Feedback controlled tunnel barrier Single electron transistor Fluctuation relation (affinity A V /k B T, voltage V µ L µ R ) lim t p n (t) p n (t) = e ( A+ln Γ R Γ +ln Γ ) L n R Γ L. M. Esposito, G. Schaller; EPL 99, 30003 (2012). Term ln Γ R + ln Γ L Γ R Γ L as offset-voltage = V /k B T G. Schaller, C. Emary, G. Kießlich, TB; Phys. Rev. B 84, 085418 (2011). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 11 / 14

Hardwiring the demon Key idea Microscopic model for larger system : SET + detector. Reduced SET dynamics described by effective model as above. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 12 / 14

Hardwiring the demon Thermoelectric device V 1, T 1 V 2, T 2 I Energy to current converter. Different temperatures in different parts of the system. Energy-dependent tunnel rates. charge conducting quantum dot gate quantum dot V g, T g J g R. Sánchez, M. Büttiker, Phys. Rev. B 83, 085428 (2011); Europhys. Lett. 100, 47008 (2012). V1 C1 C2 C Vg Cg V2 Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 12 / 14

Hardwiring the demon 2 1 4 Single level SET (bottom, two reservoirs L/R) and detector (top, one reservoir). 3 2 1 States 0E, 0F, 1E, 1F. Energies 0, ɛ s, ɛ d, ɛ s + ɛ d + U. Energy dependent rates. P. Strasberg, G. Schaller, TB, M. Esposito, Phys. Rev. Lett. 110, 040601 (2013). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 12 / 14

Hardwiring the demon 2 4 1 State of the demon 1 0 1 2 3 P. Strasberg, G. Schaller, TB, M. Esposito, Phys. Rev. Lett. 110, 040601 (2013). E State of the SET Detector requirements: Fast ΓD, Γ U D Γ α, Γ U α. Precise U k B T D. SET requirements: Spatial asymmetry Γ U R Γ U L, Γ L Γ R. F Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 12 / 14

Maxwell demon limit Reduced SET dynamics Full rate equation ρ ij = i j W ij,i j ρ i j Separation of time scales for fast detector Γ D, Γ U D Γ α, Γ U α. Technical trick: use conditional stationary probabilities M. Esposito, Phys. Rev. E 85, 041125 (2012). SET rate equation ρ i = i V ii ρ i. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 13 / 14

Maxwell demon limit Reduced SET dynamics Full rate equation ρ ij = i j W ij,i j ρ i j Separation of time scales for fast detector Γ D, Γ U D Γ α, Γ U α. Technical trick: use conditional stationary probabilities M. Esposito, Phys. Rev. E 85, 041125 (2012). SET rate equation ρ i = i V ii ρ i. Reduced fluctuation theorem for SET with information current I lim t p n (t) = exp [An + I t], p n (t) I t ln f L Uf RΓ U L Γ R fr Uf LΓ U R Γ L n, A µ L µ R k B T. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 13 / 14

Maxwell demon limit Reduced SET dynamics Full rate equation ρ ij = i j W ij,i j ρ i j Separation of time scales for fast detector Γ D, Γ U D Γ α, Γ U α. Technical trick: use conditional stationary probabilities M. Esposito, Phys. Rev. E 85, 041125 (2012). SET rate equation ρ i = i V ii ρ i. Reduced fluctuation theorem for SET with information current I lim t p n (t) = exp [An + I t], p n (t) I t ln f L Uf RΓ U L Γ R fr Uf LΓ U R Γ L n, A µ L µ R k B T. Reduction to previous model ( feedback by hand ): f U α /f α = 1 I t = (ln Γ U L Γ R/Γ U R Γ L)n Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 13 / 14

Maxwell demon limit Energetics: first law 2 4 3 1 2 1 Cycle between system energies: ɛ d ɛ s + ɛ d + U ɛ s 0 ɛ d. Net energy U transferred from SET to detector. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 13 / 14

Maxwell demon limit Energetics: first law 2 4 1 For ɛ S U, modification of first law I E L + I E R = I E D 0 negligible. 1 2 3 Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 13 / 14

Maxwell demon limit Summary of demon conditions Separation of time scales: Fast demon ΓD, Γ U D Γ α, Γ U α. Separation of energy scales: No back-action, precision: k B T U k B T D. Almost no work done: ɛ S U. Spatial/ energy lever condition Γα Γ U α, Γ L Γ (U) R, α = L,R. [( p n (t) lim t p n (t) exp A + ln ΓU L Γ ) ] R Γ U R Γ n, A µ L µ R L k B T. Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 13 / 14

Maxwell demon limit Where is the demon? Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 13 / 14

Maxwell demon limit Where is the demon? Maxwell s demon A feedback mechanism that shuffles particles against a chemical or thermal gradient by adjusting barriers without requiring work. Hardwiring of the feedback mechanism. Information is really physical: rates in term ln ( Γ U L Γ R/Γ U R Γ L). Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 13 / 14

Summary Transport master equations Example: particle counting. Moments, cumulants, generalized density operators. Quantum dots. Feedback control Introduction, various kinds of feedback control. Wiseman-Milburn control. Information and thermodynamics, Maxwell demon control. Co-workers: G. Schaller (Berlin); C. Emary (Newcastle); C. Pöltl (Strasbourg); M. Esposito, P. Strasberg (Luxembourg) Tobias Brandes (Berlin) Feedback Control of Quantum Transport Taiwan Winter School 2016 14 / 14