Weather and climate outlooks for crop estimates

Similar documents
Creating a WeatherSMART nation: SAWS drought related research, services and products

Monthly Overview. Rainfall

By: J Malherbe, R Kuschke

DROUGHT ASSESSMENT USING SATELLITE DERIVED METEOROLOGICAL PARAMETERS AND NDVI IN POTOHAR REGION

Monthly overview. Rainfall

Monthly overview. Rainfall

Monthly Overview. Rainfall

Arizona Drought Monitoring Sensitivity and Verification Analyses

Regional offline land surface simulations over eastern Canada using CLASS. Diana Verseghy Climate Research Division Environment Canada

Precipitation. Standardized Precipitation Index. NIDIS Intermountain West Drought Early Warning System September 5, 2017

NIDIS Intermountain West Drought Early Warning System July 18, 2017

Seasonal Hydrological Forecasting in the Berg Water Management Area of South Africa

REMOTELY SENSED INFORMATION FOR CROP MONITORING AND FOOD SECURITY

Greening of Arctic: Knowledge and Uncertainties

Water information system advances American River basin. Roger Bales, Martha Conklin, Steve Glaser, Bob Rice & collaborators UC: SNRI & CITRIS

NIDIS Intermountain West Drought Early Warning System January 15, 2019

An introduction to drought indices

NIDIS Intermountain West Drought Early Warning System December 18, 2018

Monthly Overview Rainfall

NIDIS Intermountain West Drought Early Warning System August 8, 2017

Amita Mehta and Ana Prados

Chapter-1 Introduction

Solar Resource Mapping in South Africa

NIDIS Intermountain West Drought Early Warning System December 11, 2018

TOOLS AND DATA NEEDS FOR FORECASTING AND EARLY WARNING

NIDIS Intermountain West Drought Early Warning System September 4, 2018

European Space Agency

NIDIS Intermountain West Regional Drought Early Warning System February 7, 2017

Monthly Overview. Rainfall

Applications of yield monitoring systems and agricultural statistics in agricultural (re)insurance

SPI: Standardized Precipitation Index

Analysis of meteorological measurements made over three rainy seasons in Sinazongwe District, Zambia.

Climate Prediction Center National Centers for Environmental Prediction

5. General Circulation Models

NATIONAL HYDROPOWER ASSOCIATION MEETING. December 3, 2008 Birmingham Alabama. Roger McNeil Service Hydrologist NWS Birmingham Alabama

Predicting ectotherm disease vector spread. - Benefits from multi-disciplinary approaches and directions forward

NIDIS Intermountain West Drought Early Warning System November 21, 2017

NIDIS Intermountain West Drought Early Warning System October 30, 2018

Customizable Drought Climate Service for supporting different end users needs

Impact on Agriculture

NIDIS Intermountain West Drought Early Warning System November 14, 2017

OVERVIEW OF IMPROVED USE OF RS INDICATORS AT INAM. Domingos Mosquito Patricio

A Facility for Producing Consistent Remotely Sensed Biophysical Data Products of Australia

IGAD CLIMATE PREDICTION AND APPLICATIONS CENTRE (ICPAC) UPDATE OF THE ICPAC CLIMATE WATCH REF: ICPAC/CW/NO. 24, AUGUST 2011

Assessing Drought in Agricultural Area of central U.S. with the MODIS sensor

The Delaware Environmental Monitoring & Analysis Center

Understanding Weather and Climate Risk. Matthew Perry Sharing an Uncertain World Conference The Geological Society, 13 July 2017

Indices and Indicators for Drought Early Warning

Monitoring daily evapotranspiration in the Alps exploiting Sentinel-2 and meteorological data

Possible Applications of Deep Neural Networks in Climate and Weather. David M. Hall Assistant Research Professor Dept. Computer Science, CU Boulder

Climate Prediction Center Research Interests/Needs

Precipitation. Standardized Precipitation Index. NIDIS Intermountain West Regional Drought Early Warning System January 3, 2017

NIDIS Intermountain West Drought Early Warning System May 23, 2017

NIDIS Intermountain West Drought Early Warning System April 16, 2019

2. Fargo, North Dakota receives more snow than Charleston, South Carolina.

The Latest Science of Seasonal Climate Forecasting

NIDIS Intermountain West Drought Early Warning System November 13, 2018

Water Stress, Droughts under Changing Climate

Seasonal forecasting of climate anomalies for agriculture in Italy: the TEMPIO Project

Christopher ISU

IGAD Climate Prediction and Applications Centre Monthly Bulletin, August 2014

Soil Moisture Prediction and Assimilation

IGAD Climate Prediction and and Applications Centre Monthly Bulletin, August May 2015

SEASONAL CLIMATE OUTLOOK VALID FOR JULY-AUGUST- SEPTEMBER 2013 IN WEST AFRICA, CHAD AND CAMEROON

Inter- Annual Land Surface Variation NAGS 9329

Climate Change or Climate Variability?

Analysis of Rainfall and Other Weather Parameters under Climatic Variability of Parbhani ( )

NIDIS Intermountain West Drought Early Warning System October 17, 2017

Enhancing Weather Information with Probability Forecasts. An Information Statement of the American Meteorological Society

Chiang Rai Province CC Threat overview AAS1109 Mekong ARCC

Sudan Seasonal Monitor

Evapotranspiration monitoring with Meteosat Second Generation satellites: method, products and utility in drought detection.

ANNUAL CLIMATE REPORT 2016 SRI LANKA

Texas Alliance of Groundwater Districts Annual Summit

Analytical Report. Drought in Sri Lanka January2017 ERCC Analytical Team and JRC Drought Team 26 January Map

Drought risk assessment using GIS and remote sensing: A case study of District Khushab, Pakistan

Arizona Drought Monitoring Sensitivity and Verification Analyses Project Results and Future Directions

NIDIS Intermountain West Drought Early Warning System January 22, 2019

RR#5 - Free Response

Which Climate Model is Best?

NIDIS Intermountain West Drought Early Warning System December 30, 2018

Developing a High-Resolution Texas Water and Climate Prediction Model

DEVELOPMENT OF A LARGE-SCALE HYDROLOGIC PREDICTION SYSTEM

ASSESSMENT OF DIFFERENT WATER STRESS INDICATORS BASED ON EUMETSAT LSA SAF PRODUCTS FOR DROUGHT MONITORING IN EUROPE

Supplementary Figures

Land Surface Temperature Measurements From the Split Window Channels of the NOAA 7 Advanced Very High Resolution Radiometer John C.

Images of the Month INSTITUTE FOR SOIL, CLIMATE AND WATER. First widespread significant rain over winter rainfall region arrives by early June

Effect of El Niño Southern Oscillation (ENSO) on the number of leaching rain events in Florida and implications on nutrient management

Precipitation. Standardized Precipitation Index. NIDIS Intermountain West Regional Drought Early Warning System December 6, 2016

Regional climate projections for NSW

On downscaling methodologies for seasonal forecast applications

BOTSWANA AGROMETEOROLOGICAL MONTHLY

How advances in atmospheric modelling are used for improved flood forecasting. Dr Michaela Bray Cardiff University

Presentation Overview. Southwestern Climate: Past, present and future. Global Energy Balance. What is climate?

Drought Estimation Maps by Means of Multidate Landsat Fused Images

The Kentucky Mesonet: Entering a New Phase

Monthly overview. Rainfall

Application of the Integrated Aerobiology Modeling System to Soybean Rust Forecasting in 2006

SUDAN METEOROLOGCIAL AUTHORITY

Improving Sub-Seasonal to Seasonal Prediction at NOAA

Transcription:

Weather and climate outlooks for crop estimates CELC meeting 2016-04-21 ARC ISCW

Observed weather data Modeled weather data Short-range forecasts Seasonal forecasts Climate change scenario data Introduction

Introduction Observed weather data ARC-ISCW automatic weather station network Hourly data Rainfall Temperature Relative Humidity Wind Solar Radiation

Weather data spatialized These maps provide: Indications of areas with excessive or deficient rainfall / anomalous temperatures etc. Change in conditions or possible relief from existing conditions such as drought Archive: 10-daily Planned: Daily data (Rain, Tx, Tn)

Weather data spatialized These maps provide: Context for current weather effects on grain crops Track the evolution of drought Provide background to understand impacts of drought e.g. the hydrological impacts of a long-term drought situation The Standardized Precipitation Index (SPI) is a widely used index to characterize meteorological drought on a range of timescales. On short timescales, the SPI is closely related to soil moisture, while at longer timescales, the SPI can be related to groundwater and reservoir storage. - See more at: https://climatedataguide.ucar.edu/climatedata/standardized-precipitation-index-spi#sthash.gjhxgzad.dpuf

Earth observation data vegetation activity These maps provide: Overview of cumulative effect of weather conditions as a season progresses as reflected in vegetation/crop vigor relative to the long-term mean Track the evolution of drought

Monitoring the Future? 2015/2016 Drought Monitor maize crop Vegetation indices + Climate data Based on basics Forecasting maize crop Vegetation indices + Climate data Different indices Different sensors / platforms Climate change Gaps in knowledge

2015/2016 Drought El Niño South Africa maize production areas Maize prices in South Africa record highs The CEC has forecast crop 27 percent lower in 2016 at 7.255 million tons SA importing Argentine, Ukrainian yellow maize Ordered Mexican white maize (Sunday Times Business, 2016-03-09)

Monitor Maize Crop Monitor drought and observe crop failure Vegetation indices + Climate data Large-scale failed crop in the Free State Due to a severe drought that has destroyed the majority of their crops (Sunday Times News, 2015-03-01)

Introduction Modeled Weather Data Global Climate Models (GCMs) GCMs simulate earth system components mathematically Atmosphere Oceans Land surface including vegetation, and the cryosphere (ice and snow) GCMs divide the atmosphere, oceans, and land into a 3- dimensional grid system Calculations are performed to simulate change within and interactions between grid points GCMs currently used for daily forecasts, seasonal forecasts and climate change simulations Images courtesy of Mark Chandler, EdGCM

Introduction Global Climate Models (GCMs) Large improvements in short-term and seasonal forecasts since 1980s: Improved computing power enables: Higher temporal resolution Higher spatial resolution (horizontal and vertical) Image courtesy of Mark Chandler, EdGCM More iterations More sophisticated calculations Inclusion of more elements (on land/atmosphere/ocean) Improved observations Landsurface and ocean temperatures Clouds Winds Aerosols

Currently available forecasts Issued by various international institutions also: SAWS CSIR UCT Hourly to seasonal forecasts Seasonal forecasts Temporal resolution: Forecast provided in monthly to 3-monthly increments but based on hourly to daily outputs Spatial Resolution: >= 50km Variables relevant for agriculture produced: Temperatures (TX, TN) Precipitation Wind Relative Humidity Solar Radiation/ Cloud Cover Daily to weekly forecasts Temporal resolution: Hourly Spatial Resolution: >= 8km

Short-term to monthly and seasonal forecasts have improved to levels that demonstrate usefulness in South Africa Semi-arid nature of SA makes interannual variability of rainfall and temperature a key aspect determining the success of agriculture Management of water is also a crucial aspect of planning and risk assessments Daily temporal resolution of forecasts (short-term to seasonal) provides opportunity for broad range of implementation possibilities Opportunity for seasonal forecasts to be considered in agricultural planning Current GCMs, such as those used by the CSIR and the SAWS, indicate useable skill (warm colors) over southern Africa, including the maize production region of SA for rainfall (left) and temperatures (right)

Direct correlation between certain fields produced by GCMs in the past and agricultural production Current and historical seasonal forecasts used to obtain correlation: Correlation, based on historical data, used for an estimate of maize production Biases in global model rainfall over southern Africa have been shown to be minimised through statistical post-processing employing the results: Model Output Statistics (MOS) MOS equations developed by using the principal component regression between GCM fields and historical maize yields / reservoir levels Provides an estimate, before growing season, of deviations from the average in maize production Have demonstrated useful skill at district level

Indices and Climate Data Area Yield? NDVI Kriegler, 1969 General quantity and vigour of green vegetation Terra MODIS 16-day NDVI Window model NDVI + Temperature + Rainfall Graphs

Based on Basics Basic elements stay the same Water Temperature Phenology Drought stress stages of growth Window of opportunity Window model Top graph: 2004/2005 Average NDVI & average rainfall curves Bottom graph: Effects of water deficiency at different stages of growth on maize yield (FAO, 2012).

Platforms/Sensors 2016/04/13: The ASTER and MODIS sensors on-board the Terra satellite are back to normal Science Mode following the satellite entering Safe Mode on 2016/02/18. Both ASTER and MODIS data are available; however, there will be no MODIS data from 2/19 through 2/27 Light at the end of the tunnel was (temporarily) switched off Consider other sensors/platforms

Terra MODIS & Copernicus SA JECAM site: Free State West Average NDVI for Maize Areas of Bultfontein Magisterial District Average NDVI for Maize Areas of the Potchefstroom Magisterial District 250 2015/16 250 2015/16 2014/15 (3.75) 2014/15 (3.58) 200 2013/14 (5.25) 200 2013/14 (3.87) 2012/13 (4.29) 2012/13 (2.01) 150 2011/12 (5.41) 150 2011/12 (3.40) NDVI 100 2010/11 (5.11) 2009/10 (5.11) NDVI 100 2010/11 (3.88) 2009/10 (4.37) 50 50 0 101 102 103 111 112 113 121 122 123 011 012 013 021 022 023 031 032 033 041 042 043 0 101 102 103 111 112 113 121 122 123 011 012 013 021 022 023 031 032 033 041 042 043 Month and dekad Month and dekad

Forecast Maize Crop Area Yield Broad Band Greenness Vegetation indices + Climate data GNDVI Less affected by atmosphere EVI to calculate LAI LAI=(3.618*EVI-0.118) Broad correlations have been found between the broadband greenness VIs and canopy LAI Different sensors / platforms (NPP VIIRS, AQUA MODIS, Sentinel 2, NOAA, ASTER, Landsat )

EO growth curve and short-term to seasonal forecast combined throughout the growing season?? Observed vegetation and expected weather conditions combined: EO data representing vegetation vigour used to assess the expected yield relative to previous years Focussed specifically on maize production areas as masked through use of EO data Observed rainfall and temperatures data (station data/ rainfall/temperature estimates) used to understand deviations Observed weather data used to determine direction of deviation for next few days Monthly to seasonal outlook used to determine direction of deviation based on expected conditions for the rest of the growing season Provides an estimate, during the growing season, of maize yield relative to previous seasons Forecast EO data graph slope Observed EO data curve, compared to previous summers Monthly forecast to identify stresses/improvements for days 1-30 Seasonal forecast to provide direction for days 31 to end of the growing season

Climate Change Rising temperatures threaten SA agriculture Temperatures in Southern Africa are increasing at twice the global rate! This may threaten the sustainability of agriculture, livestock farming, biodiversity, water and food security (Sunday Times, 2015-03-01) Lichtenburg in the North West (Sunday Times, 2015-02-25) Super El Nino s to intensify in frequency Change / spatial shift in climate zones

Maize suitability Change / spatial shift in agricultural production zones Spatial econometrics: How maize fields move Crop suitability: Consider planting a different crop Weepener, et.al., 2014

Crop modelling + forecasts Crop models, observed and forecast weather data: Dynamic crop model systems Decision supporting tools evaluate possible agricultural consequences from interannual climate variability and/or climate change The Decision Support System for Agrotechnology Transfer (DSSAT) version 4.0 (Jones et al. 2003) is used to perform crop yield simulations for SA Integrates the effects of crop phenotype, soil profiles, weather data, and management options into a crop model The impact of weather, soils, and management decisions on a crop yield can be well estimated Current methodology utilizes observed climate data from a single season up-to-date and projected climate using a weather analogue model allows for crop yield estimates to be made and summarised to provincial level as required by the Crop Estimates Committee Short-range to seasonal forecasts can be used to refine the choice of analogue years, and can provide input data for the rest of the growing season directly Modelled output provide forecast for yields at end of season. Observed climate data (daily) up to date DSSAT Daily data from 14-day forecast for the subsequent 2 weeks Seasonal forecast to provide data for days 31 to end of the growing season Monthly forecast to identify analogue data for days 15 to 30

Gaps in Knowledge Mechanistic models and RS data LAI to estimate foliage cover and to forecast crop growth and yield DSSAT CERES maize ICSM inversion loop structure Recalibrate CERES LAI with MODIS LAI to predict yield and final LAI (Fang, 2008) Linear, cubic polynomial & exponential regression relationships between yield and VIs Input climate forecast data to predict LAI and yield

In Summary Forecasts for crop outlooks how can we make better use of these? Use of statistical relationship between climate output variables on seasonal basis and crop yields, as developed in historical data (Downscaled data Model Output Statistics) Combine EO data up to present with observed weather and forecast (seasonal and short term) data Combine modeled crop data, based on observed weather data, with seasonal and short-term outlooks Use climate change projections for crop suitability in future

Thank You johan@arc.agric.za engelbrechtc@arc.agric.za celeste@arc.agric.za