Advanced Particle Physics & Introduction to Standard Model: II. Prerequisites

Similar documents
The far field calculation: Approximate and exact solutions. Persa Kyritsi November 10th, 2005 B2-109

Nonlocal Boundary Value Problem for Nonlinear Impulsive q k Symmetric Integrodifference Equation

Support Appendix The Logistics Impact of a Mixture of Order-Streams in a Manufacturer-Retailer System Ananth V Iyer and Apurva Jain

X-Ray Notes, Part III

African Journal of Science and Technology (AJST) Science and Engineering Series Vol. 4, No. 2, pp GENERALISED DELETION DESIGNS

Hydrodynamic Modeling: Hydrodynamic Equations. Prepared by Dragica Vasileska Professor Arizona State University

A PATRA CONFERINŢĂ A HIDROENERGETICIENILOR DIN ROMÂNIA,

EMA5001 Lecture 3 Steady State & Nonsteady State Diffusion - Fick s 2 nd Law & Solutions

Maximum Likelihood Estimation

Lecture 3 summary. C4 Lecture 3 - Jim Libby 1

Quasiparticle Band Structures and the GW Approximation

Chapter 2: Descriptive Statistics

ON THE EXTENSION OF WEAK ARMENDARIZ RINGS RELATIVE TO A MONOID

Option Pricing in a Fractional Brownian Motion Environment

-HYBRID LAPLACE TRANSFORM AND APPLICATIONS TO MULTIDIMENSIONAL HYBRID SYSTEMS. PART II: DETERMINING THE ORIGINAL

On Probability Density Function of the Quotient of Generalized Order Statistics from the Weibull Distribution

Suppose we have observed values t 1, t 2, t n of a random variable T.

On the Quasi-Hyperbolic Kac-Moody Algebra QHA7 (2)

Reliability Analysis. Basic Reliability Measures

Physics 201 Lecture 15

dm dt = 1 V The number of moles in any volume is M = CV, where C = concentration in M/L V = liters. dcv v

Lagrangian & Hamiltonian Mechanics:

Overview. Review Superposition Solution. Review Superposition. Review x and y Swap. Review General Superposition

Chapter 3: Vectors and Two-Dimensional Motion

Example: Two Stochastic Process u~u[0,1]

FRACTIONAL MELLIN INTEGRAL TRANSFORM IN (0, 1/a)

The Signal, Variable System, and Transformation: A Personal Perspective

TWO INTERFACIAL COLLINEAR GRIFFITH CRACKS IN THERMO- ELASTIC COMPOSITE MEDIA

Two-Pion Exchange Currents in Photodisintegration of the Deuteron

M-ary Detection Problem. Lecture Notes 2: Detection Theory. Example 1: Additve White Gaussian Noise

Continuous Time Markov Chains

Chapter 5 Transmission Lines

ANSWERS TO ODD NUMBERED EXERCISES IN CHAPTER 2

T h e C S E T I P r o j e c t

Theory of Mechanoluminescence of coloured alkali halide crystals using pressure steps

The ray paths and travel times for multiple layers can be computed using ray-tracing, as demonstrated in Lab 3.

Outline. GW approximation. Electrons in solids. The Green Function. Total energy---well solved Single particle excitation---under developing

T T V e g em D e j ) a S D } a o "m ek j g ed b m "d mq m [ d, )

Nanoparticles. Educts. Nucleus formation. Nucleus. Growth. Primary particle. Agglomeration Deagglomeration. Agglomerate

1. Linear second-order circuits

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues

Anouncements. Conjugate Gradients. Steepest Descent. Outline. Steepest Descent. Steepest Descent

s = rθ Chapter 10: Rotation 10.1: What is physics?

c- : r - C ' ',. A a \ V

Angle Modulation: NB (Sinusoid)

ESS 265 Spring Quarter 2005 Kinetic Simulations

(1) Cov(, ) E[( E( ))( E( ))]

Physics 232 Exam II Mar. 28, 2005

P a g e 3 6 of R e p o r t P B 4 / 0 9

Least Squares Fitting (LSQF) with a complicated function Theexampleswehavelookedatsofarhavebeenlinearintheparameters

ABSOLUTE INDEXED SUMMABILITY FACTOR OF AN INFINITE SERIES USING QUASI-F-POWER INCREASING SEQUENCES

Modified Inverse Weibull Distribution

Lecture 4. Electrons and Holes in Semiconductors

Fault Tolerant Computing. Fault Tolerant Computing CS 530 Reliability Analysis

Field due to a collection of N discrete point charges: r is in the direction from

P a g e 5 1 of R e p o r t P B 4 / 0 9

APPLICATION OF A Z-TRANSFORMS METHOD FOR INVESTIGATION OF MARKOV G-NETWORKS

4.1 Schrödinger Equation in Spherical Coordinates

Lecture 4. Electrons and Holes in Semiconductors

By Joonghoe Dho. The irradiance at P is given by

Born-Oppenheimer Approximation. Kaito Takahashi

11/8/2002 CS 258 HW 2

Physics 232 Exam I Feb. 13, 2006

On the hydrogen wave function in Momentum-space, Clifford algebra and the Generating function of Gegenbauer polynomial

ELEC 6041 LECTURE NOTES WEEK 3 Dr. Amir G. Aghdam Concordia University

I I M O I S K J H G. b gb g. Chapter 8. Problem Solutions. Semiconductor Physics and Devices: Basic Principles, 3 rd edition Chapter 8

8. Queueing systems lect08.ppt S Introduction to Teletraffic Theory - Fall

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

Stokes Flow of an Incompressible Couple Stress Fluid past a Porous Spheroidal Shell

Representing Knowledge. CS 188: Artificial Intelligence Fall Properties of BNs. Independence? Reachability (the Bayes Ball) Example

β A Constant-G m Biasing

Homework Set 4 Physics 319 Classical Mechanics. m m k. x, x, x, x T U x x x x l 2. x x x x. x x x x

Laplace Transform. Definition of Laplace Transform: f(t) that satisfies The Laplace transform of f(t) is defined as.

Lecture 3 Topic 2: Distributions, hypothesis testing, and sample size determination

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Clicks, concurrency and Khoisan

rad / sec min rev 60sec. 2* rad / sec s

Analytical Evaluation of Multicenter Nuclear Attraction Integrals for Slater-Type Orbitals Using Guseinov Rotation-Angular Function

THIS PAGE DECLASSIFIED IAW E

( m is the length of columns of A ) spanned by the columns of A : . Select those columns of B that contain a pivot; say those are Bi

The Linear Regression Of Weighted Segments

Physics 232 Exam I Feb. 14, 2005

I K J K J. Chapter 1. Problem Solutions. Semiconductor Physics and Devices: Basic Principles, 3 rd edition Chapter 1

A L A BA M A L A W R E V IE W

Some Integrals Pertaining Biorthogonal Polynomials and Certain Product of Special Functions

CS344: Introduction to Artificial Intelligence

NONDIFFERENTIABLE MATHEMATICAL PROGRAMS. OPTIMALITY AND HIGHER-ORDER DUALITY RESULTS

Chapter 3: Maximum-Likelihood & Bayesian Parameter Estimation (part 1)

Viewing in 3D. Viewing in 3D. Planar Geometric Projections. Taxonomy of Projections. How to specify which part of the 3D world is to be viewed?

Fundamental Vehicle Loads & Their Estimation

CHATTERJEA CONTRACTION MAPPING THEOREM IN CONE HEPTAGONAL METRIC SPACE

rad rev 60sec p sec 2 rad min 2 2

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9

Sensorless A.C. Drive with Vector Controlled Synchronous Motor

Analysis of a Stochastic Lotka-Volterra Competitive System with Distributed Delays

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002

Increasing the Image Quality of Atomic Force Microscope by Using Improved Double Tapered Micro Cantilever

Elastic and Inelastic Collisions

Fall 2004/05 Solutions to Assignment 5: The Stationary Phase Method Provided by Mustafa Sabri Kilic. I(x) = e ixt e it5 /5 dt (1) Z J(λ) =

VIII Dynamics of Systems of Particles

Transcription:

vace Pacle Phyc & Iouco o Saa oel: II. Peeque J. Pawlowk / U. Uwe II. Peeque. Relavc keac. Wave eco o ee acle. o elavc eubao heoy. Scaeg a a ao alue 5. o eco a hae ace 6. ecay wh lee a alz lo Leaue: F. Halze.. a Quak a Leo O. acha leeaelchehyk. Relavc keac. oao -veco coa-vaa o covaa o ν ν g g ν ν ν ν g g b a b a b a g b a ab ν ν ec eo evave oeao Scala ouc

vace Pacle Phyc & Iouco o Saa oel: II. Peeque J. Pawlowk / U. Uwe. Loez a Pocaé aoao oal Leave he cala ouc o ace-e eece vaa: y y y y y ν ν a Pocaé aoao obe aoao a a a a o σ σ ± e Loez gou e > ohocho eachable o uy ν ω ν γ βγ βγ γ K e Ray ω: ω acaβ K Wh geeao [ ] k jk j K K K ε Reebe oao: [ ] k jk j J J J ε [ ] k jk j K K J ε Roao & Loez- P cee Pocae aoao: Pay P: e eveal:

vace Pacle Phyc & Iouco o Saa oel: II. Peeque J. Pawlowk / U. Uwe 5. Loez vaa Loez aoao: l l γ βγ βγ γ acle wh ovg Scala ouc ae vaa ue Loez aoao: ab b a ale : vaa a ale : S eegy o acle collo calculae ay ae β / β γ c v β γ w/ o e ae: Reak: Loez vaa e.g. co eco ca oly ee o cala 6. aela vaable uolaze acle Wha ae he Loez cala he co eco ca ee o? k k wh coa -o. coevao: coa eee ouc c u u Iea o k ue ou o he aela vaable cobao

vace Pacle Phyc & Iouco o Saa oel: II. Peeque ale: -boy ecay o le acle lab θ β Ω co γ γβ lab γβ coθ lab coθ lab lab wh co γβ coθ coθ lab lab la γ ± γβ lab a I cae o he ecay o a acle wh J agula oeu coevao lea o a evao o he ooc ecay. 7.5 og u c u og: u u 8 J. Pawlowk / U. Uwe

vace Pacle Phyc & Iouco o Saa oel: II. Peeque. Wave eco o ee acle. Schöge quao o o-elavc ee acle ψ ψ Soluo o eegy ψ e [ ] Schöge q ue clacal - elao / a he elacee ouy equao: ρ ψ j ψ ψ ψ ψ ρ j a 9. Kle-Goo quao Sa o elavc eegy elao : ecbe elavc S acle φ φ φ Soluo o eegy value: > ± ± < v [ k ] φ e ω ± egave value cao be goe a ohewe oluo ae colee oalzao lae o geeal oluo ueoo: k k e α k e α k k φ wh k ω k J. Pawlowk / U. Uwe 5

vace Pacle Phyc & Iouco o Saa oel: II. Peeque wh ρ φ φ φ φ a j φ φ φ φ ρ ouy equao: j j Fo he oluo: φ φ φ φ ρ φ φ φ φ φ e [ ] ± j ρ Wha ae egave obable o he < oluo? oalzao chee: / acle e u volue / acle e u volue. -acle Hocal elue ac eeao o eo: acuu ea o occue eg. level Fo eo he egave eegy level ae w/o luece a log a hey ae ully occue e g e w/ egave eegy coeo o o a oo w/ > e e ahlao: Fee eegy level he ea. e o o he hole a eleae eegy by hoo eo: γ > e Phoo coveo o γ > e cao o e o eg. eegy level o o. level: γe e oel ec a-acle covey o oo by eo 9 J. Pawlowk / U. Uwe 6

vace Pacle Phyc & Iouco o Saa oel: II. Peeque covey o he oo eo 9 el og cuvaue bobe: egy lo all cuvaue F L qv q e Feya Sückelbeg eeao : φ e Soluo wh eg. eegy oagae backwa e: : φ e Soluo ecbe a-acle oagag owa e: < > eg. obably ey ρ j q J q J q hage ey / cue J. Pawlowk / U. Uwe 7

vace Pacle Phyc & Iouco o Saa oel: II. Peeque ale Pacle wh q e a eegy < J e J e e e J J wh > eco o ceao a ahlao: o o a-acle wh aboo o acle wh - - boo o a-acle wh eo o wh - - he cuo o eg./o. eegy oluo ca be avoe whe ug QF he coec elavc quau heoy 5 Ieeao Quau Fel heoy I quau echac obevable becoe oeao wh a eecao value. he oeao wok o ae veco o a Hlbe ace. obevable clacal el e.g. o becoe a el oeao wh a eecao value. he clacal obevable o a eo wave a cala el uco φ. oeogly hee a aocae quaeechacal el oeao Φ wh φ < Φ >: k k e a k e a k k Φ ω ga oble ae ae veco o a Hlbe ace. he le ae he vacuu >. Oe ha a ahlae a acle wh oeu k whle b k ceae a acle wh oeu k: I h way a k k a k k a k o eg. 6 J. Pawlowk / U. Uwe 8

vace Pacle Phyc & Iouco o Saa oel: II. Peeque. o-elavc eubao heoy Fee acle Schöge equao wh oluo φ : H φ φ wh φ φ Fo lcy: oalzao δ acle / olve Schöge equao eece o aoal eaco oeal H ψ ψ Oe o he coece a : ψ a φ e a a e φ φ e O ay oluo y ug al coo: a O a o 7 a e Fo eal ee a & Halze. 79 ee ao alue: Fo : a e φ φ a he ao alue be eee a ao obably o? ue ha e eee: ao obably e e l w... l δ δ Fe ck 8 J. Pawlowk / U. Uwe 9

vace Pacle Phyc & Iouco o Saa oel: II. Peeque h equao ca oly be gve a hycal eag ae egag ove he e o oble al ae: ρ he ey o al ae a ρ he ube o ae wh a eegy [ ; ]. ao ae: Γ ρ ρ δ Fe gole ule oe coeco ake a e Hghe oe a Fe ule a a e φ φ Poagao o eeae ae 9 e ε. Scaeg a a ao alue Scaeg oce: c ecbe hough quau ube o al a al ae: Scaeg oeao S a: S eauee elec a ecc ae. Pobably o : S S hee he obably ha ueul o ouce he ao oeao S wh J. Pawlowk / U. Uwe

vace Pacle Phyc & Iouco o Saa oel: II. Peeque J. Pawlowk / U. Uwe Iea o coveoally oe ue he ao o caeg alue δ oalzao: k / acle/ -oeu coevao Feya ule o calculao ao obably: I h coveo he ao obably gve o a gle oble al ae. I u ou ha he al ae acle a ca be oe ha oe ae. he ube o oble al ae ecbe by he hae ace aco a wll be coee whe calculag obevable quae. 8 ] [ w δ ao ae e u volue: 8 ] [ W δ ] [ δ δ δ Fe ck: ] [ e δ δ δ

vace Pacle Phyc & Iouco o Saa oel: II. Peeque 5. o eco a hae ace c ao ae: W δ o eco W ube o al ae al lu W F o eco: σ ρ ρ ube o al ae o gve coguao F ce acle lu o a 5. ube o al ae hae ace h Quau echac ec he ube o al ae ρ o a gle acle a volue wh oeu [ ] ρ h h Faco he eul o oalzao o he wave uco: acle / Fo acle a caee o oeu elee a ρ J. Pawlowk / U. Uwe

vace Pacle Phyc & Iouco o Saa oel: II. Peeque J. Pawlowk / U. Uwe 5 5. Ice acle lu F hooe e ae o acle o calculae F le F lu ey ey v F v v wh F S ae: Geeal o : ay ae w F w wh ee acha. 9 76 6 5. Loez vaa hae ace aco δ δ σ c c v v Loez vaa -acle hae ace aco Φ Pacle lu F Reak: volue o ou! F W ρ σ Pug eveyhg ogehe S

vace Pacle Phyc & Iouco o Saa oel: II. Peeque J. Pawlowk / U. Uwe 7 Φ al P P δ K K Fal ae See alo PG h://g.lbl.gov/8/evew/8-ev-keac. Phae ace aco o acle he al ae: 8 Phae ace egao o wo-acle al-ae S Φ Φ δ δ Sye : Ω Φ 6 θ ϕ co Ω o eo he egao ee e.g. alo. ege.

vace Pacle Phyc & Iouco o Saa oel: II. Peeque J. Pawlowk / U. Uwe 5 9 5. eeal co eco ug eveyhg ogehe F Ω Φ 6 σ 6 Ω σ c S he yac o he caeg oce coae he a elee whch ca be calculae ug Feya ule / eeece o he co eco becaue o al/al ae keac 6. ecay wh lee a alz lo 5. ecay wh Γ Γ Γ τ eeal ecay wh ae:......... δ ρ W Γ Γ wo-boy ecay: Ω Φ Γ 6 S: Ω Γ Ω 6

vace Pacle Phyc & Iouco o Saa oel: II. Peeque hee-boy ecay: o cala o aveage ove la a Φ α co β γ 5 8 Γ 6 Reak: Iea o vaable a oe ca ue vaable a vaa a o a j j j Γ 56 I hae ace la he alo la j o beg a cala o aveage ove all ae eeal eho o eloe behavo o : alz aly 6. alz Plo eho: Pu evey eaue ecay o a -. o buo. la buo ove he allowe ego coeo o a la a elee. Sucue he buo o o a vayg a elee J. Pawlowk / U. Uwe 6

vace Pacle Phyc & Iouco o Saa oel: II. Peeque alz-plo a Wok: K. Sac HP 7 achee K K K K Rece covey o a ew eoc acle Z K ± ψ ψ Ge K* K eo Keo * K? axv:78.79 ub. o PRL 6.5σ ± ± e Γ 5 7 e K Ge ± ψ Ge K*89 K* J. Pawlowk / U. Uwe 7