Effects of Steric Interactions on the Relativistic Spin-Orbit. Tensors of Di-haloethenes

Similar documents
PCCP Accepted Manuscript

Nuclear Magnetic Resonance (NMR)

platinum and iridium complexes

Molecular Magnetism. Magnetic Resonance Parameters. Trygve Helgaker

NMR and IR spectra & vibrational analysis

To Do s. Read Chapter 3. Complete the end-of-chapter problems, 3-1, 3-3, 3-4, 3-6 and 3-7. Answer Keys are available in CHB204H

Chapter 9 - Covalent Bonding: Orbitals

Nuclear Magnetic Resonance H-NMR Part 1 Introduction to NMR, Instrumentation, Sample Prep, Chemical Shift. Dr. Sapna Gupta

CH103 General Chemistry II 2018 Fall semester Quiz 4

Molecular Magnetic Properties

Alcohols, protons α to ketones. Aromatics, Amides. Acids, Aldehydes. Aliphatic. Olefins. ppm TMS

Molecular Magnetic Properties

January 30, 2018 Chemistry 328N

Relativistic Approximations to Paramagnetic. NMR Chemical Shift and Shielding Anisotropy in. Transition Metal Systems

Can you differentiate A from B using 1 H NMR in each pair?

H B. θ = 90 o. Lecture notes Part 4: Spin-Spin Coupling. θ θ

Molecular Magnetic Properties. The 11th Sostrup Summer School. Quantum Chemistry and Molecular Properties July 4 16, 2010

Summation of Periodic Trends

Summation of Periodic Trends Factors Affecting Atomic Orbital Energies

Chapter 9. Chemical Bonding II: Molecular Geometry and Bonding Theories

C NMR Spectroscopy

Inorganic Spectroscopic and Structural Methods

William H. Brown & Christopher S. Foote

CH 222 Sample Exam Exam I Name: Lab Section:

Crystalline and Magnetic Anisotropy of the 3d Transition-Metal Monoxides

Downloaded from

4) protons experience a net magnetic field strength that is smaller than the applied magnetic field.

Periodicity & Many-Electron Atoms

The Physical Basis of the NMR Experiment

Nuclear magnetic resonance spectroscopy II. 13 C NMR. Reading: Pavia Chapter , 6.7, 6.11, 6.13

Principles of Molecular Spectroscopy: Electromagnetic Radiation and Molecular structure. Nuclear Magnetic Resonance (NMR)

Supporting Information of Carboranes: The Strongest Brønsted Acids in Alcohol Dehydration

Supplementary Figures Supplementary Figure 1. ATR-IR spectra of 2 (top) and 2D (bottom).

Supporting Information (SI) Revealing the Conformational. Preferences of Proteinogenic Glutamic Acid. Derivatives in Solution by 1 H NMR

Indirect Coupling. aka: J-coupling, indirect spin-spin coupling, indirect dipole-dipole coupling, mutual coupling, scalar coupling (liquids only)

Density Functional Study of the 13 C NMR Chemical Shifts in Small-to-Medium-Diameter Infinite Single-Walled Carbon Nanotubes

Molecular Magnetic Properties

Supporting Information

4 - BENZENE: AROMATICITY, CONJUGATION AND ASSOCIATED REACTIVITY

Chapter 8. Electron Configuration and Chemical Periodicity 10/17/ Development of the Periodic Table

Magnetic Properties: NMR, EPR, Susceptibility

Molecular Orbitals. Chapter 9. Sigma bonding orbitals. Sigma bonding orbitals. Pi bonding orbitals. Sigma and pi bonds

Chem 673, Problem Set 5 Due Thursday, December 1, 2005

Lecture 11: calculation of magnetic parameters, part II

CHEM 322 Laboratory Methods in Organic Chemistry. Introduction to NMR Spectroscopy

CHEMISTRY - BROWN 13E CH.7 - PERIODIC PROPERTIES OF THE ELEMENTS

Molecular Magnetic Properties ESQC 07. Overview

Chapter 10 Theories of Covalent Bonding

New Bisphosphomide Ligands, 1,3-Phenylenebis((diphenylphosphino)methanone) [1,3-

Hyperfine interactions

Scope of the 2(5H)-Furanone Helicity Rule: A Combined ECD, VCD, and DFT Investigation

Chemistry Assignment #2 and TM Magnetism Handout. Determination of Unpaired Electrons in TM Complexes

Chapter 13 Structure t Determination: Nuclear Magnetic Resonance Spectroscopy

Nuclear Magnetic Resonance Spectroscopy: Tools for Structure Determination

Bonding in Coordination Compounds. Crystal Field Theory. Bonding in Transition Metal Complexes

MD simulation: output

Chapter 13: Molecular Spectroscopy

Azadeh Khanmohammadi Heidar Raissi Fariba Mollania Lila Hokmabadi. Introduction

Valence electronic structure of isopropyl iodide investigated by electron momentum spectroscopy. --- Influence of intramolecular interactions

Structure Determination: Nuclear Magnetic Resonance Spectroscopy

NMR SPECTROSCOPY DR. M. KANJIA. Copyright reserved NMRS. Application to reproduce to Dr M Kanjia

AS VII Periodic Trends

Molecular Magnetic Properties

Chapter 24. Transition Metals and Coordination Compounds. Lecture Presentation. Sherril Soman Grand Valley State University

Origin of Chemical Shifts BCMB/CHEM 8190

Magnetic Nuclei other than 1 H

3.15 Nuclear Magnetic Resonance Spectroscopy, NMR

Chapter 13 Spectroscopy

Yale Chemistry 800 MHz Supercooled Magnet. Nuclear Magnetic Resonance

The Electronic Structure of Atoms

structure prediction, chemical bonding

SHOW ALL WORK TOTAL POINTS ON EXAM: 150

I. INTRODUCTION JOURNAL OF CHEMICAL PHYSICS VOLUME 118, NUMBER 3 15 JANUARY ; Electronic mail:

A trigonal prismatic mononuclear cobalt(ii) complex showing single-molecule magnet behavior

MANY ELECTRON ATOMS Chapter 15

Chapter 9. Nuclear Magnetic Resonance. Ch. 9-1

Name: Class: Date: 3. How many lone pairs of electrons are assigned to the carbon atom in carbon monoxide? a. 0 b. 1 c. 2 d. 3

DO NOT OPEN UNTIL INSTRUCTED TO DO SO. CHEM 110 Dr. McCorkle Exam #5. While you wait, please complete the following information:

Experiment 2 - NMR Spectroscopy

MARK SCHEME for the May/June 2008 question paper 9701 CHEMISTRY

A critical approach toward resonance-assistance in the intramolecular hydrogen bond

Chemistry 416 Spectroscopy Fall Semester 1997 Dr. Rainer Glaser

Chem 2320 Exam 1. January 30, (Please print)

ν 1H γ 1H ν 13C = γ 1H 2π B 0 and ν 13C = γ 13C 2π B 0,therefore = π γ 13C =150.9 MHz = MHz 500 MHz ν 1H, 11.

Experiment 7: Dynamic NMR spectroscopy (Dated: April 19, 2010)

Proton NMR. Four Questions

Lecture 2 nmr Spectroscopy


Chemistry 4A Midterm Exam 2 Version B October 17, 2008 Professor Pines Closed Book, 50 minutes, 125 points 5 pages total (including cover)

Module 13: Chemical Shift and Its Measurement

where, c is the speed of light, ν is the frequency in wave numbers (cm -1 ) and µ is the reduced mass (in amu) of A and B given by the equation: ma

Spectroscopy. Empirical Formula: Chemical Formula: Index of Hydrogen Deficiency (IHD)

Spin Interactions. Giuseppe Pileio 24/10/2006

CHAPTER TEN MOLECULAR GEOMETRY MOLECULAR GEOMETRY V S E P R CHEMICAL BONDING II: MOLECULAR GEOMETRY AND HYBRIDIZATION OF ATOMIC ORBITALS

Supporting Information

Ferdowsi University of Mashhad

NMRis the most valuable spectroscopic technique for organic chemists because it maps the carbon-hydrogen framework of a molecule.

Chemical bonding in complexes of transition metals

Chapter 10: Chemical Bonding II: Molecular Shapes; VSEPR, Valence Bond and Molecular Orbital Theories

Electronic Spectra of Complexes

Transcription:

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2015 SUPPORTING INFORMATION: Effects of Steric Interactions on the Relativistic Spin-Orbit and Paramagnetic Components of the 13 C NMR Shielding Tensors of Di-haloethenes Renan V. Viesser a, Lucas C. Ducati b, Jochen Autschbach c and Cláudio F. Tormena a,* a Chemical Institute, University of Campinas - UNICAMP, P.O. Box: 6154, 13083-970 Campinas, SP, Brazil. b Institute of Chemistry, University of São Paulo, CP 26077, 05513-970 São Paulo, SP, Brazil. c Department of Chemistry, University at Buffalo, State University of New York, Buffalo, New York 14260-3000, United States. S1

Comparative Analyses of Basis Function and Inclusion of the Solvent Model between theoretical data of 13 C NMR chemical shifts obtained for cis- and trans-1,2-dihaloethenes. Table 1S. Theoretical 13 C NMR chemical shifts ( theo ) and shielding tensors for each PAS coordinate ( 11, 22 and 33 ) for cis- and trans-1,2-diiodoethenes calculated with different combinations of basis/solvent model. Method theo 11 22 33 cis trans a cis trans b cis trans b cis trans b TZ2P 104.9 82.7 22.2-16.7 8.0-24.7 129.6 141.1-11.5 157.0 187.5-30.5 TZ2P/COSMO 106.7 84.9 21.8-19.0 5.5-24.5 126.7 137.8-11.1 156.6 187.3-30.7 QZ4P 110.0 87.6 22.4-28.7-2.8-25.9 118.8 129.6-10.8 149.0 180.8-31.8 QZ4P/COSMO 112.5 90.1 22.4-30.6-5.2-25.4 116.4 126.9-10.5 148.8 180.5-31.7 a = cis - trans. b = cis - trans. S2

Experimental and theoretical data of 13 C NMR chemical shifts obtained for cis- and trans- 1,2-dihaloethenes with different DFT methods (B3LYP, PBE0 and BP86). Table 2S. The experimental ( exp ) and theoretical ( a,b theo ) 13 C NMR chemical shift, the nuclear shielding tensor (σ totalc ) and the diamagnetic (σ dia ), paramagnetic (σ para ) and spin-orbit (σ so ) components obtained for cis- and trans-1,2-dihaloethenes, calculated at the B3LYP/TZ2P level and using the SO-ZORA Hamiltonian. cis trans σ dia σ para σ SO σ total theo exp σ dia σ para σ SO σ total theo exp F 238.1-202.5 1.3 36.8 149.6 138.5 d 237.1-211.1 1.2 27.2 159.2 146.8 d Cl 246.2-198.4 3.6 51.4 135.0 120.8 242.5-194.5 3.8 51.8 134.6 120.3 Br 243.2-199.7 14.6 58.0 128.4 113.6 239.4-191.0 16.7 65.0 121.5 107.3 I 243.6-200.0 33.6 76.4 110.0 97.8 243.6-188.8 41.5 95.6 90.8 80.4 a theo = σ TMS - σ total. b The TMS shielding tensor is 186.4 ppm for respective level of theory. c σ total = σ dia + σ para + σ SO. d Experimental values were taken from ref. 46. S3

Table 3S. The experimental ( exp ) and theoretical ( a,b theo ) 13 C NMR chemical shift, the nuclear shielding tensor (σ totalc ) and the diamagnetic (σ dia ), paramagnetic (σ para ) and spin-orbit (σ so ) components obtained for cis- and trans-1,2-dihaloethenes, calculated at the PBE0/TZ2P level and using the SO-ZORA Hamiltonian. cis trans σ dia σ para σ SO σ total theo exp σ dia σ para σ SO σ total theo exp F 237.8-194.0 1.3 45.2 146.7 138.5 d 236.9-202.6 1.2 35.5 156.4 146.8 d Cl 246.4-190.3 3.4 59.5 132.4 120.8 242.6-186.6 3.6 59.6 132.3 120.3 Br 242.9-191.2 13.6 65.2 126.7 113.6 238.8-183.1 15.5 71.2 120.7 107.3 I 242.7-191.3 30.9 81.6 110.3 97.8 242.9-181.7 38.5 99.2 92.7 80.4 a theo = σ TMS - σ total. b TMS shielding tensor is 191.9 ppm for respective level of theory. c σ total = σ dia + σ para + σ SO. d Experimental values were taken from ref. 46. S4

Table 4S. The experimental ( exp ) and theoretical ( a,b theo ) 13 C NMR chemical shift, the nuclear shielding tensor (σ totalc ) and the diamagnetic (σ dia ), paramagnetic (σ para ) and spin-orbit (σ so ) components obtained for cis- and trans-1,2-dihaloethenes, calculated at the BP86/TZ2P level and using the SO-ZORA Hamiltonian. cis trans σ dia σ para σ SO σ total theo exp σ dia σ para σ SO σ total theo exp F 237.2-200.4 1.3 38.1 146.7 138.5 d 237.3-209.6 1.2 28.8 156.0 146.8 d Cl 244.8-194.0 3.4 54.2 130.6 120.8 244.5-194.0 3.6 54.0 130.8 120.3 Br 241.8-195.4 13.3 59.6 125.2 113.6 241.5-190.7 15.7 66.5 118.4 107.3 I 243.6-197.5 29.1 74.5 110.3 97.8 243.8-186.0 38.3 95.4 89.4 80.4 a theo = σ TMS - σ total. b TMS shielding tensor is 184.8 ppm for respective level of theory. c σ total = σ dia + σ para + σ SO. d Experimental values were taken from ref. 46. S5

Analyses of the effect of numerical integration based on Voronoi method for the cis- and trans-1,2-diiodoethenes. Figure 1S. Calculated 13 C NMR chemical shifts for cis- and trans-1,2-diiodoethene using the KT2/SO-ZORA level of theory with the TZ2P or QZ4P basis set, with and without the COSMO- RS solvent model. Each bar represents a numerical integration parameter used: 6.0 or 8.0. Geometry optimizations and SCF calculations were performed with the same integration parameter. S6

Graphical representations of the 13 C NMR shielding tensor for the cis- and trans-1,2- dihaloethenes (halo = F, Cl and Br). Figure 2S. Graphical representations of 13 C NMR shielding tensor for cis- and transdifluoroethene. The arrows display the signs of the shielding tensor (red for negative terms and green for positive ones), and the surface indicates the magnitude of the shielding for a magnetic field in the direction of the carbon nucleus to a point on the surface via its distance from the carbon (polar plot). S7

Figure 3S. Graphical representations of 13 C NMR shielding tensor for cis- and transdichloroethene. The arrows display the signs of the shielding tensor (red for negative terms and green for positive ones), and the surface indicates the magnitude of the shielding for a magnetic field in the direction of the carbon nucleus to a point on the surface via its distance from the carbon (polar plot). Figure 4S. Graphical representations of 13 C NMR shielding tensor for cis- and transdibromoethene. The arrows display the signs of the shielding tensor (red for negative terms and green for positive ones), and the surface indicates the magnitude of the shielding for a magnetic field in the direction of the carbon nucleus to a point on the surface via its distance from the carbon (polar plot). S8

Relevant NBO contributions for the 13 C NMR shielding tensor for each PAS orientation for cis- and trans-1,2-dihaloethenes. Table 5S. Relevant NBO contributions (in ppm) for the paramagnetic (σ para ) and spin-orbit (σ SO ) components of the 13 C NMR shielding tensor for each PAS orientation for cis- and trans-1,2-dihaloethenes, calculated at the KT2/TZ2P level and using the SO-ZORA Hamiltonian. X means the halogen directly bonded to 13 C of the shielding tensor calculated and the X is associated with the neighbour carbon atom. NBO C-C π C=C C -H C -X C -H C -X * C-C π * C=C * C -H * C -X cis trans cis trans cis trans cis trans cis trans cis trans cis trans cis trans cis trans cis trans σ 11-131.5-152.6-56.0-42.0-7.6-33.9-54.1-30.5-13.4-6.3-1.3-5.9 0.1-0.5-5.6-0.3 0.5 2.4 9.3 3.6 F σ para σ 22-25.0-6.9-15.1-42.8-107.2-92.1-23.4-42.0-2.0-10.6-9.3-3.6-0.1-0.0 1.1-3.4 10.8 11.3 5.9 7.1 σ 33-49.7-50.9-0.11-0.17-44.9-45.9-15.6-14.1-2.7-1.5-0.1 0.3-3.4-4.4 0.1-0.1 0.1 0.2 5.2 5.1 σ 11-149.5-149.5-14.1-14.1-32.7-32.7-44.4-44.4-11.9-11.9-8.8-8.8 0.8 0.8-6.7-6.7 2.7 2.7 4.3 4.3 Cl σ para σ 22-1.0-1.0-3.2-3.2-92.8-92.8-70.6-70.6-10.3-10.3-16.3-16.3-0.1-0.1-8.8-8.8 14.0 14.0 15.8 15.8 σ 33-40.2-40.2 0.0 0.0-33.2-33.2-9.2-9.2-2.5-2.5-2.1-2.1-8.2-8.2 0.1 0.1-3.6-3.6 3.2 3.2 Br σ para σ 11-146.2-147.0-8.16-7.8-35.9-56.1-49.2-28.6-11.9-12.9-10.4-10.2 0.4-0.1-11.8-2.7 2.6 1.7 3.7 6.2 S9

σ 22-0.8-0.1 4.6 9.2-92.6-76.6-85.4-100.6-11.9-11.3-19.1-19.7-0.2 0.0-12.6-15.2 16.0 15.1 19.6 17.7 σ 33-42.8-43.4 0.1 0.0-32.0-34.0-9.2-7.2-2.5-5.8-4.8-1.5-12.0-10.8 0.0-0.2-2.7-4.2 3.3 11.2 σ 11-0.8 1.6 0.8 1.1-8.1-10.2 10.7 9.8 1.8-1.9-1.9 2.5 2.4 2.9 1.5 1.0-0.0-0.2 0.8 0.8 σ SO σ 22 1.0-1.8 0.0 0.1 8.8 10.4-7.3-5.8-1.6 1.8 2.0-1.7-0.3-0.3-3.3-2.5 0.7 0.4 7.4 8.8 σ 33-0.7-0.3-1.1-1.6 1.3-0.4 2.5 3.5 0.2 0.2-0.5 0.1-1.4 0.6 0.5 0.4 2.2 3.0 7.8 10.2 σ 11-145.0-144.2-4.2-0.8-45.8-54.7-44.7-34.2-10.6-13.6-15.6-12.4 0.7 0.6-15.6-4.9 4.2 0.8 2.4 7.9 σ para σ 22 0.0-0.2 25.3 31.1-89.5-79.7-114.2-121.4-15.7-12.6-21.1-26.1 0.1 0.0-20.4-20.9 18.6 18.4 25.2 22.6 I σ 33-40.9-40.5 0.1 0.1-30.3-33.1-9.3-7.1-2.4-8.8-8.7-1.4-17.6-14.1-0.0-0.2-2.1-5.5 1.7 14.2 σ 11 5.0 9.7-1.7-1.7-21.8-27.9 24.3 25.7 4.5-5.5-5.9 7.6 4.0 6.5 4.5 4.0 1.3 1.1-3.3-4.6 σ SO σ 22-4.8-10.5 4.2 5.1 22.1 27.0-15.7-15.1-4.3 5.4 6.3-5.5 1.8 1.2-9.0-7.7 1.5 0.3 19.7 26.1 σ 33-3.0-1.2-3.4-4.5 4.1-1.9 6.5 10.9 0.2 0.3-1.8-0.0-7.7 1.7 1.9 1.5 2.7 7.7 19.0 23.6 S10

NLMO contributions of the halogen lone pairs for the 13 C NMR shielding tensor for each PAS orientation for cis- and trans-1,2- dihaloethenes. Table 6S. NLMO contributions (in ppm) of the halogen lone pairs (LP) for the paramagnetic (σ para ) and spin-orbit (σ SO ) components of the 13 C NMR shielding tensor for each PAS orientation for cis- and trans-1,2-dihaloethenes, calculated at the KT2/TZ2P level and using the SO-ZORA Hamiltonian. X means the halogen directly bonded to 13 C of the shielding tensor calculated and the X is associated with the neighbour carbon atom. LP 1 (X ) LP 2 (X ) LP 3 (X ) LP 1 (X ) LP 2 (X ) LP 3 (X ) cis trans cis trans cis trans cis trans cis trans cis trans S11

σ 11-9.7-5.4 0.2 1.3-2.6-0.7-0.1-0.1-6.4-4.4-2.5-0.5 F σ para σ 22-4.5-7.6 2.0 0.8 0.7-1.0 0.4 0.7-0.2-1.3-0.6-2.5 σ 33-8.4-7.7-3.1-2.8-1.0-1.2-0.4-0.5-1.0-1.3-0.2-0.3 σ 11-3.7-3.6-1.2-1.2-3.6-3.5-0.2-0.2-6.7-6.8-0.9-0.8 Cl σ para σ 22-8.7-8.6 0.5 0.4-6.3-6.1 1.1 1.0 1.2 1.1 2.0 2.0 σ 33-5.2-5.0-2.8-2.8-0.9-1.0-0.3-0.3-4.1-4.0-0.1-0.1 σ 11-2.9-1.4-2.1-1.6-4.4-1.4-0.2-0.0-5.5-3.5-2.6 0.3 σ para σ 22-8.7-9.7 0.3-0.3-7.2-8.6 1.3 1.2 1.6-0.6 3.5 5.8 Br σ 33-4.1-4.4-0.1 0.7-0.7-1.2-0.4-0.6-6.0-2.8-0.1-0.5 σ 11 0.8 0.4 0.6 0.4 0.9 0.8-0.0-0.0-0.2 0.7-0.2-0.5 σ SO σ 22 0.4 0.8-0.5-0.3-1.3-1.2 0.0-0.0 0.3-0.7-0.0 0.5 σ 33 1.5 1.7-0.4-0.3 1.1 0.4-0.0-0.0-1.2 0.7-0.3-0.5 S12

σ 11-2.1-1.2-2.5-2.3-4.5-2.1-0.2-0.0-4.2-2.7-5.0 0.5 σ para σ 22-9.4-10.1-0.1-0.5-11.2-11.2 1.4 1.3 2.7-0.6 6.9 9.9 I σ 33-3.4-3.8 2.8 3.2-0.7-1.2-0.4-0.7-10.2-2.8-0.0-0.5 σ 11 1.0-0.1 1.4 1.2 2.4 2.2-0.0 0.1-1.0 2.7-0.4-1.2 σ SO σ 22 1.7 2.7-1.4-0.9-3.4-3.1-0.0-0.2 0.9-3.0 0.3 1.5 σ 33 3.6 4.4-1.3-0.7 1.1 1.1-0.0-0.0-7.0 1.0-1.1-1.5 S13

NBO results for cis- and trans-1,2-dihaloethenes. Table 7S. NBO occupancies a obtained using the scalar ZORA Hamiltonian and the KT2/TZ2P functional for cis- and trans-1,2-dihaloethenes. cis trans NBO F Cl Br I F Cl Br I LP 1 X 1992.8 1994.1 1994.6 1993.9 1993.3 1994.7 1995.5 1995.4 LP 2 X 1963.0 1964.1 1969.2 1968.8 1963.3 1962.3 1966.0 1964.5 LP 3 X 1916.2 1901.0 1911.7 1914.4 1922.5 1913.3 1925.0 1928.3 σ C-X 1995.9 1990.8 1986.7 1982.4 1993.1 1982.8 1973.3 1962.4 σ * C-X 17.6 23.9 31.4 38.6 15.4 24.7 36.0 47.6 σ C-H 1980.6 1973.6 1969.4 1966.1 1986.8 1984.8 1983.7 1982.7 σ * C-H 23.6 23.0 20.8 21.0 24.0 23.0 20.4 20.5 σ C-C 1996.2 1996.1 1996.6 1996.4 1996.9 1996.1 1996.3 1996.2 σ * C-C 30.5 34.4 30.8 30.9 24.9 26.4 23.2 23.7 π C=C 1995.3 1987.4 1989.7 1988.9 1997.0 1988.0 1990.0 1988.9 π * C=C 156.5 191.1 170.4 164.3 144.9 167.7 144.7 137.3 a) Occupancies are given in units of 10-3. S14

Table 8S. NBO energies a obtained using the scalar ZORA Hamiltonian and the KT2/TZ2P functional for cis- and trans-1,2-dihaloethenes. cis trans NBO F Cl Br I F Cl Br I LP 1 X -1.0179-0.8308-0.8754-0.8238-1.0242-0.8346-0.8747-0.8156 LP 2 X -0.3735-0.2996-0.2817-0.2561-0.3760-0.3056-0.2910-0.2718 LP 3 X -0.3733-0.2943-0.2698-0.2474-0.3751-0.2986-0.2735-0.2502 σ C-X -0.9205-0.6829-0.6097-0.5528-0.9106-0.6760-0.5997-0.5438 σ * C-X 0.2060 0.1138 0.0548 0.0175 0.2001 0.1041 0.0431 0.0071 σ C-H -0.5264-0.5258-0.5220-0.5205-0.5288-0.5303-0.5285-0.5287 σ * C-H 0.3879 0.3886 0.3956 0.4093 0.3864 0.3903 0.4008 0.4117 σ C-C -0.7348-0.7501-0.7527-0.7568-0.7367-0.7550-0.7592-0.7654 σ * C-C 0.5295 0.4902 0.4933 0.4955 0.5312 0.4937 0.4974 0.4972 π C=C -0.2855-0.2908-0.2868-0.2866-0.2861-0.2933-0.2897-0.2908 π * C=C -0.0283-0.0440-0.0388-0.0375-0.0292-0.0456-0.0402-0.0392 a) Energies are given in au. S15

Energies of frontier MOs for cis- and trans-1,2-diiodoethenes with different C=C-I bond angles. Figure 5S. Energies of frontier MOs for cis- and trans-diiodoethene calculated at the KT2/TZ2P level. It shows the values of energy for cis isomer with different C=C-I bond angles: equilibrium bond angle (127.2º) and bond angles equal to 120º and 140º. S16