H 2 Optimal State Feedback Control Synthesis. Raktim Bhattacharya Aerospace Engineering, Texas A&M University

Similar documents
Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Norms for Signals and Systems

Quadratic Stability of Dynamical Systems. Raktim Bhattacharya Aerospace Engineering, Texas A&M University

Denis ARZELIER arzelier

Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response

Lecture 15: H Control Synthesis

Modern Optimal Control

Principles of Optimal Control Spring 2008

6.241 Dynamic Systems and Control

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Frequency Response-Design Method

Robust Multivariable Control

Lecture 10: Linear Matrix Inequalities Dr.-Ing. Sudchai Boonto

EEE582 Homework Problems

Lecture 7 : Generalized Plant and LFT form Dr.-Ing. Sudchai Boonto Assistant Professor

TRACKING AND DISTURBANCE REJECTION

Linear Matrix Inequality (LMI)

5. Observer-based Controller Design

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Basic Feedback Analysis & Design

Semidefinite Programming Duality and Linear Time-invariant Systems

Control Systems. Frequency domain analysis. L. Lanari

Lecture 9. Introduction to Kalman Filtering. Linear Quadratic Gaussian Control (LQG) G. Hovland 2004

Robust and Optimal Control, Spring 2015

Riccati Equations and Inequalities in Robust Control

Problem Set 4 Solution 1

Nonlinear Control Systems

Problem Set 5 Solutions 1

LQR, Kalman Filter, and LQG. Postgraduate Course, M.Sc. Electrical Engineering Department College of Engineering University of Salahaddin

Chapter 3. LQ, LQG and Control System Design. Dutch Institute of Systems and Control

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules

Topic # Feedback Control Systems

6 OUTPUT FEEDBACK DESIGN

Lecture 5: Linear Systems. Transfer functions. Frequency Domain Analysis. Basic Control Design.

An Introduction to Linear Matrix Inequalities. Raktim Bhattacharya Aerospace Engineering, Texas A&M University

Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science : MULTIVARIABLE CONTROL SYSTEMS by A.

Multivariable Control. Lecture 03. Description of Linear Time Invariant Systems. John T. Wen. September 7, 2006

Lecture 8. Chapter 5: Input-Output Stability Chapter 6: Passivity Chapter 14: Passivity-Based Control. Eugenio Schuster.

Problem Set 2 Solutions 1

ME 234, Lyapunov and Riccati Problems. 1. This problem is to recall some facts and formulae you already know. e Aτ BB e A τ dτ

LINEAR QUADRATIC GAUSSIAN

Observability. It was the property in Lyapunov stability which allowed us to resolve that

1. Find the solution of the following uncontrolled linear system. 2 α 1 1

The norms can also be characterized in terms of Riccati inequalities.

D(s) G(s) A control system design definition

CDS Solutions to the Midterm Exam

Control Systems. Laplace domain analysis

Grammians. Matthew M. Peet. Lecture 20: Grammians. Illinois Institute of Technology

Topic # Feedback Control Systems

Stationary trajectories, singular Hamiltonian systems and ill-posed Interconnection

Topic # Feedback Control

FEL3210 Multivariable Feedback Control

14 - Gaussian Stochastic Processes

ẋ n = f n (x 1,...,x n,u 1,...,u m ) (5) y 1 = g 1 (x 1,...,x n,u 1,...,u m ) (6) y p = g p (x 1,...,x n,u 1,...,u m ) (7)

Industrial Model Predictive Control

EE221A Linear System Theory Final Exam

Core Concepts Review. Orthogonality of Complex Sinusoids Consider two (possibly non-harmonic) complex sinusoids

9 The LQR Problem Revisited

CONTROL DESIGN FOR SET POINT TRACKING

SYSTEMTEORI - KALMAN FILTER VS LQ CONTROL

Control Systems Design

L2 gains and system approximation quality 1

Professor Fearing EE C128 / ME C134 Problem Set 10 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley

João P. Hespanha. January 16, 2009

Topics in control Tracking and regulation A. Astolfi

to have roots with negative real parts, the necessary and sufficient conditions are that:

Chapter 9 Observers, Model-based Controllers 9. Introduction In here we deal with the general case where only a subset of the states, or linear combin

Hankel Optimal Model Reduction 1

2006 Fall. G(s) y = Cx + Du

Exam. 135 minutes, 15 minutes reading time

Contents lecture 5. Automatic Control III. Summary of lecture 4 (II/II) Summary of lecture 4 (I/II) u y F r. Lecture 5 H 2 and H loop shaping

Lecture 2 and 3: Controllability of DT-LTI systems

Linear State Feedback Controller Design

Lecture 3. Chapter 4: Elements of Linear System Theory. Eugenio Schuster. Mechanical Engineering and Mechanics Lehigh University.

Course Outline. Higher Order Poles: Example. Higher Order Poles. Amme 3500 : System Dynamics & Control. State Space Design. 1 G(s) = s(s + 2)(s +10)

Introduction. Performance and Robustness (Chapter 1) Advanced Control Systems Spring / 31

Analysis of systems containing nonlinear and uncertain components by using Integral Quadratic Constraints

EE363 homework 8 solutions

Pole placement control: state space and polynomial approaches Lecture 2

Time Response Analysis (Part II)

1 Controllability and Observability

Robust Control 9 Design Summary & Examples

16.31 Fall 2005 Lecture Presentation Mon 31-Oct-05 ver 1.1

Every real system has uncertainties, which include system parametric uncertainties, unmodeled dynamics

H 2 Suboptimal Estimation and Control for Nonnegative

Problem Set 4 Solutions 1

Controls Problems for Qualifying Exam - Spring 2014

Modern Optimal Control

x(n + 1) = Ax(n) and y(n) = Cx(n) + 2v(n) and C = x(0) = ξ 1 ξ 2 Ex(0)x(0) = I

Nonlinear Control. Nonlinear Control Lecture # 18 Stability of Feedback Systems

ECEEN 5448 Fall 2011 Homework #4 Solutions

Robust Control 5 Nominal Controller Design Continued

Nonlinear Control. Nonlinear Control Lecture # 6 Passivity and Input-Output Stability

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

LMIs for Observability and Observer Design

EE363 homework 2 solutions

EE C128 / ME C134 Fall 2014 HW 9 Solutions. HW 9 Solutions. 10(s + 3) s(s + 2)(s + 5) G(s) =

Nonlinear Observers. Jaime A. Moreno. Eléctrica y Computación Instituto de Ingeniería Universidad Nacional Autónoma de México

Subject: Optimal Control Assignment-1 (Related to Lecture notes 1-10)

Chapter 7 Interconnected Systems and Feedback: Well-Posedness, Stability, and Performance 7. Introduction Feedback control is a powerful approach to o

Lecture 8. Applications

EL2520 Control Theory and Practice

Transcription:

H 2 Optimal State Feedback Control Synthesis Raktim Bhattacharya Aerospace Engineering, Texas A&M University

Motivation

Motivation w(t) u(t) G K y(t) z(t) w(t) are exogenous signals reference, process noise, sensor noise z(t) are signals we want to keep small e(t), u(t) Find controller K that minimizes G w z 2 Appropriate when spectral density function of w(t) is known For example w(t) can be stationary noise H2 optimal is then linear quadratic Gaussian (LQG) AERO 632, Instructor: Raktim Bhattacharya 3 / 38

Motivation Stochastic Input For stationary stochastic process w(t), autocorrelation matrix is R w (τ) := E [w(t + τ)w (t)] The Fourier transform of R w (τ) is the spectral density Ŝw(jω) Signal power is related to it by E [ w(t) ] 2 := tr [R w ()] = 1 ] tr [Ŝw (jω) dω 2π If z and w are related by z = P w, for a stable LTI system P, then Ŝ z (jω) = ˆP (jω)ŝw(jω) ˆP (jω) AERO 632, Instructor: Raktim Bhattacharya 4 / 38

Motivation Stochastic Input (contd.) Therefore, E [ z(t) ] 2 = 1 2π [ tr ˆP (jω) Ŝ w (jω) ˆP ] (jω) dω. Looks like weighted H 2 norm of P. If w(t) is white noise = Ŝw(jω) = I. H 2 norm is output variance with white noise input. For any other Ŝw(jω), Therefore, E [ z(t) ] 2 = 1 2π Ŝ w (jω) = Ŵ (jω)ŵ (jω). Think of ˆP (jω)ŵ (jω) as weighted system [( ) tr ˆP (jω) Ŵ (jω) I (Ŵ (jω) ˆP )] (jω) dω. AERO 632, Instructor: Raktim Bhattacharya 5 / 38

Motivation K Stochastic Input (contd.) P z(t) w(t) z(t) P w(t) z(t) P w(t) W white noise E [ z(t) ] 2 = 1 P z(t) 2π w(t) [( ) tr ˆP (jω) Ŵ (jω) W white noise Think of ˆP (jω)ŵ (jω) as weighted system I (Ŵ (jω) ˆP )] (jω) dω. AERO 632, Instructor: Raktim Bhattacharya 6 / 38

Motivation Impulse Response Input signal is known in advance Tracking a fixed signal e.g. step Consider a special case: Scalar w(t) = δ(t). Implies z 2 2 = = 1 2π = 1 2π = ˆP 2 2 z (t)z(t)dt ẑ (jω)ẑ(jω)dω ˆP (jω) ˆP (jω)dω AERO 632, Instructor: Raktim Bhattacharya 7 / 38

P W z(t) w(t) white noise Motivation Impulse Response (contd.) What about any other referencez(t) r(t)? P r(t) z(t) P r(t) z(t) P r(t) h(t) (t) r(t) can bepreplaced byh(t) the impulse response h(t) of a known z(t) r(t) (t) filter W (jω) z(t) becomes impulse response of a weighted plant 1 AERO 632, Instructor: Raktim Bhattacharya 8 / 38

Computation of H 2 Norm Best computed in state-space realization of system State Space Model: General MIMO LTI system modeled as ẋ = Ax + Bu, y = Cx + Du, where x R n, u R m, y R p. Transfer Function Ĝ(s) = D + C(sI A) 1 B strictly proper when D = Impulse Response G(t) = L 1 { C(sI A) 1 B } = Ce ta B. AERO 632, Instructor: Raktim Bhattacharya 9 / 38

H 2 Norm MIMO Systems Ĝ(jω) 2 2 = 1 [Ĝ ] tr 2π (jω)ĝ(jω) for matrix transfer function = G(t) 2 2 Parseval [ ] = tr Ce ta BB T e tat C T dt ( = tr C ) e ta BB T e tat dt } {{ } L c C T Lc = controllability Gramian = tr [ CL c C T ] AERO 632, Instructor: Raktim Bhattacharya 1 / 38

H 2 Norm (contd.) MIMO Systems For any matrix M tr [M M] = tr [MM ] = Ĝ(jω) 2 2 = tr BT ( ) e tat C T Ce ta dt B }{{} L o = tr [ B T L o B ] L o = observability Gramian H 2 Norm of Ĝ(jω) Ĝ(jω) 2 2 = tr [ CL c C T ] = tr [ B T L o B ]. AERO 632, Instructor: Raktim Bhattacharya 11 / 38

H 2 Norm How to determine L c and L o? They are solutions of the following equation AL c + L c A T + BB T =, A T L o + L o A + C T C =. AERO 632, Instructor: Raktim Bhattacharya 12 / 38

Proposition 1 Suppose P is a state-space system with realization (A, B, C). Then iff X = X T > such that A is Hurwitz and ˆP 2 1, tr [CXC ] < 1 and AX + XA + BB <. Proof Only If Recall ˆP 2 = tr [CL c C ]. Therefore for X = L c and A is Hurwitz ˆP 2 is finite tr [CL c C ] < 1 = ˆP 2 < 1, AERO 632, Instructor: Raktim Bhattacharya 13 / 38

contd. Consider X = e ta (BB + ϵi n )e ta dt, is continuous in ϵ equals to L c when ϵ =. It can be shown that this X satisfies Lyapunov equation follow the derivation AX + XA + BB + ϵi n =, or AX + XA + BB <. AERO 632, Instructor: Raktim Bhattacharya 14 / 38

contd. Proof If X satisfies and Implies, A is Hurwitz. AX + XA + BB < tr [CXC ] < 1. Proposition: It can be shown that if L c satisfies and X satisfies A L c + L c A + Q =, then X L c. A X + XA + Q, AERO 632, Instructor: Raktim Bhattacharya 15 / 38

contd. Inequality X L c implies ˆP 2 = tr [CL c C ] tr [CXC ] < 1. AERO 632, Instructor: Raktim Bhattacharya 16 / 38

System Dynamics w(t) u(t) G y(t) z(t) K Dynamics ẋ = Ax + B w w + B u u z = C z x + D u u y = x With u = Kx, F l (Ĝ, K) := Ĝw z(s) = = Ĝ(s) = [ A + Bu K B w C z + D u K A B w B u C z D u I ]. AERO 632, Instructor: Raktim Bhattacharya 17 / 38

Controller Synthesis Proposition There exists feedback gain K that internally stabilizes G and satisfies F l (Ĝ, K) 2 < 1 iff Z R m n such that K = ZX 1, where X > satisfies inequalities [ ] [ ] X A Bu + [ [ X Z Z ] A ] B u + B w B w <, tr [ (C z X + D u Z)X 1 (C z X + D u Z) ] < 1. Proof: Use closed-loop state-space data and earlier proposition. Not an LMI. AERO 632, Instructor: Raktim Bhattacharya 18 / 38

Controller Synthesis (contd.) Apply Schur complement to get following convex problem. There exists feedback gain K that internally stabilizes G satisfying F l (Ĝ, K) 2 < 1 iff X R n n, W R q q, and Z R m n, such that and K = ZX 1, min tr [W ] W [ ] [ ] X A Bu + [ [ X Z Z ] A ] Bu + B w Bw <, [ ] W (C z X + D u Z) (C z X + D u Z) > X AERO 632, Instructor: Raktim Bhattacharya 19 / 38

Very simple example System Dynamics 3 2 1 2 3 ẋ = 1 2 1 x + 2 u + w, 1 1 1 1 1 [ ] [ ] 1 1 1 1 z = x + u. 1 1 1 Compare with LQR AERO 632, Instructor: Raktim Bhattacharya 2 / 38

Very simple example 6 4 H 2 LQR Output z1 2 2 4 6 2 4 6 8 1 12 14 16 18 2 Time(s) Output z2 4 3 2 1 1 2 3 2 4 6 8 1 12 14 16 18 2 Time(s) tr [W ] = 3.3491e 4 Good disturbance attenuation. AERO 632, Instructor: Raktim Bhattacharya 21 / 38

MATLAB Code clear; clc; A = [-3-2 1; 1 2 1; 1-1 -1;]; Bu = [2 ; 2; 1]; Bw = [3;;1]; Cz = [1 1; 1 1]; Du = [1 1; 1]; nx = 3; nu = 2; nz = 2; nw = 1; cvx_begin sdp variable X(nx,nx) symmetric variable W(nz,nz) symmetric variable Z(nu,nx) [A Bu]*[X;Z] + [X Z ]*[A ;Bu ] + Bw*Bw < [W (Cz*X + Du*Z); (Cz*X + Du*Z) X] > minimize trace(w) cvx_end h2k = Z*inv(X); [lqrk,s,e] = lqr(a,bu,cz *Cz,Du *Du); h2g = ss(a+bu*h2k, Bw, Cz + Du*h2K, zeros(nw,1)) lqrg = ss(a-bu*lqrk, Bw, Cz + Du*lqrK,... zeros(nw,1)); T = [:.1:2]; w = 5*randn(length(T),1); [y1,t1,x1] = lsim(h2g,w,t); [y2,t2,x2] = lsim(lqrg,w,t); f1=figure(1); clf; set(f1, defaulttextinterpreter, latex ); for i=1:2 subplot(2,1,i); plot(t1,y1(:,i), r,t2,y2(:,i), b:,... linewidth,2); xlabel( Time(s) ); ylabel(sprintf( Output $z_%d$,i)); end subplot(2,1,1); legend( H_2, LQR ); print -depsc h2ex1.eps AERO 632, Instructor: Raktim Bhattacharya 22 / 38

Regulator with disturbance Active Suspension Equations of motion k1 m1 m2 u(t) x1(t) c1 x2(t) m 1 ẍ 1 = k 1 (x 1 x 2 ) c 1 (ẋ 1 ẋ 2 ) + u, m 2 ẍ 2 = k 1 (x 1 x 2 ) + c 1 (ẋ 1 ẋ 2 ) k 2 (x 2 d) u. State Variables k2 q 1 := x 1, q 2 := x 2, q 3 := ẋ 1, q 4 := ẋ 2. d(t) AERO 632, Instructor: Raktim Bhattacharya 23 / 38

Regulator with disturbance Active Suspension Linear System q 1 1 q 1 q 2 q 3 = 1 q 2 k 1 /m 1 k 1 /m 1 c 1 /m 1 c 1 /m 1 q 3 + q 4 k 1 /m 2 (k 1 + k 2 )/m 2 c 1 /m 2 c 1 /m 2 q 4 1/m 1 u + d. 1/m 2 k 2 /m 2 Output z(t) z = q 1 + u. AERO 632, Instructor: Raktim Bhattacharya 24 / 38

Regulator with disturbance Active Suspension.8 d(t) = white noise [ 1, 1] m H2 LQR.8 d(t) =.5 sin (5 T) m H2 LQR.6.6.4.4.2.2 output z(t) output z(t).2.2.4.4.6.6.8 2 4 6 8 1 12 14 16 18 2 Time.8.2.4.6.8 1 1.2 1.4 1.6 1.8 2 Time tr [W ] = 1.17367e 1 Very good disturbance rejection. AERO 632, Instructor: Raktim Bhattacharya 25 / 38

MATLAB Code clear; clc; % System Parameters m1 = 29; % kg -- Body mass m2 = 6; % kg -- suspension mass k1 = 162; % N/m k2 = 191; % N/m c1 = 1; % Ns/m A = [ 1 ; 1; -k1/m1 k1/m1 -c1/m1 c1/m1; k1/m1 -(k1+k2)/m2 c1/m2 -c1/m2]; Bu = [;;1/m1;-1/m2]; Bw = [;;;k2/m2]; nx = 4; nu = 1; nz = 1; nw = 1; Cz = [1,,,]; Du = 1*ones(nz,nu); cvx_begin sdp variable X(nx,nx) symmetric variable W(nz,nz) symmetric variables Z(nu,nx) gam [A Bu]*[X;Z] + [X Z ]*[A ;Bu ] + Bw*Bw < [W (Cz*X + Du*Z); (Cz*X + Du*Z) X] > minimize trace(w) cvx_end h2k = Z*inv(X); [lqrk,s,e] = lqr(a,bu,cz *Cz,Du *Du); % Simulation h2g = ss(a+bu*h2k, Bw, Cz + Du*h2K, zeros(nz,nw)); lqrg = ss(a-bu*lqrk, Bw, Cz + Du*lqrK, zeros(nz,nw)); T = [:.1:2]/1; w = 2*rand(length(T),1)-1; w =.5*sin(1*T); [y1,t1,x1] = lsim(h2g,w,t); [y2,t2,x2] = lsim(lqrg,w,t); f1 = figure(1); clf; set(f1, defaulttextinterpreter, latex ); plot(t1,y1, r,t2,y2, b:, Linewidth,2); xlabel( Time ); ylabel( output $z(t)$ ); title( $d(t) =.5*\sin\;\; (5*T)$ m ); title( $d(t)$ = white noise $\in [-1,\;1]$ m ); legend( H2, LQR ); print -depsc h2qcar2.eps AERO 632, Instructor: Raktim Bhattacharya 26 / 38

Tracking with disturbance Let dynamical system be ẋ = Ax + B u u + B d d, z = [ ] x, y = C u y x. Design a controller of the form u = Kx + Gr K is designed in H 2 optimal sense G is regular tracking gain AERO 632, Instructor: Raktim Bhattacharya 27 / 38

Tracking with disturbance Closed-loop system with K is therefore ẋ = (A + BK)x + B u Gr, y = C y x. Ignore disturbance when determining G Steady-state response to constant r is = (A + BK)x ss + BGr, y ss = C y x ss = r. Or x ss = (A + BK) 1 BGr, implies C y (A + BK) 1 BGr = r, or C y (A + BK) 1 BG = I. Solve for G AERO 632, Instructor: Raktim Bhattacharya 28 / 38

Tracking with disturbance Existence of solution of C y (A + BK) 1 BG = I is necessary and sufficient condition for existence of a tracking controller. In general, when y = C y x + D y u, the equation becomes [ Dy (C y + D y K)(A + BK) 1 B ] G = I. Can be rewritten in terms of Π Π = (A + BK) 1 BG = (C y + D y K)Π + D y G = I, AERO 632, Instructor: Raktim Bhattacharya 29 / 38

Tracking with disturbance Or Or rearranged to (A + BK)Π + BG =, (C y + D y K)Π + D y G = I. AΠ + B(KΠ + G) =, C y Π + D y (KΠ + G) = I. Therefore, with Γ := KΠ + G, we get [ ] [ ] [ ] A B Π nx n + y C y D y Γ I ny ny =. This is the so called regulator equation. Get G = Γ KΠ. AERO 632, Instructor: Raktim Bhattacharya 3 / 38

Tracking with disturbance Solve regulator equation [ A B C y D y ] [ Π Γ ] + [ nx n y I ny n y ] =. Get G = Γ KΠ. Control law is u = Kx + Gr. AERO 632, Instructor: Raktim Bhattacharya 31 / 38

Tracking with disturbance Longitudinal F16 Control Law Longitudinal Motion States [V (ft/s) α(rad) θ(rad) q(rad/s)] T Controls [T (lb) δ e (deg)] Constraints on u [ ] 1 u 25 Trimmed at steady-level flight at 932 ft/s x trim = Disturbance in α equation [ 932.2894 ], u trim = [ ] 5318.2 1.3935 [ ] 19 25 AERO 632, Instructor: Raktim Bhattacharya 32 / 38

Tracking with disturbance Longitudinal F16 Control Law d(t) System Interconnection r G d x K + F 16 Cy y Control Objective Design K to minimize G d x 2 [ ] V Design G to track r := reference 1γ AERO 632, Instructor: Raktim Bhattacharya 33 / 38

Tracking with disturbance Longitudinal F16 Control Law Disturbance Rejection d(t) U [ 1,1] rad, tr [W ] =.118159.2.15.1 V ft/s.5 -.5 -.1 2 4 6 8 1 12 14 16 18 2 Time AERO 632, Instructor: Raktim Bhattacharya 34 / 38

Tracking with disturbance Longitudinal F16 Control Law Tracking Performance V ref = 5 ft/s step, γ ref = V (ft/s) 6 5 4 3 2 1 5 1 15 2 Gamma (deg) 1 1 2 3 4 5 1 15 2 1 15 Thrust (lb) 9 8 7 6 Elevator (deg) 1 5 5 5 1 15 2 Time 5 5 1 15 2 Time AERO 632, Instructor: Raktim Bhattacharya 35 / 38

Tracking with disturbance Longitudinal F16 Control Law Tracking Performance V ref =, γ ref = 45 deg step V (ft/s) 2 15 1 5 5 5 1 15 2 Gamma (deg) 8 6 4 2 2 5 1 15 2 2 5 Thrust (lb) 15 1 5 Elevator (deg) 5 1 5 5 1 15 2 Time 15 5 1 15 2 Time AERO 632, Instructor: Raktim Bhattacharya 36 / 38

Tracking with disturbance Longitudinal F16 Control Law Tracking Performance V ref = 5 ft/s step, γ ref = 45 deg step V (ft/s) 7 6 5 4 3 2 1 5 1 15 2 Gamma (deg) 6 4 2-2 -4 5 1 15 2 AERO 632, Instructor: Raktim Bhattacharya 37 / 38

Tracking with disturbance Longitudinal F16 Control Law Simulink Cy* u F16 Output V, gamma ysim To Workspace Vref Br* u Gain1 Gref x' = Ax+Bu y = Cx+Du F16 Longi h2k* u Gain Uniform Random Number AERO 632, Instructor: Raktim Bhattacharya 38 / 38