Carotenoid Composition in the Yellow and Pale Green Petals of Primula Species

Similar documents
Reactive Fluid Dynamics 1 G-COE 科目 複雑システムのデザイン体系 第 1 回 植田利久 慶應義塾大学大学院理工学研究科開放環境科学専攻 2009 年 4 月 14 日. Keio University

車載用高効率燃焼圧センサー基板に最適なランガサイト型結晶の開発 結晶材料化学研究部門 シチズンホールディングス ( 株 )* 宇田聡 八百川律子 * Zhao Hengyu 前田健作 野澤純 藤原航三

C-H Activation in Total Synthesis Masayuki Tashiro (M1)

一般化川渡り問題について. 伊藤大雄 ( 京都大学 ) Joint work with Stefan Langerman (Univ. Libre de Bruxelles) 吉田悠一 ( 京都大学 ) 組合せゲーム パズルミニ研究集会

Introduction to Multi-hazard Risk-based Early Warning System in Japan

CMB の温度 偏光揺らぎにおける弱い重力レンズ効果 並河俊弥 ( 東京大学 )

2015 年度研究活動報告理工学術院 先進理工 応用物理学科小澤徹 Department of Applied Physics, Waseda University

GRASS 入門 Introduction to GRASS GIS

Photoacclimation Strategy in Photosystem II of Prymnesiophyceae Isochrysis galbana

むらの定量化について IEC-TC110 HHG2 への提案をベースに ソニー株式会社冨岡聡 フラットパネルディスプレイの人間工学シンポジウム

Day 5. A Gem of Combinatorics 組合わせ論の宝石. Proof of Dilworth s theorem Some Young diagram combinatorics ヤング図形の組合せ論

Illustrating SUSY breaking effects on various inflation models

D j a n g o と P H P の仲間たち ( 改変済 ) サイボウズ ラボ株式会社 TSURUOKA Naoya

Effects of pairing correlation on the low-lying quasiparticle resonance in neutron drip-line nuclei

Evaluation of IGS Reprocessed Precise Ephemeris Applying the Analysis of the Japanese Domestic GPS Network Data

ATLAS 実験における荷電ヒッグス粒子の探索

第 6 回 スペースデブリワークショップ 講演資料集 291 E3 デオービット用膜面展開機構の開発 Development of Membran Deployment mechanism for Deorbiting 高井元 ( 宇宙航空研究開発機構 ), 古谷寛, 坂本啓 ( 東京工業大学 ),

Method for making high-quality thin sections of native sulfur

京都 ATLAS meeting 田代. Friday, June 28, 13

On Attitude Control of Microsatellite Using Shape Variable Elements 形状可変機能を用いた超小型衛星の姿勢制御について

結合および相互作用エネルギーの定量的 評価法の開発と新規典型元素化合物の構築

Yutaka Shikano. Visualizing a Quantum State

英語問題 (60 分 ) 受験についての注意 3. 時計に組み込まれたアラーム機能 計算機能 辞書機能などを使用してはならない 4. 試験開始前に 監督から指示があったら 解答用紙の受験番号欄の番号が自身の受験番号かどうかを確認し 氏名を記入すること

Incompatibility and Reproductive Output in Distylous Psychotria boninensis (Rubiaceae), Endemic to the Bonin (Ogasawara) Islands, Japan

谷本俊郎博士の研究業績概要 谷本俊郎博士は これまで地球内部の大規模なマントルの対流運動を解明するための研究 および 大気 - 海洋 - 固体地球の相互作用に関する研究を様々な角度から進めてきた これらのうち主要な研究成果は 以下の様にまとめることができる

Taking an advantage of innovations in science and technology to develop MHEWS

Agilent 4263B LCR Meter Operation Manual. Manual Change. Change 1 Add TAR in Test Signal Frequency Accuracy Test (Page 9-38) as follows.

The unification of gravity and electromagnetism.

( 主査 ) 教授髙橋秀幸教授山口信次郎准教授佐藤修正

近距離重力実験実験室における逆二乗則の法則の検証. Jiro Murata

Report on the experiment of vibration measurement of Wire Brushes. mounted on hand held power tools ワイヤ ブラシ取付け時の手持動力工具振動測定調査の実施について

October 7, Shinichiro Mori, Associate Professor

EDL analysis for "HAYABUSA" reentry and recovery operation はやぶさ カプセル帰還回収運用における EDL 解析

EU 向けに輸出される食品等に関する証明書の発行に係る事務処理要領 ( 国際 ) 通知に基づき 欧州連合 ( 以下 EU という ) へ輸出される食品及び飼料の証明書の発行条件及び手続きを定めるものとする

Fast response silicon pixel detector using SOI. 2016/08/10 Manabu Togawa

WHO 飲料水水質ガイドライン第 4 版 ( 一部暫定仮訳 ) 第 9 章放射線学的観点 9.4 飲料水中で一般的に検出される放射性核種のガイダンスレベル 過去の原子力緊急事態に起因する長期被ばく状況に関連する可能性のある人工の放射性核種のみならず 飲料水供給で最も一般的に検出される自然由来及び人工

Morphology and Anatomy of Winter Bud of Pteridophyllum racemosum (Pteridophyllaceae)

Thermal Safety Software (TSS) series

日本政府 ( 文部科学省 ) 奨学金留学生申請書

Crustal Deformation Associated with the 2005 West Off Fukuoka Prefecture Earthquake Derived from ENVISAT/InSAR and Fault- slip Modeling

重力波天体の多様な観測による 宇宙物理学の新展開 勉強会 熱海 銀河における元素量の観測. 青木和光 Wako Aoki. 国立天文台 National Astronomical Observatory of Japan

PROTEUS, AND THE NAME OF THE TYPE SPECIES OP THE GENUS HUENIA

Development of a High-Resolution Climate Model for Model-Observation Integrating Studies from the Earth s Surface to the Lower Thermosphere

Hiroshi Ikeda a, *, Akiko Shimizu a, Makoto Ogawa b, Yasushi Ibaragi b and Shinobu Akiyama c : Lectotypification of Glaziocharis abei (Burmanniaceae)

高分解能原子核乾板を用いた暗黒物質探索 中竜大 名古屋大学基本粒子研究室 (F 研 ) ICEPP 白馬

Hetty Triastuty, Masato IGUCHI, Takeshi TAMEGURI, Tomoya Yamazaki. Sakurajima Volcano Research Center, DPRI, Kyoto University

日本海域研究, 第 43 号,75-86 ページ,2012 JAPAN SEA RESEARCH, vol.43, p.75-86, 2012

Youhei Uchida 1, Kasumi Yasukawa 1, Norio Tenma 1, Yusaku Taguchi 1, Jittrakorn Suwanlert 2 and Somkid Buapeng 2

Seasonal Variations of Global, Reflected, and Diffuse Spectral UV Observations based on Brewer Spectrophotometers at Tsukuba, 2004 to 2012

2006 Inter-laboratory Comparison Study for Reference Material for Nutrients in Seawater

Numerical Simulation of Seismic Wave Propagation and Strong Motions in 3D Heterogeneous Structure

Estimation of Gravel Size Distribution using Contact Time

Experimental and FE Analysis of Seismic Soil-Pile-Superstructure Interaction in Sand. Mahmoud N. HUSSIEN*, Tetsuo TOBITA and Susumu IAI

山口英斉博士の研究業績概要 山口博士は 原子核物理学の実験的研究を専門とし 主に宇宙核物理学分野において 以下に述べる研究業績をあげてきました

Trends of the National Spatial Data Infrastructure

Search and Digitalization of Maps at the National Diet Library

21 点 15 点 3 解答用紙に氏名と受検番号を記入し, 受検番号と一致したマーク部分を塗りつぶすこと 受検番号が 0( ゼロ ) から始まる場合は,0( ゼロ ) を塗りつぶすこと

低温物質科学研究センター誌 : LTMセンター誌 (2013), 23: 22-26

二国間交流事業共同研究報告書 共同研究代表者所属 部局独立行政法人理化学研究所 創発物性科学研究センター

Separation and Identification of Plant Pigments Dr. Gergens - SD Mesa College

中村宏 工学部計数工学科 情報理工学系研究科システム情報学専攻 計算システム論第 2 1

新技術説明会 ラマン分光 必見! AFM- ラマンによるナノイメージの世界 株式会社堀場製作所

Kinetic Analysis of the Oxidation of Ascorbic Acid in an Open Reactor with Gas Bubbling

2018 年 ( 平成 30 年 ) 7 月 13 日 ( 金曜日 ) Fri July 13, 2018

Deep moist atmospheric convection in a subkilometer

Sex Conversion in Ginkgo biloba (Ginkgoaceae)

28 th Conference on Severe Local Storms 11 Nov Eigo Tochimoto and Hiroshi Niino (AORI, The Univ. of Tokyo)

Kyoko Kagohara 1, Tomio Inazaki 2, Atsushi Urabe 3 and Yoshinori Miyachi 4 楮原京子

高エネルギーニュートリノ : 理論的な理解 の現状

Network of Evolutionary Trends and Maturity assessment through contradiction analysis 進化トレンドのネットワークと矛盾解析による成熟度評価

Development of Flood Exposure Map Considering Dynamics of Urban Life. Yuling LIU, Norio OKADA, Dayong SHEN* and Yoshio KAJITANI**

Spontaneous magnetization of quark matter in the inhomogeneous chiral phase

一体型地上気象観測機器 ( ) の風計測性能評価 EVALUATION OF WIND MEASUREMENT PERFORMANCE OF COMPACT WEATHER SENSORS

Mathematics 数理科学専修. welcome to 統合数理科学を 目 指 す 基礎理工学専攻

Adsorption Characteristics of Water Vapor on Gear-Pellet and Honeycomb-Pellet Types of Adsorbents Containing A-type Zeolite

Oxford, Vol. 9, pp (2004).. (3) 微小空間を活用する多相系有機合成反応 小林重太 森雄一朗 小林修 化学と工業 59, pp (2006).

飯塚毅博士の研究業績概要 飯塚毅博士はこれまで, 地質学 同位体年代学 地球化学的手法に基づいて, 固体地球の進化, 特に大陸地殻進化過程の解明に取り組んできた 同博士の研究は, 以下の 3 つよりなる

東ソー株式会社 - 明日のしあわせを化学する - TOSOH CORPORATION The Chemistry of Innovation. TOSOH CORPORATION The Chemistry of Innovation

Global Spectral UV in Recent 6 Years and Test Observation of Diffuse Spectral UV with Brewer Spectrophotometer at Rikubetsu, Central Hokkaido

2018 年度推薦入学選考 (11 月 15 日実施 ) 英語分野問題 ( 1 ページ 8 ページ )

galaxy science with GLAO

ROSE リポジトリいばらき ( 茨城大学学術情報リポジトリ )

BCR30AM-12LB. RJJ03G Rev I T(RMS) 30 A V DRM 600 V I FGT I, I RGT I, I RGT III 50 ma : PRSS0004ZE-A ( : TO-3P) 4 2, 4

din Linguistics 一 一 St1'uctur~s a proposals representagrammati squite incomplete. Although generate al

Fusion neutron production with deuterium neutral beam injection and enhancement of energetic-particle physics study in the Large Helical Device

非弾性散乱を利用した不安定核 核構造研究 佐藤義輝東京工業大学

IAU IAU commission president vice-president 8 9 IAU. 2. IAU Division structure. Commission 31 SKYPE 4.

井出哲博士の研究業績概要 井出哲博士はこれまで データ解析や数値シミュレーションの手法を用いることによって 地震の震源で起きている現象を様々な角度から研究してきた その主な研究成果は 以下の 3 つに大別される


Altitudinal Increasing Rate of UV radiation by the Observations with Brewer Spectrophotometers at Norikura, Suzuran and Tsukuba

Chemical Management Manual. Ver. 1

地理学における災害 防災研究の動向 IGC 2004 を通して 赤石直美 *

マテリアルズインフォマティクスの最前線 吉田 亮. サイエンティフィック システム研究会 科学技術計算分科会 2017年度会合

岩手県早池峰 宮守オフィオライトかんらん岩の構造岩石学的特徴. Structural and petrological characteristics of ultramafic rocks in Hayachine-Miyamori Ophiolite

生命科学科 3 年後期 分子細胞生物 I 相同アミノ酸配列の比較解析 藤博幸関西学院大学理工学部生命医化学科

統合シミュレーションコードによる高速点火実験解析大阪大学レーザーエネルギー学研究センター中村龍史

( 一社 ) 日本応用地質学会 ( 公社 ) 日本地すべり学会 The Japan Society of Engineering Geology (JSEG) the Japan Landslide Society (JLS)

Development of Advanced Simulation Methods for Solid Earth Simulations

Lead Zirconate Titanate Thick Films Fabricated by the Aerosol Deposition Method

Transcription:

花き研報 Bull.Natl.Inst.Flor.Sci.11:67~72,2011 67 研究資料 Carotenoid Composition in the Yellow and Pale Green Petals of Primula Species Chihiro YAMAMIZO, Masumi HIRASHIMA, Sanae KISHIMOTO and Akemi OHMIYA (Received June 30, 2011 Accepted August 25, 2011) Summary The carotenoid composition in the yellow petals of Primula polyantha and P. helodoxa, and in the pale green petals of P. polyantha was analyzed by high-performance liquid chromatography. The major carotenoids detected in the yellow petals were (9Z)-violaxanthin, (all-e)-violaxanthin, lutein, and antheraxanthin. The carotenoid composition in the pale green petals was completely different from that in the yellow petals; the former accumulated predominantly lutein and β-carotene. Carotenoids in the yellow petals were present in the esterified form, while those in the pale green petals were in the free form. Key Words: carotenoid, flower color, Primula

68 花き研究所研究報告第 11 号 Introduction Primula is one of the largest plant genera in the northern hemisphere, containing more than 400 species, which are subdivided into 37 sections (Richards, 1993). In Japan, Primula sieboldii has developed into an important ornamental plant, and approximately 300 different cultivars have been produced (Torii, 1985). The petal colors of P. sieboldii are limited to white, pink, and red, and the differences are the result of variations in the concentration of anthocyanin in the petals (Yoshioka et al., 2004). On the other hand, there are some yellow-flowered cultivars of P. polyantha and yellow-flowered wild species of P. helodoxa. Cao and Liang (2008) reported that the brightness of the yellow color in P. vulgaris is largely determined by the carotenoid content. However, little data is available on the carotenoid profiles in the petals of Primula species. In the present study, we analyzed the carotenoid composition in the yellow petals of P. polyantha and P. helodoxa by using high-performance liquid chromatography (HPLC). Not only yellow petals but also pale green petals contain carotenoids together with chlorophylls. We then compared the carotenoid composition of the yellow petals with that of the pale green petals of P. polyantha. Materials and Methods 1. Plant materials Yellow- and pale-green-flowered cultivars of the Primrose series (P. polyantha; Japan Agribio Co. Ltd., Tokyo, Japan) and yellow-flowered wild species of P. helodoxa (Fig.1) were purchased from the local market in Tsukuba, Ibaraki, Japan. Petals were harvested and stored at-80 until use. 2. Extraction of carotenoids The petals were ground to powder in 2.0-mL microtubes using a Shake Master BMS-12 (Inter Bio Techno, Tokyo, Japan), and the powder was extracted with acetone. The extract was partitioned between diethyl ether and aqueous NaCl phases. The organic layer was washed with water. Half of the organic layer was dried in a vacuum dryer and dissolved in MeOH for HPLC analysis (unsaponified sample). The rest of the organic layer was saponified with the same volume of 5% KOH-MeOH for 2 h at room temperature in the dark. The Primula helodoxa (Yellow) P. polyantha (Yellow) P. polyantha (Pale green) Fig. 1. Photographs of fully opened flowers tested in this study.

YAMAMIZO et al. : Carotenoid Composition in the Yellow and Pale Green Petals of Primula Species 69 saponified matter was then extracted with diethyl ether and washed with water. The organic layer was dried in a vacuum dryer and dissolved in MeOH for HPLC analysis (saponified sample). 3. HPLC analysis of carotenoids Each sample was analyzed by HPLC (X-LC, JASCO, Tokyo, Japan) equipped with a photodiode array detector. The column was a YMC Carotenoid Column (100 4.6 mm, i.d.; 3μm; YMC, Tokyo, Japan). Solvent A was MeOH:(CH 3 ) 3 COCH 3 :H 2 O = 95:1:4 (v/v/v); solvent B was MeOH:(CH 3 ) 3 COCH 3 :H 2 O = 25:71:4 (v/v/v). The gradient was 0/100, 5/100, and 33/0 (min/% solvent A). The flow rate was 1.0 ml min -1, column temperature was 35, and UV/visible monitoring range was 200-750 nm. Peaks were identified by comparing retention times and absorbance spectra with those of previously identified compounds in the petals of Chrysanthemum morifolium (Kishimoto et al., 2004), and with those of standard compounds. The total carotenoid contents were estimated from the total peak area of the HPLC chromatograms at a wavelength of 450 nm, and are expressed as lutein equivalents [μg g -1 fresh weight (FW)] of the tissue. The percentage of each carotenoid component was calculated according to the peak area of the HPLC chromatograms at a wavelength of 450 nm. Results and Discussion At an early stage of development, the petals of all the Primula plants examined were pale green and contained around 10 μg g -1 FW carotenoids (data not shown). The mature petals of the yellow-flowered P. polyantha and P. helodoxa contained high levels of carotenoids (> 270μg g -1 FW, Table 1), while those of the pale-green-flowered P. polyantha contained only small amounts (< 7μg g -1 FW, Table 1). The petals of the yellow-flowered P. polyantha and P. helodoxa showed similar carotenoid profiles, predominantly accumulating (9Z)-violaxanthin. The levels of (all-e)-violaxanthin, lutein, and antheraxanthin (Fig. 2A, Table 1) were also high. The HPLC chromatograms of the unsaponified and saponified samples were different. Most of the peaks identified in the saponified sample were absent in the unsaponified samples. This indicates that the majority of carotenoids in the yellow petals are present in the esterified form (Fig. 2B). On the other hand, the major carotenoids in the pale green petals of P. polyantha were lutein and β-carotene (Fig. 2A, Table 1). The HPLC chromatograms of the unsaponified and saponified samples were similar, indicating that these carotenoids were present in the free form (Fig. 2B). Table 1. Carotenoid composition in the petals of Primula species Total carotenoid (µg g 1 FW) P. helodoxa (Yellow) 1** Unknown 2 Violaxanthin Carotenoid composition (%) 3 (9Z)-Violaxanthin 4 Lutein 5 Antheraxanthin 6 β-carotene 669.91 ± 53.60* 7.51 12.68 0049.20 9.11 10.35 00.46 P. polyantha (Yellow) 270.74 ± 28.95 9.62 8.33 0047.03 5.94 11.52 00.79 P. polyantha (Pale green) 6.71 ± 1.00 4.92 8.05 006.56 40.09 3.13 16.39 * Mean values (±SE) are shown (n = 3). ** Peak numbers correspond to those shown in Fig. 2.

70 花き研究所研究報告第 11 号 The carotenoid composition in petals differs from species to species, and even between cultivars of the same plant species (Ohmiya, 2011). On the other hand, the leaves of different plant species have similar carotenoid compositions (Goodwin, 1992). The predominant carotenoids in leaves are those essential for photosynthesis, such as lutein and β-carotene. The carotenoid composition of the pale green petals of P. polyantha was similar to that of the leaves, while the carotenoids in the yellow petals of P. polyantha and P. helodoxa were different from those in the leaves. Leaf carotenoids are localized in the chloroplasts, while petal carotenoids reside in the chromoplasts. Therefore, we designated the carotenoids in the yellow petals of Primula sp. as chromoplast-type carotenoids and those in the pale green petals of Primula sp. as chloroplast-type carotenoids. The results are in agreement with a previous study on Ipomoea species (Yamamizo et al., 2010): the petals of the pale-yellowflowered I. obscura accumulated chloroplast-type carotenoids, while those of the yellow-flowered Ipomoea sp. accumulated chromoplast-type carotenoids. In leaves, carotenoids and chlorophylls bind to chlorophyll- Fig. 2. HPLC chromatograms (absorbance at 450 nm) of saponified (A) and unsaponified (B) carotenoid extracts from Primula helodoxa and P. polyantha. 1: unknown; 2: (all-e)- violaxanthin; 3: (9Z)-violaxanthin; 4: lutein; 5: antheraxanthin; 6: β-carotene.

YAMAMIZO et al. : Carotenoid Composition in the Yellow and Pale Green Petals of Primula Species 71 carotenoid proteins, and are functionally integrated into the thylakoid membrane (Nelson and Yocum, 2006). Immature petals of I. obscura have a pale green color, and they contain chlorophylls and chloroplast-type carotenoids (Yamamizo et al., 2010). During flower development, the chlorophylls disappear, and chloroplasttype carotenoids persist, while the petals remain pale yellow. In the case of the pale-green-flowered P. polyantha, we speculate that the carotenoids coexist with the chlorophylls in the chloroplast, because the petals contain chlorophylls (Fig. 2B) even during the later stages of petal development. Not only did the carotenoid composition differ between the chloroplast- and chromoplast-type carotenoids, but their esterification also differed in the Primula plants tested in this study. Vishnevetsky et al. (1999) reported that the carotenoids contained in chromoplasts are generally esterified and are associated with carotenoidlipoprotein structures. The importance of esterification for carotenoid sequestration into the chromoplasts has been well documented in pepper fruits (Minguez-Mosquera and Hornero-Méndez, 1994a, b; Hornero-Mendez and Minguez-Mosquera, 2000). The transition from chloroplast (in immature green fruits) to chromoplast (in mature red fruits) was correlated with xanthophyll esterification. However, only a small amount of data is presently available on carotenoid esterification in flowers. In this study, we showed that the chromoplast-type carotenoids in yellow petals existed in the esterified form, while chloroplast-type carotenoids in the pale green petals were in the free form. Similar phenomena were also reported in Ipomoea plants (Yamamizo et al., 2010). Therefore, we assume that esterification is an important process for the sequestration of carotenoids into the chromoplasts in flower petals. Literature cited Cao, J.J. and Z.S. Liang. 2008. Preliminary analysis on flower color inheritance and relations between flower color and pigments in Primula vulgaris. Bull. Bot. Res. 28: 426-432. Goodwin, T.W. 1992. Distribution of carotenoids. In: L. Packer (ed.), Methods in Enzymology, Vol. 213, p. 167-172, Academic Press Inc., San Diego, CA, USA. Hornero-Méndez, D. and M.I. Mínguez-Mosquera. 2000. Xanthophyll esterification accompanying carotenoid overaccumulation in chromoplast of Capsicum annuum ripening fruits is a constitutive process and useful for ripeness index. J. Biol. Chem. 48: 1617-1622. Kishimoto, S., T. Maoka, M. Nakayama and A. Ohmiya. 2004. Carotenoid composition in petals of chrysanthemum (Dendranthema grandiflorum (Ramat.) Kitamura). Phytochemistry 65: 2781-2787. Ménguez-Mosquera, M.I. and D. Hornero-Méndez. 1994a. Formation and transformation of pigments during the fruit ripening of Capsicum annuum cv Bola and Agridulce. J. Agri. Food Chem. 42: 38-44. Ménguez-Mosquera, M.I. and D. Hornero-Méndez. 1994b. Changes in carotenoid esterification during the fruit ripening of Capsicum annuum cv Bola. J. Agri. Food Chem. 42: 640-644. Nelson, N and C.F. Yocum. 2006. Structure and function of photosystems I and II. Ann. Rev. Plant Biol. 57: 521-565. Ohmiya, A. 2011. Diversity of carotenoid composition in flower petals. JARQ 45: 163-171. Richards, J. 1993. Primula. Timber Press, Portland, OR, USA. Torii, T. 1985. Sakurasou (in Japanese). Nihon-terebi, Akatsuki-Insatsu Press, Tokyo, Japan. Vishnevetsky, M., M. Ovadis and A. Vainstein. 1999. Carotenoid sequestration in plants: The role of carotenoid-associated proteins. Trends Plant Sci. 4: 232-235. Yamamizo, C., S. Kishimoto and A. Ohmiya. 2010. Carotenoid composition and carotenogenic gene expression during Ipomoea petal development. J. Exp. Bot. 61: 709-719. Yoshioka, Y., H. Iwata, R. Ohsawa and S. Ninomiya. 2004. Quantitative evaluation of flower colour pattern by image analysis and principal component analysis of Primula sieboldii E. Morren. Euphytica 139: 179-186.

72 花き研究所研究報告第 11 号 サクラソウ属植物の黄色および黄緑色花弁における カロテノイド組成の比較 山溝千尋 平島真澄 岸本早苗 大宮あけみ 和文摘要 サクラソウ属植物のプリムラ ポリアンサ (Primula polyantha) および黄花クリンソウ (P. helodoxa) の花弁のカロテノイド組成を HPLC により解析した. プリムラ ポリアンサの黄花品種と黄花クリンソウの花弁は, (9Z)-violaxanthin,(all-E)-violaxanthin,lutein および antheraxanthin を主成分とする花弁特有のカロテノイド組成を示した. また, カロテノイドの多くはエステル化された状態で蓄積していた. 一方, プリムラ ポリアンサの黄緑花品種の花弁は, 葉と同様のカロテノイド組成および存在形態を示した. すなわち,lutein と β-carotene を主成分とし, その多くはエステル化されていない遊離の状態で存在していた.