Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion

Similar documents
An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion

Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles

Asymptotic-Preserving scheme based on a Finite Volume/Particle-In-Cell coupling for Boltzmann- BGK-like equations in the diffusion scaling

Modèles hybrides préservant l asymptotique pour les plasmas

Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles

Monte Carlo methods for kinetic equations

Hybrid and Moment Guided Monte Carlo Methods for Kinetic Equations

Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck

Numerical methods for kinetic equations

Models of collective displacements: from microscopic to macroscopic description

Hypocoercivity for kinetic equations with linear relaxation terms

High Order Semi-Lagrangian WENO scheme for Vlasov Equations

Exponential methods for kinetic equations

Anomalous transport of particles in Plasma physics

analysis for transport equations and applications

MACROSCOPIC FLUID MODELS WITH LOCALIZED KINETIC UPSCALING EFFECTS

Dissertation. presented to obtain the. Université Paul Sabatier Toulouse 3. Mention: Applied Mathematics. Luc MIEUSSENS

Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme

Uniformly accurate averaging numerical schemes for oscillatory evolution equations

Uncertainty Quantification for multiscale kinetic equations with high dimensional random inputs with sparse grids

Uncertainty Quantification for multiscale kinetic equations with random inputs. Shi Jin. University of Wisconsin-Madison, USA

Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality

Exponential Runge-Kutta for inhomogeneous Boltzmann equations with high order of accuracy

Boundary Value Problems and Multiscale Coupling Methods for Kinetic Equations SCHEDULE

A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models

Semi-Lagrangian Formulations for Linear Advection Equations and Applications to Kinetic Equations

Uncertainty Quantification and hypocoercivity based sensitivity analysis for multiscale kinetic equations with random inputs.

Traveling waves of a kinetic transport model for the KPP-Fisher equation

Controlling numerical dissipation and time stepping in some multi-scale kinetic/fluid simulations

A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas

Hypocoercivity and Sensitivity Analysis in Kinetic Equations and Uncertainty Quantification October 2 nd 5 th

Asymptotic-Preserving Schemes

arxiv: v1 [math.na] 7 Nov 2018

Moments conservation in adaptive Vlasov solver

Kinetic relaxation models for reacting gas mixtures

An improved unified gas-kinetic scheme and the study of shock structures

ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW

Berk-Breizman and diocotron instability testcases

An asymptotic preserving unified gas kinetic scheme for the grey radiative transfer equations

Chapter 1 Direct Modeling for Computational Fluid Dynamics

arxiv: v1 [math.na] 25 Oct 2018

Modelling and numerical methods for the diffusion of impurities in a gas

An asymptotic preserving scheme in the drift limit for the Euler-Lorentz system. Stéphane Brull, Pierre Degond, Fabrice Deluzet, Marie-Hélène Vignal

Accurate representation of velocity space using truncated Hermite expansions.

What place for mathematicians in plasma physics

Nhung Pham 1, Philippe Helluy 2 and Laurent Navoret 3

Adaptive semi-lagrangian schemes for transport

On the Boltzmann equation: global solutions in one spatial dimension

Edwin Chacon-Golcher 1, Sever A. Hirstoaga 2 and Mathieu Lutz 3. Introduction

Optimization of Particle-In-Cell simulations for Vlasov-Poisson system with strong magnetic field

Summer College on Plasma Physics. 30 July - 24 August, The particle-in-cell simulation method: Concept and limitations

Numerical methods for plasma physics in collisional regimes

Derivation of quantum hydrodynamic equations with Fermi-Dirac and Bose-Einstein statistics

The Moment Guided Monte Carlo Method

Direct Modeling for Computational Fluid Dynamics

Micro-macro decomposition based asymptotic-preserving numerical schemes and numerical moments conservation for collisional nonlinear kinetic equations

An Asymptotic-Preserving Monte Carlo Method for the Boltzmann Equation

Different types of phase transitions for a simple model of alignment of oriented particles

A successive penalty based Asymptotic-Preserving scheme for kinetic equations

Physical Modeling of Multiphase flow. Boltzmann method

in Bounded Domains Ariane Trescases CMLA, ENS Cachan

All-regime Lagrangian-Remap numerical schemes for the gas dynamics equations. Applications to the large friction and low Mach coefficients

Model adaptation in hierarchies of hyperbolic systems

STABLE STEADY STATES AND SELF-SIMILAR BLOW UP SOLUTIONS

On the Asymptotic Preserving property of the Unified Gas Kinetic Scheme for the diffusion limit of linear kinetic models

Lecture 5: Kinetic theory of fluids

Hydrodynamic limit and numerical solutions in a system of self-pr

Simplified Hyperbolic Moment Equations

Admissibility and asymptotic-preserving scheme

Fluid Equations for Rarefied Gases

Comparison of Numerical Solutions for the Boltzmann Equation and Different Moment Models

A hybrid kinetic-fluid model for solving the gas dynamics Boltzmann-BGK equation.

Implicit kinetic relaxation schemes. Application to the plasma physic

Finite volumes schemes preserving the low Mach number limit for the Euler system

On a New Diagram Notation for the Derivation of Hyperbolic Moment Models

Chapter 1. Introduction to Nonlinear Space Plasma Physics

Multi-water-bag model and method of moments for Vlasov

Postprint.

Kinetic Models and Gas-Kinetic Schemes with Rotational Degrees of Freedom for Hybrid Continuum/Kinetic Boltzmann Methods

arxiv: v1 [math.ap] 28 Apr 2009

Fluid-Particles Interaction Models Asymptotics, Theory and Numerics I

Low Variance Particle Simulations of the Boltzmann Transport Equation for the Variable Hard Sphere Collision Model

A class of asymptotic-preserving schemes for the Fokker-Planck-Landau equation

Numerical Simulation of Rarefied Gases using Hyperbolic Moment Equations in Partially-Conservative Form

Global existence for the ion dynamics in the Euler-Poisson equations

Different types of phase transitions for a simple model of alignment of oriented particles

arxiv: v1 [physics.comp-ph] 3 Apr 2019

All-regime Lagrangian-Remap numerical schemes for the gas dynamics equations. Applications to the large friction and low Mach regimes

Anomalous energy transport in FPU-β chain

Fluid Equations for Rarefied Gases

Monte Carlo method with negative particles

Monte Carlo methods for kinetic equations

Kinetic Solvers with Adaptive Mesh in Phase Space for Low- Temperature Plasmas

EDP with strong anisotropy : transport, heat, waves equations

A CLASS OF ASYMPTOTIC PRESERVING SCHEMES FOR KINETIC EQUATIONS AND RELATED PROBLEMS WITH STIFF SOURCES

Equivalence between kinetic method for fluid-dynamic equation and macroscopic finite-difference scheme

PHYSICS OF HOT DENSE PLASMAS

Transcription:

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Anaïs Crestetto 1, Nicolas Crouseilles 2 et Mohammed Lemou 3 La Tremblade, Congrès SMAI 2017 5 juin 2017 1 INRIA Rennes - Bretagne Atlantique, IPSO & Université de Nantes, LMJL. 2 INRIA Rennes - Bretagne Atlantique, IPSO & Université de Rennes 1, IRMAR & ENS Rennes. 3 CNRS & Université de Rennes 1, IRMAR & INRIA Rennes - Bretagne Atlantique, IPSO & ENS Rennes. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 1

Outline 1 Problem and objectives 2 3 4 A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 2

Introduction Our problem Objectives 1 Problem and objectives Introduction Our problem Objectives 2 3 4 A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 3

Introduction Our problem Objectives Numerical simulation of particle systems Different scales, for example collisions parameterized by the Knudsen number ε different models. Kinetic model Particles represented by a distribution function f (x, v, t). Solving a Boltzmann or Vlasov-type equation t f +A(v,ε) x f +B(v,E,B,ε) v f = S(ε) potentially coupled with Maxwell or Poisson equations. Accurate and necessary far from thermodynamical equilibrium. In 3D = 7 variables = heavy computations. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 4

Introduction Our problem Objectives Fluid model Moment equations on physical quantities linked to f (density ρ, mean velocity u, temperature T, etc.). Lost of precision. Small cost and sufficient at thermodynamical equilibrium. General difficulties Find a well adapted model for the problem, with a good precision/cost ratio. If two scales in the same simulation, develop a numerical scheme efficient in each regime: spatial coupling of two schemes, with an interface, or asymptotic-preserving (AP) scheme 4. 4 Jin, SIAM JSC 1999. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 5

AP scheme Problem and objectives Introduction Our problem Objectives Problem ε h 0 Discretized Problem h,ε ε 0 ε 0 Limit h 0 Discretized limit h h: space step x or time step t. Prop.: Stability and consistency ε, particularly when ε 0. Standard schemes: constraint h = O(ε). Aim: Construct a scheme for which h is independent of ε. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 6

Introduction Our problem Objectives Our 1D Problem ε 1D radiative transport equation, diffusion scaling t f + 1 ε v xf = 1 ε2(ρm f) (1) x [0,L x ] R, v V = [ 1,1], charge density ρ = 1 2 V f dv, M(v) = 1, periodic conditions in x and initial conditions. Main difficulty: Knudsen number ε may be of order 1 or tend to 0 at the diffusion limit t ρ 1 3 xxρ = 0. (2) A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 7

Objectives Problem and objectives Introduction Our problem Objectives Tools Idea Construction of an AP scheme. Reduction of the numerical cost. Micro-macro decomposition 5,6 for this model 7 (in [7], grid in v for the micro part). Use particles for the micro part since few points in v are enough at the limit. 5 Lemou, Mieussens, SIAM JSC 2008. 6 Liu, Yu, CMP 2004. 7 Crouseilles, Lemou, KRM 2011. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 8

Derivation of the micro-macro system First-order reformulation 1 Problem and objectives 2 Derivation of the micro-macro system First-order reformulation 3 4 A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 9

Derivation of the micro-macro system First-order reformulation for the Problem ε (1) Micro-macro decomposition 5,7 : f = ρm + g with g the rest. N = Span{M} = {f = ρm} null space of the BGK operator Q(f) = ρm f. Π orthogonal projection in L 2( M 1 dv ) onto N: Πh := h M, h := h dv. Hypothesis: first moment of g must be zero = g = 0, since f = ρ. True at the numerical level? If not, we have to impose it. 5 M. Lemou, L. Mieussens, SIAM JSC 2008. 7 N. Crouseilles, M. Lemou, KRM 2011. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 10 V

Derivation of the micro-macro system First-order reformulation Applying Π to (1) = macro equation on ρ t ρ+ 1 ε x vg = 0. (3) Applying (I Π) to (1) = micro equation on g t g + 1 ε [v xρ+v x g x vg ] = 1 ε2g. (4) Equation (1) micro-macro system: t ρ+ 1 ε x vg = 0, t g + 1 ε F(ρ,g) = 1 (5) ε 2g, where F(ρ,g) := v x ρ+v x g x vg. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 11

Difficulties Problem and objectives Derivation of the micro-macro system First-order reformulation Stiff terms in the micro equation (4) on g. In previous works 5,7, stiffest term (of order 1/ε 2 ) considered implicit in time = transport term (of order 1/ε) stabilized. But here: use of particles for the micro part = splitting between the transport term and the source term, = not possible to use the same strategy. Idea? Suitable reformulation of the model. 5 M. Lemou, L. Mieussens, SIAM JSC 2008. 7 N. Crouseilles, M. Lemou, KRM 2011. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 12

Derivation of the micro-macro system First-order reformulation Strategy of Lemou 8 : 1. rewrite t g + 1 ε F(ρ, g) = 1 ε 2 g as t (e t/ε2 g) = et/ε2 F(ρ, g), ε 2. integrate in time between t n and t n+1 and multiply by e tn+1 /ε 2 : g n+1 g n t = e t/ε2 1 t 3. approximate up to terms of order O( t) by: t g = e t/ε2 1 t No more stiff terms and good properties. 8 Lemou, CRAS 2010. g n ε 1 e t/ε2 F(ρ n, g n )+O( t), t g ε 1 e t/ε2 F(ρ, g). (6) t A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 13

Properties Problem and objectives Derivation of the micro-macro system First-order reformulation Where Consistency: ε > 0 fixed, as t goes to zero, equation (6) is consistent with the initial micro equation (4). Asymptotic behaviour: t > 0 fixed, as ε goes to zero, we get from (6) g = εv x ρ+o(ε 2 ), which injected in the macro equation (3) provides the limit model (2). (6) t g = e t/ε2 1 t g ε1 e t/ε 2 t [v x ρ+v x g x vg ], (3) t ρ+ 1 ε x vg = 0, (2) t ρ 1 3 xxρ = 0. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 14

PIC method Finite volumes scheme Properties 1 Problem and objectives 2 3 PIC method Finite volumes scheme Properties 4 A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 15

Algorithm Problem and objectives Reformulated system t ρ+ 1 ε x vg = 0, PIC method Finite volumes scheme Properties t g = e t/ε2 1 g ε 1 e t/ε2 [v x ρ+v x g x vg ]. t t Algorithm: 1. Solving the micro part by a Particle-In-Cell (PIC) method. 2. Projection step to numerically force to zero the first moment of g (matching procedure 9 ). 3. Solving the macro part by a finite volume scheme (mesh on x), with a source term dependent on g. Remark: already used in the hydrodynamic limit 10. 9 P. Degond, G. Dimarco, L. Pareschi, IJNMF, 2011 10 A. C., N. Crouseilles, M. Lemou, KRM, 2012 A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 16

1. PIC method where Equation Problem and objectives t g = e t/ε2 1 t S g := e t/ε2 1 t PIC method Finite volumes scheme Properties g ε 1 e t/ε2 [v x ρ+v x g x vg ] t t g +ε 1 e t/ε2 [v x g] = S g t g ε 1 e t/ε2 [v x ρ x vg ]. t Model: having N p particles, with position x k, velocity v k and weight ω k, k = 1,...,N p, g is approximated by N p g Np (x,v,t) = ω k (t)δ(x x k (t))δ(v v k (t)). k=1 A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 17

Steps of the PIC method PIC method Finite volumes scheme Properties Initializations: Mesh in space x i = i x for the macroscopic quantities such as ρ(t,x) ρ i (t) and vg (t,x) vg i (t). Initialization of particles independently of the mesh. At each time step t n : Transport part: solving t g +ε 1 e t/ε2 t [v x g] = 0. Source part: solving t g = S g. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 18

Solving t g +ε 1 e t/ε2 t [v x g] = 0 PIC method Finite volumes scheme Properties 1. Initialization: particles randomly (or quasi) distributed in phase space (x, v), weights initialized to ω k (0) = g (x k, v k, 0) LxLv N p. (L x x-length of the domain, L v v-length.) 2. Movement of particles thanks to motion equations: dx k dt (t) = ε1 e t/ε2 v k (t). t For example x n+1 k = x n k +ε(1 e t/ε2 )v k. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 19

PIC method Finite volumes scheme Properties Solving t g = S g 3. Evolution of weights ω k (step specific to kinetic equations with source term): with dω k dt (t) = S g (x k,v k ) L xl v N p S g = e t/ε2 1 g ε 1 e t/ε2 [v x ρ x vg ]. t t In practice: ω n+1 k ω n k t = e t/ε2 1 ωk n t ε1 e t/ε2 [α n k t +βn k ], with α n k = vn+1 k x ρ n (x n+1 k ) L xl v N p and βk n = x vg (x n+1 k ) L xl v. N p A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 20

2. Projection step Problem and objectives PIC method Finite volumes scheme Properties We now have N p g n+1 (x,v) k=1 ω n+1 k δ ( x x n+1 k ) ( ) δ v v n+1 k. Nothing ensures g n+1 = 0 at the numerical level. We have to impose it. How? By applying a discrete approximation of (I Π) to each weight ω k. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 21

3. Macro part Problem and objectives PIC method Finite volumes scheme Properties Equation t ρ+ 1 ε x vg = 0. Finite volume method ρ n+1 i = ρ n i t ε vg n+1 i+1 vg n+1 i 1. 2 x A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 22

Numerical limit Problem and objectives PIC method Finite volumes scheme Properties Micro equation is discretized as v xρ x vg ω n+1 k = e t/ε2 ωk n {}}{{}}{ ε(1 e t/ε2 ) α n k + βk n. When ε 0, βk n = O(ε) thus ωn+1 k = εα n k +O(ε2 ) and vg n+1 i = ε v 2 n i }{{} x ρ n i +O(ε 2 ). 1/3 Np Injecting in the macro equation ρ n+1 i = ρ n i t ε x vg n+1 i gives ρ n+1 i = ρ n i + t 3 xxρ n i, = we recover a discretization of the limit equation (2). A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 23

"Maneuver" Problem and objectives PIC method Finite volumes scheme Properties Use this idea to implicit the diffusion term. v xρ x vg Write ω n+1 k = e t/ε2 ωk n ε(1 {}}{{}}{ e t/ε2 ) α n k + βk n. Let h n i := e t/ε2 g n i ε(1 e t/ε2 ) x vg and approximate vg n+1 i = ε(1 e t/ε2 ) 1 3 xρ n i + h n i. Inject it in the macro equation and take the diffusion term implicit ρ n+1 i = ρ n i + t(1 e t/ε2 ) 1 3 xxρ n+1 i t ε xhi n. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 24

AP property Problem and objectives PIC method Finite volumes scheme Properties For fixed ε > 0, the scheme is a first-order (in time) approximation of the reformulated micro-macro system, for fixed t > 0, the scheme degenerates into an implicit first-order (in time) scheme of the diffusion equation (2) = AP property. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 25

ETR case Vlasov-BGK-Poisson cases 1 Problem and objectives 2 3 4 ETR case Vlasov-BGK-Poisson cases A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 26

ETR case Problem and objectives ETR case Vlasov-BGK-Poisson cases Initial distribution function: f (x,v,t = 0) = 1+cos ( 2π ( x + 1 )), x [0,1],v [ 1,1]. 2 Micro-macro initializations: ( ( ρ(x,t = 0) = 1+cos 2π x + 1 )) 2 and g(x,v,t = 0) = 0. Density ρ(x,t) = 1 2 1 1 f(x,v,t)dv. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 27

Asymptotic behaviour ETR case Vlasov-BGK-Poisson cases T = 0.1, N x = 64, N p = 10 4, t = 10 3 (left), T = 0.1, N x = 64, ε = 10 6, t = 10 2 (right). Density ρ 2 1.8 1.6 1.4 1.2 1 0.8 0.6 0.4 0.2 ETR, AP property Limit ε=10-6 ε=10-2 ε=0.25 ε=1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 x Density ρ 1.3 1.2 1.1 1 0.9 0.8 ETR, limit Limit ε=10-6, Np=10 4 ε=10-6, Np=100 0.7 0 0.2 0.4 0.6 0.8 1 1.2 x A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 28

ETR case Vlasov-BGK-Poisson cases Our 2nd Problem ε 1D Vlasov-BGK equation, diffusion scaling t f + 1 ε v xf + 1 ε E vf = 1 ε2(ρm f) (7) x [0,L x ] R, v V = R, charge density ρ = V f dv, electric field E given by Poisson equation x E = ρ 1, M(v) = 1 2π exp ( v2 2 ), periodic conditions in x and initial conditions. Main difficulty: Knudsen number ε may be of order 1 or tend to 0 at the drift-diffusion limit t ρ x ( x ρ Eρ) = 0. (8) A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 29

Landau damping Problem and objectives ETR case Vlasov-BGK-Poisson cases Initial distribution function: f (x,v,t = 0) = 1 2π exp( v2 2 )(1+α cos(kx)), x [0, 2π k Micro-macro initializations: ρ(x,t = 0) = 1+α cos(kx) and g(x,v,t = 0) = 0. Parameters: α = 0.05, k = 0.5. Electrical energy E(t) = E(t,x) 2 dx. ],v R. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 30

ETR case Vlasov-BGK-Poisson cases Kinetic regime, N x = 128, N p = 10 5, t = 0.1. log(e) 0-2 -4-6 -8-10 Landau damping, ε=10-12 MiMa-Part-2-14 MiMa-Part-1 Moment G. -16 Full PIC MiMa-Grid -18 0 50 100 150 200 250 300 εt log(e) 0-5 -10-15 -20 Landau damping, ε=1 MiMa-Part-2 MiMa-Part-1 Moment G. Full PIC MiMa-Grid -25 0 5 10 15 20 25 30 t A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 31

ETR case Vlasov-BGK-Poisson cases Intermediate regime, N x = 256, N p = 10 5, t = 0.01. 5 Landau damping, ε=0.5 0 log(e) -5-10 -15 MiMa-Part-2 MiMa-Part-1 Moment G. Full PIC MiMa-Grid -20-25 0 5 10 15 20 25 30 t A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 32

ETR case Vlasov-BGK-Poisson cases Limit regime, N x = 128, N p = 10 4, t = 0.001 (left), N x = 128, N p = 100, t = 0.01 (right). 0 Landau damping, ε=0.1 0 Landau damping, ε=10-4 -5-5 log(e) -10-15 MiMa-Part-2 MiMa-Part-1 Moment G. MiMa-Grid Limit log(e) -10-15 MiMa-Part-2 MiMa-Part-1 Moment G. MiMa-Grid Limit -20-20 -25 0 5 10 15 20 25 30 t -25 0 5 10 15 20 25 30 t A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 33

Two stream instability ETR case Vlasov-BGK-Poisson cases Initial distribution function: f (x,v,t = 0) = v2 2π exp( v2 2 )(1+α cos(kx)), x [0, 2π k Micro-macro initializations: ρ(x,t = 0) = 1+α cos(kx) g (x,v,t = 0) = 1 ( v 2 1 ) ) exp ( v2 (1+α cos(kx)). 2π 2 Parameters: α = 0.05, k = 0.5. ],v R. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 34

ETR case Vlasov-BGK-Poisson cases Kinetic regime, N x = 128, N p = 10 6, t = 0.1 (left), N x = 128, N p = 10 5, t = 0.1 (right). log(e) 0-2 -4-6 -8-10 TSI, ε=10-12 MiMa-Part-2-14 MiMa-Part-1 Moment G. -16 Full PIC MiMa-Grid -18 0 50 100 150 200 250 300 εt log(e) 0-5 -10-15 -20 TSI, ε=1 MiMa-Part-2 MiMa-Part-1 Moment G. Full PIC MiMa-Grid -25 0 5 10 15 20 25 30 t A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 35

ETR case Vlasov-BGK-Poisson cases Intermediate regime, N x = 256, N p = 10 5, t = 0.01. 5 TSI, ε=0.5 0 log(e) -5-10 -15 MiMa-Part-2 MiMa-Part-1 Moment G. Full PIC MiMa-Grid -20-25 0 5 10 15 20 25 30 t A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 36

ETR case Vlasov-BGK-Poisson cases Limit regime, N x = 128, N p = 10 4, t = 0.001 (left), N x = 128, N p = 100, t = 0.01 (right). 0 TSI, ε=0.1 0 TSI, ε=10-4 -5-5 log(e) -10-15 MiMa-Part-2 MiMa-Part-1 Moment G. MiMa-Grid Limit log(e) -10-15 MiMa-Part-2 MiMa-Part-1 Moment G. MiMa-Grid Limit -20-20 -25 0 5 10 15 20 25 30 t -25 0 5 10 15 20 25 30 t A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 37

Conclusions Problem and objectives ETR case Vlasov-BGK-Poisson cases Diffusion (resp. drift-diffusion) limit recovered when ε 0. AP scheme. g 0 when ε 0 = few particles are sufficient at the limit, whereas grid methods have a constant cost, whatever the value of ε. Noise due to PIC method reduced (because only on g) = at equivalent results, fewer particles are necessary. Computational cost reduced at the limit. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 38

Moreover Problem and objectives ETR case Vlasov-BGK-Poisson cases The presented scheme is first-order in time. We have also developed a second-order in time scheme (in a submitted paper). Errors on ρ as a function of t: Error on ρ in L norm 10 0 10-1 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 ETR, convergence (1) ε=1 ε=0.5 ε=0.1 ε=10-6 Slope 2 10-4 10-3 10-2 10-1 t Error on ρ in L norm 10-2 10-3 10-4 10-5 10-6 10-7 10-8 10-9 10-10 10-11 Landau damping, convergence ε=1 ε=0.5 ε=0.1 ε=10-6 Slope 2 10-4 10-3 10-2 10-1 t Parameters: T = 0.1, N x = 16, N p = 100. Error on ρ in L norm 10-2 10-4 10-6 10-8 10-10 TSI, convergence ε=1 ε=0.5 ε=0.1 ε=10-6 Slope 2 10-4 10-3 10-2 10-1 t A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 39

Future works Problem and objectives ETR case Vlasov-BGK-Poisson cases Monte-Carlo method for adapting the number of particles automatically. Models where ε = ε(x). Extension to a Vlasov-BGK-Maxwell model: 1D in x / 2D in v.... A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 40

References Problem and objectives ETR case Vlasov-BGK-Poisson cases [4] S. Jin: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, J. Sci. Comput. 21, pp. 441-454 (1999). [5] M. Lemou, L. Mieussens: A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit, J. Sci. Comp. 31, pp. 334-368 (2008). [6] T.-P. Liu, S.-H. Yu: Boltzmann Equation: Micro-Macro Decompositions and Positivity of Shock Profiles, Comm. Math. Phys. 246 pp. 133-179 (2004). [7] N. Crouseilles, M. Lemou: An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits, KRM 4, pp. 441-477 (2011). [8] M. Lemou:, Relaxed micro-macro schemes for kinetic equations, Comptes Rendus Mathématique 348, pp. 455-460, (2010). [9] P. Degond, G. Dimarco, L. Pareschi: The moment guided Monte Carlo method, International Journal for Numerical Methods in Fluids 67, pp. 189-213 (2011). [10] A. C., N. Crouseilles, M. Lemou: Micro-macro decomposition for Vlasov-BGK equation using particles, Kinetic and Related Models 5, pp. 787-816, (2012). Thank you for your attention! A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 41