Circuit Theorems DR. GYURCSEK ISTVÁN

Similar documents
Resonance Circuits DR. GYURCSEK ISTVÁN

Introduction to Electrical Engineering

Frequency Response DR. GYURCSEK ISTVÁN

Overview of Electromagnetic Fields 2

Chapter 4 Circuit Theorems

Delta & Y Configurations, Principles of Superposition, Resistor Voltage Divider Designs

Chapter 4 Circuit Theorems: Linearity & Superposition

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA

UNIVERSITY F P RTLAND Sch l f Engineering

Chapter 5. Department of Mechanical Engineering

D C Circuit Analysis and Network Theorems:

CHAPTER 4. Circuit Theorems

Chapter 10 AC Analysis Using Phasors

Chapter 6: Series-Parallel Circuits

320-amp-models.tex Page 1 ECE 320. Amplifier Models. ECE Linear Active Circuit Design

EECE251 Circuit Analysis I Lecture Integrated Program Set 3: Circuit Theorems

DC Circuits Analysis

OUTCOME 3 - TUTORIAL 2

UNIT 4 DC EQUIVALENT CIRCUIT AND NETWORK THEOREMS

Chapter 3 Methods of Analysis: 1) Nodal Analysis

Circuit Theorems Overview Linearity Superposition Source Transformation Thévenin and Norton Equivalents Maximum Power Transfer

EE40. Lec 3. Basic Circuit Analysis. Prof. Nathan Cheung. Reading: Hambley Chapter 2

ECE2262 Electric Circuits. Chapter 5: Circuit Theorems

Marwadi University Draft Syllabus for Bachelor of Technology Electronics and Communication. Subject Code: 03EC0302

EE-201 Review Exam I. 1. The voltage Vx in the circuit below is: (1) 3V (2) 2V (3) -2V (4) 1V (5) -1V (6) None of above

Series/Parallel Circuit Simplification: Kirchoff, Thevenin & Norton

Homework 1 solutions

Chapter 10: Sinusoidal Steady-State Analysis

Sinusoidal Steady State Analysis (AC Analysis) Part I

Engineering Science. Unit level 4 Credit value 15. Introduction. Learning Outcomes

Thevenin Norton Equivalencies - GATE Study Material in PDF

CHAPTER FOUR CIRCUIT THEOREMS

MAE140 - Linear Circuits - Fall 14 Midterm, November 6

Lecture Notes on DC Network Theory

Lab Week 6. Quiz #3 Voltage Divider Homework P11, P12 Kirchhoff's Voltage Law (KVL) Kirchhoff's Current Law (KCL) KCL + KVL Module Report tips

Chapter 10 Sinusoidal Steady State Analysis Chapter Objectives:

Thevenin equivalent circuits

Chapter 5 Objectives

Transient Analysis of First-Order Circuits: Approaches and Recommendations

ECE2262 Electric Circuits

Study Notes on Network Theorems for GATE 2017

Electric Circuits II Sinusoidal Steady State Analysis. Dr. Firas Obeidat

BFF1303: ELECTRICAL / ELECTRONICS ENGINEERING. Alternating Current Circuits : Basic Law

Midterm Exam (closed book/notes) Tuesday, February 23, 2010

Electrical Engineering Technology

Bridge Circuits. DR. GYURCSEK ISTVÁN Classic Electrical Measurements 3

SOME USEFUL NETWORK THEOREMS

Impedance and Admittance Parameters

Fundamentals of Electric Circuits, Second Edition - Alexander/Sadiku

4/27 Friday. I have all the old homework if you need to collect them.


Electrical Circuits I Lecture 8

One-Port Networks. One-Port. Network

Lecture 6: Impedance (frequency dependent. resistance in the s- world), Admittance (frequency. dependent conductance in the s- world), and

POLYTECHNIC UNIVERSITY Electrical Engineering Department. EE SOPHOMORE LABORATORY Experiment 2 DC circuits and network theorems

Engineering Science. 1 Be able to determine the behavioural characteristics of elements of static engineering systems

Fault Locating PRESENTED BY ERIK SCHELLENBERG IDAHO POWER

Chapter 10: Sinusoidal Steady-State Analysis

Lectures 16 & 17 Sinusoidal Signals, Complex Numbers, Phasors, Impedance & AC Circuits. Nov. 7 & 9, 2011

EECE251. Circuit Analysis I. Set 4: Capacitors, Inductors, and First-Order Linear Circuits

ELEC273 Lecture Notes Set 11 AC Circuit Theorems

Electric Circuits I. Midterm #1

15.9 TWO-PORTS* . (15.114) R Thout = v 2a

Lecture 0. EE206 Electronics I

Problem info Geometry model Labelled Objects Results Nonlinear dependencies

1.7 Delta-Star Transformation

Two-Port Networks Admittance Parameters CHAPTER16 THE LEARNING GOALS FOR THIS CHAPTER ARE THAT STUDENTS SHOULD BE ABLE TO:

.. Use of non-programmable scientific calculator is permitted.

3.1 Superposition theorem

Prerequisites: Successful completion of PHYS 2222 General Physics (Calculus) with a grade of C or better.

NETWORK ANALYSIS WITH APPLICATIONS

QUIZ 1 SOLUTION. One way of labeling voltages and currents is shown below.

A two-port network is an electrical network with two separate ports

Updated: Page 1 of 6

Fundamental of Electrical circuits

BASIC CALCULATION FOR DC ELECTRICAL CIRCUIT

Lab #3 Linearity, Proportionality, and Superposition

DC STEADY STATE CIRCUIT ANALYSIS

Basic. Theory. ircuit. Charles A. Desoer. Ernest S. Kuh. and. McGraw-Hill Book Company

Figure Circuit for Question 1. Figure Circuit for Question 2

Sinusoidal Steady State Analysis (AC Analysis) Part II

KIRCHHOFF LOWS AGAINST NODE-VOLTAGE ANALYSIS AND MILLMAN'S THEOREM

ELECTRIC CIRCUITS I (ELCT 301)

Let V1=12V, R1=50 ohms, R2=10K ohms, R3=2K ohms, and R4=500 ohms. RL represents the load placed on the circuit between points Aand B.

Notes for course EE1.1 Circuit Analysis TOPIC 3 CIRCUIT ANALYSIS USING SUB-CIRCUITS

Chapter 5 Steady-State Sinusoidal Analysis

Series & Parallel Resistors 3/17/2015 1

NUMBER OF TIMES COURSE MAY BE TAKEN FOR CREDIT: One

Electronics II. Midterm #1

Electric Circuit Theory

Errors in Electrical Measurements

15EE103L ELECTRIC CIRCUITS LAB RECORD

Parallel Circuits. Chapter

Classic Electrical Measurements 1

EE1003 ANALYSIS OF ELECTRIC CIRCUITS

EIE/ENE 104 Electric Circuit Theory

ESE319 Introduction to Microelectronics Common Emitter BJT Amplifier

MAE140 - Linear Circuits - Winter 09 Midterm, February 5

Designing Information Devices and Systems I Fall 2015 Anant Sahai, Ali Niknejad Homework 10. This homework is due November 9, 2015, at Noon.

Direct Current (DC): In a DC circuit the current and voltage are constant as a function of time. Power (P): Rate of doing work P = dw/dt units = Watts

Transcription:

DR. GYURCSEK ISTVÁN Circuit Theorems Sources and additional materials (recommended) q Dr. Gyurcsek Dr. Elmer: Theories in Electric Circuits, GlobeEdit, 2016, ISBN:978-3-330-71341-3 q Ch. Alexander, M. Sadiku: Fundamentals of Electric Circuits, 6th Ed., McGraw Hill NY 2016, ISBN: 978-0078028229 q Simonyi K.: Villamosságtan. AK Budapest 1983, ISBN:9630534134 q Dr. Selmeczi K. Schnöller A.: Villamosságtan 1. MK Budapest 2002, TK szám: 49203/I q Dr. Selmeczi K. Schnöller A.: Villamosságtan 2. TK Budapest 2002, ISBN:9631026043 q Zombory L.: Elektromágneses terek. MK Budapest 2006, (www.electro.uni-miskolc.hu) 1 gyurcsek.istvan@mik.pte.hu 2018. 10. 13.

q Linearity Property q Superposition Principle q Source Transformation q Thevenin s Theorem q Norton s Theorem q Maximum Power Transfer q Applications: Practical Sources 2 gyurcsek.istvan@mik.pte.hu 2018. 10. 13.

Linearity Property (A) Conditions of linearity (Mathematics) Homogeneity / = 0(1) ( $ / = 0(( $ 1) Additivity / + = 0 1 +, / - = 0 1 - / + + / - = 0 1 + + 1 - (B) Linear circuit (no independent source internally) Linear relationship bw. v S input (excitation) and i output (response) Homogeneity Additivity! = # $ % & ( $! = # $ (( $ % & )! + = # $ % &+,! - = # $ % &-! + +! - = # $ % &+ + # $ % &- = # $ % &+ + % &- (C) OUTCOMES IN CIRCUIT ANALYSIS 1 [HOMOGENEITY] [NEXT SLIDE EXAMPLE]; 2 [ADDITIVITY] [SUPERPOSITION PRINCIPLE] (D) WARNING! The power relation is nonlinear!! + 3 + =! - + $ 4 2! - 3 - =! - - $ 4 567! + +! - 3 +- =! + +! - - $ 4 =! - + $ 4 +! - - $ 4 + 2 $! + $! - $ 4 3 +- 3 + + 3-3 gyurcsek.istvan@mik.pte.hu 2018. 10. 13.

Calc. Example with Homogeneity Find I 0 in the circuit.! : #$$%&' ( ) = 1, 8 : ( 9 = ( / + ( ) = 3, > : (? = ( 9 + ( < = 5, - :. / = 3 + 5 3 ( ) = 8. : :. 9 = ( 9 3 2 +. / = 14. @ : A%B (? DEFG = ( H = 5 3 5 = 15, 5 : ( / =. / 4 = 2, ; : ( < =. 9 7 = 2, I : Bh%$ ( ) DEFG = 5 3 ( ) = 3, 4 gyurcsek.istvan@mik.pte.hu 2018. 10. 13.

q Linearity Property q Superposition Principle q Source Transformation q Thevenin s Theorem q Norton s Theorem q Maximum Power Transfer q Applications: Practical Sources 5 gyurcsek.istvan@mik.pte.hu 2018. 10. 13.

Superposition Principle Steps to apply q Turn off independent sources except one and find output. q Repeat it for each of independent sources. q Find total by adding all the contributions. Example Find v by using superposition.! =! # +! % 12( # 6 = 0 ( # = 0.5 /! # = 4( # = 2 1 or! # = 4 4 + 8 6 = 2 1 ( 5 = 8 4 + 8 3 = 2 /! % = 4( 5 = 8 1! =! # +! % = 2 + 8 = 10 1 6 gyurcsek.istvan@mik.pte.hu 2018. 10. 13.

q Linearity Property q Superposition Principle q Source Transformation q Thevenin s Theorem q Norton s Theorem q Maximum Power Transfer q Applications: Practical Sources 7 gyurcsek.istvan@mik.pte.hu 2018. 10. 13.

Source Transform Source transformation q Another tool for simplifying circuits q Active equivalent transformation q For real generators only! (/ 0, ) / 78 = / 9 = / $ 78 = & 9 6 /!h#$#%&% () & +, = $. /, 12342% () & +, = &.!h#$#%&% 5) $ +, = $., 12342% 5) $ +, = &. 6 / & 9 = $ 78 / 8 gyurcsek.istvan@mik.pte.hu 2018. 10. 13.

Calculation Example v 0 =?! = 2 2 + 8 & 2 = 0.4 * +, = 8! = 3.2. /0 +, = 2 34 &! = 2 & 8 2 + 8 & 2 = 3.2. 9 gyurcsek.istvan@mik.pte.hu 2018. 10. 13.

q Linearity Property q Superposition Principle q Source Transformation q Thevenin s Theorem q Norton s Theorem q Maximum Power Transfer q Applications: Practical Sources 10 gyurcsek.istvan@mik.pte.hu 2018. 10. 13.

Thevenin s Theorem ' "# = ( )*! "# =! %& 11 gyurcsek.istvan@mik.pte.hu 2018. 10. 13.

Thevenin s Theorem Determining R Th q CASE 1 no dependent sources q CASE 2 dependent sources also! "# =! %&! "# = ' ( ) ( Another way (later on)! "# = ' *+ ),+ 12 gyurcsek.istvan@mik.pte.hu 2018. 10. 13.

Calculation Example Find the current through the 6, 16 and 36 ohms load.! "# = 4 12 + 1 = 4 * 12 16 + 1 = 4 Ω 32 + 4/ 0 + 12 / 0 / 1 = 0 / 1 = 2 3, / 0 = 0.5 3 7 "# = 12 / 0 / 1 = 12 * 2.5 = 30 7 89 32 7 "# 4 + 2 = 7 "# 12 7 "# = 30 7 < = = 7 "#! "# +! = = 30 4 +! = = 3, 1.5, 0.75 3 13 gyurcsek.istvan@mik.pte.hu 2018. 10. 13.

q Linearity Property q Superposition Principle q Source Transformation q Thevenin s Theorem q Norton s Theorem q Maximum Power Transfer q Applications: Practical Sources 14 gyurcsek.istvan@mik.pte.hu 2018. 10. 13.

Norton s Theorem +, = ( )' +, = * "# * "# = % &'! "#! "# = % &' ( )' = * "# +, =!, 15 gyurcsek.istvan@mik.pte.hu 2018. 10. 13.

Calculation Example Find the Norton equivalent circuit.! " = 5 8 + 4 + 8 = 5 ) 20 25 = 4 Ω 16 gyurcsek.istvan@mik.pte.hu 2018. 10. 13.

Calculation Example! " = 2 %, 20! ( 4! " 12 = 0! ( = 1 % =! -. = / 0 17 gyurcsek.istvan@mik.pte.hu 2018. 10. 13.

Calculation Example Alternatively & ' = ( )* + )*! " = 2 % 25! - 4! " 12 = 0! - = 0.8 % 5 67 = ( )* = 5! - = 4 ( & ' = ( )* + )* = 4 4 = 1 % 18 gyurcsek.istvan@mik.pte.hu 2018. 10. 13.

q Linearity Property q Superposition Principle q Source Transformation q Thevenin s Theorem q Norton s Theorem q Maximum Power Transfer q Applications: Practical Sources 19 gyurcsek.istvan@mik.pte.hu 2018. 10. 13.

Maximum Power Transfer! = # $ % & = ' () % () + % & $ % & +! $ % () + % $ & 2% & % () + % & $ % () + % & 2% & = ' +% () & % () + %. = ' () & % () + % / = 0 & % () = % & + $! $ +% == ' () $ + % () % & & +% & % () + % / & < 0 >?@#>A>!BCDE! 123 = ' () $ 4% () 6 =! 123! 7 = $ ' () 8 4% () $ = 0.5 = 50% ' () 8 2% () 20 gyurcsek.istvan@mik.pte.hu 2018. 10. 13.

Calculation Example Find R L for maximum power transfer. Find the maximum power.! "# = 2 + 3 + 6 12 = 5 + 6, 12 18 = 9 Ω 12 + 181 2 121 3 = 0, 1 3 = 2 6 1 2 = 2 3 6 12 + 61 2 + 31 3 + 2, 0 + 7 "# = 0 7 "# =22 V! ; =! "# = 9 Ω, < =>? = 223 4, 9 = 13.44 B 21 gyurcsek.istvan@mik.pte.hu 2018. 10. 13.

q Linearity Property q Superposition Principle q Source Transformation q Thevenin s Theorem q Norton s Theorem q Maximum Power Transfer q Applications: Practical Sources 22 gyurcsek.istvan@mik.pte.hu 2018. 10. 13.

Real Voltage and Current Sources! " =! $ % " % $ + % " ' " = ' $ % ( % ( + % " 23 gyurcsek.istvan@mik.pte.hu 2018. 10. 13.

Questions 24 gyurcsek.istvan@mik.pte.hu 2018. 10. 13.