CHEMISTRY Topic #4: Electrophilic Addition Reactions of Alkenes and Alkynes Fall 2018 Dr. Susan Findlay

Similar documents
When H and OH add to the alkyne, an enol is formed, which rearranges to form a carbonyl (C=O) group:

Chapter 3. Alkenes And Alkynes

Loudon Chapter 14 Review: Reactions of Alkynes Jacquie Richardson, CU Boulder Last updated 1/16/2018

Chapter 8 Alkenes and Alkynes II: Addition Reactions

p Bonds as Nucleophiles

HONORS ORGANIC CHEM. HAHS MRS. RICHARDS

CHE1502. Tutorial letter 203/1/2016. General Chemistry 1B. Semester 1. Department of Chemistry

Chapter 7: Alkene reactions conversion to new functional groups

Double and Triple Bonds. The addition of an electrophile and a

Chapter 8 Alkenes and Alkynes II: Addition Reactions "

Chapter 8 Reactions of Alkenes

6.10 Acid-Catalyzed Hydration of Alkenes. Acid-Catalyzed Hydration of Alkenes

5. Reactions of Alkenes (text )

REACTION AND SYNTHESIS REVIEW

Topic 2 Alkenes and alkynes

LECTURE #14 Thurs., Oct.20, Midterm exam: Tues.Oct.25 during class Ch.1, , 7.10, 2, Sections

Chapter 8 Alkenes and Alkynes II: Addition Reactions. Alkenes are electron rich. Additions to Alkenes

1. Radical Substitution on Alkanes. 2. Radical Substitution with Alkenes. 3. Electrophilic Addition

2.222 Practice Problems 2003

Chapter 8: Chemistry of Alkynes (C n H 2n-2 )

2/26/18. Practice Questions. Practice Questions B F. How many steps are there in this reaction?

CHEMISTRY Topic #1: Functional Groups and Drawing Organic Molecules Fall 2014 Dr. Susan Findlay

Electrophilic Addition

Reactions of Alkenes and Alkynes

Chapter 8 - Alkenes and Alkynes II Addition Reactions of Alkenes - Electrons in the π bond of alkenes react with electrophiles

Lecture 11 Organic Chemistry 1

Chemistry 2000 Lecture 18: Reactions of organic compounds

Chapter 3 Alkenes and Alkynes. Excluded sections 3.15&3.16

Chem 251 Fall Learning Objectives

Preparation of alkenes

Chapter 8 Alkenes and Alkynes II: Addition Reactions. Alkenes are electron rich. Additions to Alkenes

Alkenes. Alkenes-hydrocarbons with a carbon-carbon double bond. Alkenes have the formula C n H 2n. Nomenclature

sp 2 geometry tetrahedral trigonal planar linear ΔH C-C ΔH C-H % s character pk a 464 KJ/mol 33% 44

Aldehydes and Ketones : Aldol Reactions

ORGANIC - CLUTCH CH ADDITION REACTIONS.

Alkynes Nomenclature of Alkynes

ORGANIC - BROWN 8E CH ALKENES AND REACTIONS OF ALKENES

Chemistry 210 Organic Chemistry I Winter Semester 2001 Dr. Rainer Glaser

Learning Guide for Chapter 17 - Dienes

Chapter 8 Addition Reactions to Alkenes

LECTURE #13 Tues., Oct.18, Midterm exam: Tues.Oct.25 during class Ch.1, , 7.10, 2, Sections

Ether, NaOH. This is a two-step process, but is most commonly done as a one-pot procedure (upper right).

Chapter 5. Reactions of Alkenes and Alkynes

Elimination Reactions. Chapter 6 1

Organic Chemistry. Alkenes (2)

ζ ε δ γ β α α β γ δ ε ζ

Chemistry 210 Organic Chemistry I Fall Semester 2000 Dr. Rainer Glaser

Chapter 9 Alkynes. Introduction

Chemistry 231 Organic I Exam 2 Dr. Gallo (Brown & Foote) October 29, 2004

Organic Chemistry. M. R. Naimi-Jamal. Faculty of Chemistry Iran University of Science & Technology

PAPER No. : Paper-9, Organic Chemistry-III (Reaction Mechanism-2) MODULE No. : Module-10, Hydroboration Reaction CHEMISTRY

Organic Chemistry, Second Edition. Janice Gorzynski Smith University of Hawai i. Chapter 10 Alkenes

Lecture 20 Organic Chemistry 1

Just Chemistry Department Organic Chemistry 217

REVIEW PROBLEMS Key. 1. Draw a complete orbital picture for the molecule shown below. Is this molecule chiral? Explain. H H.

Chap 11. Carbonyl Alpha-Substitution Reactions and Condensation Reactions

CHEM Lecture 7

Overview of Types of Organic Reactions and Basic Concepts of Organic Reaction Mechanisms

Organic Chemistry Review: Topic 10 & Topic 20

Chapter 7: Alkenes: Reactions and Synthesis

Problem Set 8: Substitution Reactions-ANSWER KEY. (b) nucleophile NH 3 H C. (d) H 3 N

Organic Chemistry. Alkenes

Chemistry 210 Organic Chemistry I Fall Semester 2000 Dr. Rainer Glaser

Chapter 19. Carbonyl Compounds III Reaction at the α-carbon

Loudon Chapter 19 Review: Aldehydes and Ketones CHEM 3331, Jacquie Richardson, Fall Page 1

ORGANIC CHEMISTRY- 1

Chem 232. Representation of Reaction Mechanisms. A Simple Guide to "Arrow Pushing"

Reactivity of C=C. Chapter 8 Reactions of Alkenes. Types of Additions. Electrophilic Addition. Addition of HX (1) Addition of HX (2)

CHEM1902/ N-8 November Consider the following reaction sequences beginning with the carboxylic acid, E.

Hydrogen iodide is a strong acid and will drive the reverse reaction, meaning the forward reaction will not occur.

1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound?

Understanding the basics. Mechanisms 5/24/11

C C. sp 2. π M.O. atomic. orbitals. carbon 1. σ M.O. molecular. orbitals. H C C rotate D. D H zero overlap of p orbitals: π bond broken!

Nuggets of Knowledge for Chapter 17 Dienes and Aromaticity Chem 2320

Chapter 4. Reactions of alkenes. Addition reactions Carbocations Selectivity of reactions

CHAPTER 9. ALKYNES: AN INTRODUCTION TO ORGANIC SYNTHESIS

Organic Chemistry Practice Problems: Solutions

2. Hydrohalogenation: Propylene reacts with HBr to form 2-bromopropane.

Classes of Alkenes. Alkenes and Alkynes. Saturated compounds (alkanes): Have the maximum number of hydrogen atoms attached to each carbon atom.

Chapter 19. Organic Chemistry. Carbonyl Compounds III. Reactions at the a-carbon. 4 th Edition Paula Yurkanis Bruice

Chemistry 210 Organic Chemistry I Winter Semester 2002 Dr. Rainer Glaser

LECTURE #06 Thurs., Feb.07, 2008

75. A This is a Markovnikov addition reaction. In these reactions, the pielectrons in the alkene act as a nucleophile. The strongest electrophile will

The Electrophile. S N 2 and E2 least stable most stable least hindered most hindered. S N 1 and E1. > x > >

Lecture 3: Aldehydes and ketones

CHEM 263 Oct 25, stronger base stronger acid weaker acid weaker base

Chapter 8. Alkenes and Alkynes II: Addition Reactions. Ch. 8-1

CHAPTER 19: CARBONYL COMPOUNDS III

Chapter 11 - Alcohols and Ethers 1

Chemistry 210 Organic Chemistry I Winter Semester 2002 Dr. Rainer Glaser

1. What are the respective hybridizations of the atoms numbered 1 to 4 in this compound?

Nuggets of Knowledge for Chapter 12 Alkenes (II) Chem reaction what is added to the C=C what kind of molecule results addition of HX HX only

Chapters Additions across C=C π Bonds.

1. Addition of HBr to alkenes

Ethers can be symmetrical or not:

Reaction mechanisms offer us insights into how reactions work / how molecules react with one another.

This reactivity makes alkenes an important class of organic compounds because they can be used to synthesize a wide variety of other compounds.

Background Information

Organic Chemistry Lecture 2 - Hydrocarbons, Alcohols, Substitutions

Alcohols: Contain a hydroxy group( OH) bonded to an sp 2 or sp 3 hybridized

Transcription:

EMISTRY 2600 Topic #4: Electrophilic Addition Reactions of Alkenes and Alkynes Fall 2018 Dr. Susan Findlay

rganic Reactions (EM 2500 Review) Most reactions in organic chemistry fall into one (or more) of a few general categories: Proton transfer reactions (ønsted acid-base reactions) Substitution reactions Elimination reactions Addition reactions Rearrangements xidation reactions (some are also additions or eliminations) Reduction reactions (many are also additions) Which categories of reaction a molecule can undergo is determined by its composition. For example (list not exclusive), Molecules with acidic hydrogens (or basic sites) can undergo proton transfer rxns Molecules with π bonds can undergo addition rxns Molecules with π bonds can be reduced Alcohols and aldehydes can be oxidized Molecules with good leaving groups can undergo substitutions or eliminations 2

rganic Reactions (EM 2500 Review) When looking at a molecule to decide what types of reactions it is most likely to undergo, pay particular attention to any nucleophilic sites and electrophilic sites: Nucleophilic site: electron rich atom(s) looking for a nucleus. Typically, an atom with a lone pair or a - π bond. A nucleophile donates electrons to an electrophile. Electrophilic site: electron poor atom(s) looking for electrons. Typically, a carbon atom bonded to one or more electronegative atoms. An electrophile accepts electrons from a nucleophile. Which of the two nitrogen-containing molecules below can be a nucleophile? Find the most electrophilic site on cyclohexanone, and use curly arrows to show the attack of the nucleophile on cyclohexanone. or N N? 3

rganic Reactions (EM 2500 Review) It s also worth looking for acidic and basic sites: Acidic site: hydrogen atom with a low pk a value. To decide if a hydrogen is acidic, consider the stability of the compound formed when is removed (stable conjugate base = strong acid). Basic site: electron rich atom(s) looking to acquire. Many (but not all!) nucleophiles are bases and vice versa. Which of the two nitrogen-containing molecules below can be a base? Find the most acidic site on cyclohexanone, and use curly arrows to show the attack of the base on cyclohexanone. or N N? 4

Substitution Reactions (EM 2500 Review) In a substitution rxn, a nucleophile attacks an electrophile, displacing a leaving group. Depending on the nature of the reactants, this may take one or more steps: S l S l S S S l 5

Substitution Reactions (EM 2500 Review) Upon closer examination of the substitution reactions on the previous page, they all had a few factors in common: The geometry of the electrophilic carbon atom in an S N 1 or S N 2 reaction is always tetrahedral. The leaving group always has a heteroatom bonded to the electrophilic carbon AND forms a stable molecule/ion upon departure. Note that had to be converted to 2 first; water is much more stable than hydroxide. Strong bases are bad leaving groups. Weak bases are good leaving groups. When we refer to a leaving group, we name the product made when it leaves. The first reaction was drawn with a regular reaction arrow whereas the second reaction as a series of equilibria. Why? Which reactions on the previous page are S N 1? Which are S N 2? 6

Elimination Reactions (EM 2500 Review) β 3 α X γ β 3 2 In an elimination rxn, a base attacks an acidic hydrogen that is β- to a leaving group, displacing that leaving group: Depending on the nature of the reactants, this may take one or more steps: 3 3 3 3 3 3 3 3 3 3 3 3 S S4 S4 S4 7

E1 vs. E2 vs. S N 1 vs. S N 2 (EM 2500 Review) As a general rule, the type of molecule that will readily undergo S N 1 reactions can also undergo E1 reactions. After all, they both have the same rate-determining step (leaving group loss)! To favour E1 over S N 1 for alcohols, choose an acid with a nonnucleophilic conjugate base. To favour S N 1 over E1, make sure a good nucleophile is available. (You ll probably still see traces of E1 product.) As a general rule, the type of molecule that will readily undergo S N 2 reactions can also undergo E2 reactions. To favour E2 over S N 2, choose a bulky non-nucleophilic base. To favour S N 2 over E2, choose a weakly basic nucleophile (e.g. a halide). β 3 α X β 3 2 Before embarking on a S N vs. E debate, confirm that the γ compound in question has one or more β-hydrogens! If not, elimination s not even an option 8

9 Electrophilic Addition Reactions of Alkenes (X) When you looked at the mechanism for an E1 elimination reaction in EM 2500, you saw that every step was reversible: S S S S

10 As such, the reverse reaction (below) can also occur. ow would you promote this reaction in which water is added to the alkene? Electrophilic Addition Reactions of Alkenes (X) S S S S

Electrophilic Addition Reactions of Alkenes (X) The reaction on the previous page is an example of an electrophilic addition reaction of an alkene. In this type of reaction, a small molecule is added across a double bond: R R R R R R R R l In the first step of the mechanism, the small molecule being added serves as the electron recipient or electrophile (though, in some cases, it would be more accurate to say that the small molecule first acts as an acid). This is where the electrophilic in electrophilic addition comes from. R R R R R R R l R also works with and I 11

Electrophilic Addition Reactions of Alkenes (X) Using the mechanism on slide #10 as a guideline, draw the mechanism for addition of to trans-2-butene: Now, try drawing the mechanism for addition of to 2- methyl-2-butene: ere, you need to consider the regiochemistry of the product! 12

Electrophilic Addition Reactions of Alkenes (X) When more than one constitutional isomer ( regioisomer ) could theoretically be made in an electrophilic addition reaction, we look to the carbocation intermediate to tell us which will be the major product(s): TE MST STABLE ARBATIN INTERMEDIATE WILL FRM MST QUIKLY, LEADING T TE MAJR ADDITIN PRDUT! This is the rationale behind Markovnikov s Rule which was originally stated as: This version works most of the time; however, if you plan to use Markovnikov s Rule, you must always watch out for resonancestabilized carbocations! 13

Electrophilic Addition Reactions of Alkenes (X) Predict the major product(s) for each of the following electrophilic addition reactions: I 2 2 S 4 2 S 4 14

Electrophilic Addition Reactions of Alkenes What would happen if an alkene was treated with acid to make the carbocation, but there was no water or halide ion available? 2 S 4 The example above was a dimerization; however, the reaction does not need to stop here. This is one way to make polymers. Biological systems use similar chemistry to make a wide variety of molecules including many hormones and steroids; however, they use enzymes instead of strong acid to generate the necessary carbocation-like intermediates. 15

Electrophilic Addition Reactions of Alkenes (X 2 ) Not all electrophilic addition reactions involve an acid (or water/acid combination). It s also possible to add halogens (usually l 2 or 2 ) across a double bond: l l l l This is the basis for the most common test for presence of alkenes/alkynes add 2 (a dark brown liquid) and see if its colour disappears. 16

Electrophilic Addition Reactions of Alkenes (X 2 ) Unlike addition of X, addition of l 2 or 2 is stereospecific. The two halogen atoms always add anti- to each other. This is because of the reaction mechanism: The bromonium ion intermediate forces the bromide ion to attack in an S N 2-like fashion from the opposite side of the. 17

Electrophilic Addition Reactions of Alkenes (X 2 ) Even in acyclic systems, the stereospecificity of these additions often comes into play. onsider the bromination products from cis- and trans-2-butene: 3 3 2 3 3 2 18

Electrophilic Addition Reactions of Alkenes (X-) When an electrophilic addition is performed in a nucleophilic solvent (usually water), the solvent molecules will greatly outnumber the halide ions. Thus, in water, we get formation of a halohydrin: Traces of the dibromocyclohexane will also form. Why? 19

Electrophilic Addition Reactions of Alkenes (X-) The bromonium ion is stabilized by resonance: Both - bonds are strong enough that rotation is NT possible! The true picture is the weighted AVERAGE of these pictures. We don t actually get alternating resonance structures! If we generate a bromonium ion from an unsymmetrical alkene, which of the two carbocation resonance structures will be more stable? (therefore weighted more heavily in the average picture) 3 2 2 20

Electrophilic Addition Reactions of Alkenes (X-) So, the bromonium ion generated from an unsymmetric alkene will have the bromine atom pulled more tightly toward the carbon atom that makes a less stable carbocation. As such, the nucleophile will attack at the carbon atom that makes a more stable carbocation. Markovnikov strikes again! 3 2 2 Thus, formation of a halohydrin by reacting an alkene with a halogen in water is stereospecific and regioselective. 21

Electrophilic Addition Reactions of Alkenes (X-) In the presence of water, I 2 can also be used as the halogen. What are the major product(s) of each of the following reactions? I 2 2 I 2 2 22

Electrophilic Addition Reactions of Alkynes Alkenes are not the only compounds containing π bonds. Electrophilic addition reactions can also be performed on alkynes (as well as = and =N groups). When a halogen is added to an alkyne, two molecules of X 2 will be added per triple bond: 3 l 2 23

Electrophilic Addition Reactions of Alkynes When a hydrogen halide is added to an alkyne, two molecules of X will be added per triple bond: 3 Markovnikov s Rule applies to both additions. 24

Electrophilic Addition Reactions of Alkynes When a water is added to an alkyne, a transition metal catalyst is necessary: 3 2 Ptl 2 TF Addition of one water molecule gives an enol. It tautomerizes to the corresponding ketone (a keto-enol tautomerism ). 25

Electrophilic Addition Reactions of Alkynes Addition of unsymmetrical molecules ( 2 or X) to an alkyne is only practical if the alkyne is either terminal or symmetrical. Why? What are the major products for each of the following reactions? 3 2 2 Ptl 2 TF l 26

ydroboration of Alkenes All electrophilic addition reactions follow Markovnikov s Rule, but sometimes, we really want to add the small molecule the other way around! ow can we accomplish this? In other words, what can we do if we want to do the reaction below? 2? anti-markovnikov product Problem: We can t add the water directly. We need to add something else that will put the hydrogen where we want it TEN convert the other group into an alcohol. That means we need to add a small molecule in which hydrogen is the MRE electronegative atom. The other part of the small molecule must be something we can convert into after the addition is done. 27

ydroboration of Alkenes Solution: a borane (-BR 2 ) ydrogen is more electronegative than boron. The BR 2 part of a borane is bigger than, so sterics will also help to put on the more substituted carbon atom. Boranes can be oxidized up to boronate esters (inserting an oxygen between the carbon and the boron) which can be broken open, leaving behind an alcohol where BR 2 was. Two of the most common borane reagents are B 3 (which MUST be in an ether solvent like TF) and 9-BBN: B B.. - B B = B Borane with no solvent is B 2 6 Borane in TF 9-BBN (9-borabicyclo[3.3.1]nonane) If regioselectivity is a concern, choose. 28

ydroboration of Alkenes ow does this give us the anti-markovnikov alcohol (even though we re still following Markovnikov s Rule at all times)? 3 BR 2 22 B(R)2 B 3 TF 3 Na 3 2 3 29

ydroboration of Alkenes Note that, because both parts of the borane add simultaneously from the same molecule, this is always a syn-addition. That makes hydroborations regioselective and stereospecific. What are the major products for each of the following reactions? 1. B 3, TF 2. 2 2, Na 3. 2 1. 9-BBN, TF 2. 2 2, Na 3. 2 1. TF B 2. 2 2, Na 3. 2 30

Summary of Additions to Alkenes 3 X 3 X 3 X 2 X X 2 3 2 S 4 2 and/or polymer 3 2 3 2 S 4 1. 9-BBN (or B 3), TF X 2. 2 2, Na 3. 2 X 3 3 31